
RESEARCH ARTICLE Open Access

Systematic target function annotation of
human transcription factors
Yong Fuga Li1,2,3* and Russ B. Altman2,4*

Abstract

Background: Transcription factors (TFs), the key players in transcriptional regulation, have attracted great experimental
attention, yet the functions of most human TFs remain poorly understood. Recent capabilities in genome-wide protein
binding profiling have stimulated systematic studies of the hierarchical organization of human gene regulatory
network and DNA-binding specificity of TFs, shedding light on combinatorial gene regulation. We show here that
these data also enable a systematic annotation of the biological functions and functional diversity of TFs.

Result: We compiled a human gene regulatory network for 384 TFs covering the 146,096 TF–target gene (TF–TG)
relationships, extracted from over 850 ChIP-seq experiments as well as the literature. By integrating this network
of TF–TF and TF–TG relationships with 3715 functional concepts from six sources of gene function annotations,
we obtained over 9000 confident functional annotations for 279 TFs. We observe extensive connectivity between
TFs and Mendelian diseases, GWAS phenotypes, and pharmacogenetic pathways. Further, we show that TFs link
apparently unrelated functions, even when the two functions do not share common genes. Finally, we analyze
the pleiotropic functions of TFs and suggest that the increased number of upstream regulators contributes to the
functional pleiotropy of TFs.

Conclusion: Our computational approach is complementary to focused experimental studies on TF functions,
and the resulting knowledge can guide experimental design for the discovery of unknown roles of TFs in human
disease and drug response.

Keywords: Transcription factor, Regulatory network, Gene function annotation, Functional pleiotropy, Regulator
diversity, Target gene, Database, Function enrichment, Co-regulation

Background
Regulation of gene expression is essential for the
realization of cell type-specific phenotypes [1] during
normal development [2] and the adaptation of cellular
organisms to their environment [3]. To a large degree,
transcriptional regulation occurs through the interaction
of protein factors with the genomic DNA [4]. Multiple
proteins, including the chromatin remodelers, transcrip-
tion factors (TFs), cofactors, and other transcription
initiation factors [5], work in coordination to regulate
the spatiotemporal details of gene expression. In the nar-
row sense, TFs are proteins that bind DNA in a
sequence-specific manner and mediate the integrations
of other proteins with specific target genes (TGs) for

fine-granular expression control [6]. In this study, we
adopt a broad definition of TF that includes the cofac-
tors and other transcription initiation factors.
The pivotal role of TFs in development and cell

identity determination is highlighted by the induced
pluripotent stem cell (iPSC) technology [7, 8] and trans-
induction techniques [9, 10], in which the introduction
of just a few specific TFs is sufficient for converting
fibroblast cells into pluripotent stem cells, or converting
one differentiated cell type, e.g., pancreatic exocrine
cells, directly into another differentiated cell type, e.g.,
β-cells. In addition, TFs are key players controlling
diverse physiological functions, ranging from metabol-
ism [11, 12], chemical and mechanical stress responses
[13–16], song-learning [17, 18], to longevity and aging
[19–21]. Many TFs are directly involved in diseases such as
cancer, diabetes, and neural developmental disorders [9].
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TFs have attracted intense research attention [22]; yet,
the biological functions of most TFs are still poorly
understood. The number of human TFs is estimated to
be approximately 1500–2000 based on DNA-binding
domain evidence [23–26]. In total, the sequence-specific
DNA-binding activities of only 564 TFs are confirmed
by experimental evidence and the existence of an
additional 490 TFs is supported indirectly by phylogen-
etic evidence or author claims, based on the Gene
Ontology (GO) database [27–30]. Limited knowledge is
available on the biological functions of most TFs, with a
small number of ‘famous’ TFs, such as TP53, attracting
much attention [23]. However, recent developments of
high-throughput technologies such as ChIP-seq and
DNase-seq [31] provide an unprecedented amount of data
on gene regulation, with binding profiles for over 100 TFs
from ENCODE alone [32]. This has spurred systematic
data-driven studies on transcriptional regulation, such as
the discovery of cis-regulatory motifs [33, 34], the
mapping of the hierarchical architecture of human gene
regulatory networks, and the modeling of combinatorial
regulation [32, 35–38]. At the same time, analytics tools
have been developed for annotating ChIP-seq data
[39–41], some allowing analysis of GO term enrich-
ment for the binding sites [42–44].
In this study, we integrate the existing knowledge

about functions and phenotypes of human genes with
the transcriptional regulatory network to study the func-
tions of human TFs. We define the ‘target functions’ of a
TF as the statistical overrepresented functions among its
TGs, and provide a systematic annotation of TF func-
tions, ranging from metabolic pathways to disease phe-
notypes. In parallel, we define the functional similarity of
two-TFs based on their TG overlaps, independent of the
availability of gene function annotations, and annotate
each TF by functionally similar TFs (Fig. 1). We study
the pleiotropic functions of individual TFs and show that
multifunctionality is associated with the number of up-
stream regulators of the TFs. With these analyses, we
demonstrate a computational approach for achieving
systematic understanding of TF functions.

Results
The compendium of human TF TGs
We compiled a TF–TG data compendium covering the
direct transcriptional regulation targets of 384 unique
TFs extracted from over 850 ChIP-seq experiments as
well as the literature with low throughput experimental
evidence. Low throughput experiments, ENCODE ChIP-
seq, and other sources of ChIP-seq data are complemen-
tary in their TF coverage. It remains a challenge to
accurately assign ChIP-seq signals to specific promoters
and identify the TGs of a TF. We adapted a previously
published method (TIP [45]), which statistically

evaluates each gene as a potential TG based on both the
locations and the intensities of the TF binding signals
relative to the gene transcriptional start site(s). Overall,
149 (39%) TFs are covered only by high-throughput ex-
periments, among which 52 (35%) are covered by the
ENCODE consortium [32, 37] and 107 are covered by
individual research labs (based on data published by
October 2013). Meanwhile, 122 (32%) TFs are retrieved
only from low-throughput experiments, and 113 (29%)
TFs from both low- and high-throughput experiments
(Additional file 1: Figure S1A).
A total of 16,967 unique TGs of TFs are available,

including both TFs and non-TFs. We filtered the TGs
identified in high-throughput experiments to achieve an
estimated false discovery rate (FDR) of 0.01. Combining
all sources, 146,096 TF–TG relationships were obtained.
Each gene was regulated by 8.6 TFs in the compendium
on average, while each TF in the compendium regulated
380.5 genes (Additional file 1: Figure S1B). Further, 63%
of TGs were each regulated by five or more TFs, while
18% were each regulated by a single TF in the compen-
dium. Most TFs also had regulators within the compen-
dium, with the exception of 14 TFs that appeared to be
master regulators among the TFs in the compendium,
including BCOR, GLI2, HLF, HNF4G, MAZ, NELFE,
NFATC1, NOTCH1, PHOX2A, RXRA, STAT4, SOX10,
TEAD2, and THRA, although RXRA and SOX10 were
self-regulated. Note that these TFs could be still be regu-
lated by TFs without existing ChIP-seq data or regulated
through distant cis-elements not effectively captured by
current experimental/computational approaches.

Defining the target functions of TFs
Transcription factors perform their functions by (1)
interacting with proteins and cis-regulatory elements
and (2) consequently regulating the expression of down-
stream TGs. There are hence two aspects of functions
for a TF, the molecular functions of a TF that enables its
regulation of the TGs, and the biological functions
exerted by the genes that are under control of the TF.
Formally, we define the target functions (e.g., target
diseases, target signaling pathways) of a TF as the con-
sensus functions of the TGs, and we identify the target
functions of a TF by detecting the enrichment of func-
tional terms in the TGs. The TGs, as a whole, precisely
define the biological functions regulated by a TF, while
the target functions summarize the functional impacts
upon perturbation of a TF.
We first compiled 3715 functional concepts covering

molecular to organism level functions (Additional file 1:
Table S1), including Mendelian diseases from OMIM,
disease and phenotype associations from dbGAP
genome-wide association studies (GWAS), pharmacoki-
netic (PK) and pharmacodynamics (PD) pathways from
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PharmGKB, signaling and metabolic pathways from
Reactome, and molecular functions and biological pro-
cesses from GO. There were significant overlaps among
the genes annotated in the six sources, yet each source
has some unique genes (Additional file 1: Figure S2.)
We then confirmed the presence of functional signals

in the TFTG compendium, i.e., that TFs were not
randomly targeting functionally unrelated genes, and

that the TFTG compendium contained a significant
number of true TGs. We compared the TF–function
associations obtained using a real TFTG compendium
against that obtained using a randomized compendium,
where we constructed the fake TFs to have the same
number of random TGs as the corresponding real TFs.
We observed 237,566 TF–function pairs with P values
for real TFs smaller than the corresponding P values for

Fig. 1 An outline of the workflow for regulatory network based annotation of transcription factor functions
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the fake TFs, compared to 155,801 pairs showing the op-
posite relationship (Fig. 2). To estimate the total number
of true associations present for the real TFs, we assumed
(1) that true associations for real TFs are all in the upper
triangle, i.e., having P values from real compendium less
than the corresponding P values from the randomized
compendium and (2) that false associations for real TFs
are equally distributed in the upper and lower triangle,
i.e., having similar P values from the real and fake TFs.
This led to an estimated 81,765 true target function
annotations for the real TFs. The ratio between the true
and false associations was larger at the smaller P value
regions (Fig. 2 inset). At a P value cutoff of 0.001,
there were 16,158 associations for real TFs and 999
for fake TFs, corresponding to an FDR of 6.18%;
while at a P value cutoff of 0.0001, there were 9132
associations for real TFs but only 130 for fake TFs,
corresponding to an FDR of 1.42%.

Gene universe impacts the detection of target functions
The target functions of a TF are detected by identifying
a statistically significant enrichment of functional terms
among the TGs of the TF. A critical step to obtain
proper statistics for enrichment analysis is the choice of
gene universe, which is the ‘allowed’ set of genes that re-
strict the TGs of a TF as well as the member genes of a
functional term to be used in determining statistical as-
sociations. In Additional file 1: Figure S3, we provide an
example of TF SP1 and functional term ‘immune

system’. The choice of gene universe affected not only
the significance (P value) but also the direction of
TF-target function association. In general, an overly large
gene universe inflated the strength of the positive associ-
ation, i.e., enrichment of functional terms, while an overly
restrictive gene universe inflated the strength of the nega-
tive association, i.e., depletion of functional terms.
We suggest that the gene universe must be chosen

based on the implicit limitations of each type of func-
tional annotations stemming from how the annotation
was obtained, thus generally providing a smaller and
hence more conservative universe. For manual curation,
such as OMIM and PharmGKB, the function annota-
tions are limited by the available literature. We therefore
constructed a conservative ‘Literature Rich’ gene uni-
verse that included protein-coding genes annotated by
one or more sources from OMIM, PharmGKB, GO bio-
logical processes, GO molecular functions, Reactome,
KEGG, and Biocarta. For machine annotations coming
from high-throughput experiments followed by compu-
tational filtering, such as the GWAS phenotype annota-
tions, we used the ‘coding genes’ as a conservative
universe (see Methods for more details). We disregarded
non-coding genes as they are generally poorly annotated.
We used the Literature Rich gene universe to detect
target Mendelian diseases, pharmacogenomic pathways,
signaling/metabolic pathways, molecular functions, and
biological processes, and used the coding gene universe
to detect target phenotypes studied in GWAS.

TF–target function network
At an FDR of 0.05, we identified 9747 significant TF–
target function relationships using the conservative gene
universes (Fig. 3a). The TF–target function associations
formed a scale-free network [46], with power law distri-
butions for both the number of target functions per TF
and the number of TFs per target function (Fig. 3b and
Additional file 1: Figure S4A). Overall, 279 (73%) TFs
were annotated by at least one functional term
(Additional file 1: Supplemental Material Section 1.1 [47,
48]). The lack of the annotations of the remaining TFs
was likely due to the small sample size, i.e., number of
TGs. The un-annotated TFs had 26.3 TGs on average,
compared to 519.0 TGs on average for annotated TFs
(Additional file 1: Figure S4B). An average TF was posi-
tively associated with 0.47 Mendelian diseases, 0.052
GWAS phenotypes or diseases, 0.26 pharmacogenomic
pathways, 11.2 signaling and metabolic pathways, 7.9
biological processes, and 1.4 molecular functions
(Additional file 1: Table S2). Extensive regulator sharing
was observed among different types of gene functions
(Additional file 1: Figure S5A), while we also observed
biases of 62 TFs towards specific types of functions

Fig. 2 Presence of gene function signals in the TFTG data. The scatter
plot shows the P values of function–TF associations obtained using
real TFTG compendium (y-axis) and a fake TFTG compendium (x-axis).
Each dot corresponds to a pair of P values for a TF–function pair. The
inlet shows the number of significant TF–target function relationships
at varying P value cutoffs for the real TFTG data (y-axis) against the
number for the fake TFTG data (x-axis). P values were obtained by
G-tests. Log base 10 was used
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Fig. 3 a Global view of the transcription factors (TFs) and their target functions; 311 TFs and 1420 annotations with one or more significant
associations at FDR 0.1 levels were retained. Red indicates positive associations, green indicates negative associations, white indicates FDR > 0.1.
Intensity of the colors corresponds to the significance levels: FDR 0.1, 0.05, and 0.01. The TF and target function clustering showed on the left and
top was performed based on the TF-target function association phi coefficient matrix. We used the literature rich gene universe for the association
analysis except for the TF-GWAS phenotype association, for which the coding gene universe was used. b The network visualization [148] of TF–target
function and TF–known function relationships. Edges are colored red or green the same way as in (a). A solid edge links a TF with a significant target
function that is not a known function. A dashed edge links a TF with a known function. A dashed edge with color links a TF with a known function
that is also a significant target function, while a grey dashed edge links a TF with a known function that is not a significant target function. Node colors
and shapes correspond to function types – purple circles, TFs; grey rectangles, Reactome pathways; blue triangles, GO molecular functions; white
diamonds, GO biological processes; red rhomboids, PharmGKB PK and PD pathways; yellow hexagon, Mendelian diseases; green octagons, GWAS
phenotypes. c–g Local regions of TF-function networks selected from b
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(Additional file 1: Figure S5B and Supplemental Material
Section 1.2).

Target functions predict known functions of TFs
We globally validated the TF–target function relation-
ships by comparing them against the known functions of
these TFs. Of course, our TF–target function relation-
ships do not necessarily map to a TF–function relation-
ship that is covered by existing gene annotation
databases. For example, AHR targets molecular function
oxygen binding, indicating that AHR regulates proteins
that bind oxygen and likely catalyze oxidation reactions,
but this does not mean oxygen binding is a molecular
function of AHR protein itself. HNF1A targets many PK
pathways (Fig. 3g), but HNF1A is naturally not an anno-
tated member of these PK pathways, as the PK pathways
in PharmGKB focus on the metabolic enzymes and
transporters of drugs. Despite that, we found that the
TF–target function associations could predict the known
TF–target function relationships for all six types of func-
tions. An overall area under the ROC curve (AUC) of
0.80 was achieved by using the P value from Fisher’s
exact test as the predictive score. For specific types of
functions, AUC of 0.81 was achieved for Mendelian
diseases, 0.74 for GWAS phenotypes, 0.85 for pharma-
cogenetic pathways, 0.76 for GO biological processes,
0.76 for Reactome signaling and metabolic pathways,
and 0.72 for GO molecular functions (Additional file 1:
Figure S6). The true performance was likely higher, given
the function–target function mapping issue.
Not only were target functions of TFs predictive of

their known functions, but the numbers of target
functions (i.e., multi-functionality) were also predictive
of the numbers of known functions (Wald t statistic
6.07, P = 3.1 × 10-9; or Wald t statistic 5.07, P = 6.3 × 10-7

after controlling for the number of TGs per TF).
We manually validated the TF–target function rela-

tionships for Mendelian diseases, GWAS phenotypes,
and pharmacogenetic pathways for which solid genetic
evidence, such as direct mutation of the TF in patients,
is available.

Mendelian diseases targeted by TFs
We identified the target Mendelian diseases of a TF
based on the enrichment of disease causing genes [49]
in the TGs of the TF. In total, 181 TF–target Mendelian
disease relationships were identified at a FDR of 0.05.
Overall, the predicted relationships between TFs and
target Mendelian disease strongly correlated with known
genetic mutations of TFs in the target Mendelian
diseases (two-sample Wilcoxon test P = 1.0 × 10-159).
This suggests that the genetic architecture of human dis-
eases reflects the structure of normal transcriptional
regulatory network. The majority of the top 20

TF–Mendelian disease associations (from 13 TFs) were
supported by direct genetic evidence such as mutations
of the TF in the target Mendelian disease, GWAS associ-
ations between the TF and closely related diseases, or
phenotypes closely related to the target disease as ob-
served in mouse knockout models of the TF (Table 1).
For example, we identified porphyria as a target disease
of GATA1 (odds ratio 170, P = 9.8 × 10-9), while direct
mutation of GATA1 (R216W) has been reported in a
congenital erythropoietic porphyria patient [50], and the
mutant was suggested to cause the disease by regulating
UROS, a common causal gene of congenital erythropoi-
etic porphyria. Details for more examples are available in
Additional file 1: Supplementary Material Section 1.8.

Complex phenotypes targeted by TFs
We identified 20 significant complex phenotypes for
seven TFs (Additional file 1: Table S3 [51–62]).
Transcription factors NFKB1 and RFX5 (Fig. 3d) are
each associated with three and six autoimmune disor-
ders, while both TFs are known to be involved in auto-
immunity [53, 63, 64]. Especially, NFKB1 has been
recently identified as a causal gene of autosomal domin-
ant variable immunodeficiency-12 [65], which shows
features of autoimmunity. NFKB1 is also genetically as-
sociated with autoimmune disease Ulcerative colitis [61].
Details of additional TF–target phenotype relationships
are available in Additional file 1: Supplementary Material
Section 1.9.

Pharmacogenetic pathways targeted by TFs
We identified 99 TF–target pharmacogenomic pathway
relationships, covering 47 unique TFs and 45 unique
pharmacogenetic pathways in PharmGKB. There was no
preference towards PK or PD pathways, with 20 of 40
PK pathways and 26 of 50 PD pathways identified. How-
ever, different TFs were responsible for the target PK
and PD pathways. Further, 18 of the 26 target PK path-
ways were the targets of just four TFs (see Additional
file 1: Table S4), i.e., HNF1A, AHR, NR1I3, and FOXA2.
Among them, nuclear receptor genes HNF1A, AHR, and
NR1I3 are well known to regulate xenobiotic-
metabolizing enzymes [60, 66–68]. Unique target PK
pathways were found for each of the four TFs, suggest-
ing their complementary roles in regulating drug metab-
olism. In addition to these four TFs, SP1 and TP53 were
each associated with three PK pathways for cancer
drugs. SP1 and TP53 were also associated with other
cancer PD pathways, and their associations with cancer
are strongly supported by the literature [69, 70].
We manually examined the full list of identified tar-

get PD pathways and confirmed the majority of the
associations (Additional file 1: Table S4). A PD path-
way describes the disease pathway that is perturbed
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by a drug. A target PD pathway is considered con-
firmed if the TF is a member of the PD pathway or
closely related pathways, or if the TF is known to be
genetically linked to the disease or closely related
phenotypes. For example, ELK1 is identified as a
regulator of the EGFR Inhibitor Pathway, while the
TF itself is a member of the PD pathway. HNF1A is
identified as a regulator of the PD pathways for can-
cer, high cholesterol, and diabetes, while mutations of

HNF1A are known to cause hereditary cancers and
diabetes, and variants of HNF1A are strongly associ-
ated with cholesterol level in GWAS [71]. E2F1 and
E2F4 have been identified for multiple antimetabolite
PD pathways. Antimetabolites are a class of drugs
used for inducing medical abortions and treating can-
cers and autoimmune diseases through halting of cell
cycles, while E2F1 and E2F4 are well-known regula-
tors of cell cycles [72, 73].

Table 1 Top 20 TF-target disease associations. The “Literature Rich” gene universe is used for the association detection

TF Target disease log2(OR)
a P valueb Evidencec

ATF3 Lysosomal storage disease 4.5 3.9 × 10-09 –

BRCA1 Mitochondrial metabolism disease 3.1 3.7 × 10-09 –

CTBP2 Heart septal defect 6.9 4.4 × 10-10 Mousef [149]

Congenital heart disease 6.5 1.6 × 10-09 Mousef [149]

ETS1 Organ system cancer 2.6 1.2 × 10-08 Mutationd [150]

GATA1 Acute porphyria 7.4 9.8 × 10-09 Mutationd [50]

HNF4A Mitochondrial metabolism disease 3.0 5.3 × 10-09 Mutation in MODY1d [140]

NFE2 Lysosomal storage disease 5.7 4.8 × 10-12 –

Lipid storage disease 6.0 5.8 × 10-09 –

RFX2 Bardet-Biedl syndrome 5.5 1.1 × 10-12 Mousef [144, 145]

SOX10 Waardenburg’s syndrome 11.4 2.0 × 10-09 Mutationd [141]

SUZ12 Heart septal defect 6.2 7.4 × 10-09 Mousef [151]

TP53 Organ system cancer 3.5 1.5 × 10-19 Mutations in multiple cancerd

Cancer 3.5 3.6 × 10-19 Types [152]

Disease of cellular proliferation 3.4 1.7 × 10-18

Reproductive organ cancer 4.8 1.2 × 10-08

USF1 Disease of metabolism 2.2 1.3 × 10-10 Association with FCHLe [153, 154]

Inherited metabolic disorder 2.2 7.5 × 10-09

USF2 Lysosomal storage disease 4.1 1.3 × 10-09 –

Disease of metabolism 2.3 2.8 × 10-09 –
alog2(OR), log2 transformed odds ratio
bP value from single-tailed Fisher’s exact test for odds ratio > 1
cEvidence lists published genetic evidence directly support the association of the TF with the disease
dMutation mutations of the TF are observed in the disease or closely related diseases
eAssociation, the TF gene locus is genetically associated with the disease or related diseases
fMouse mouse model shows phenotypes directly related to the disease.
Non-genetic evidence in the literature is not considered.
MODY1 maturity-onset diabetes of the young, FCHL familial combined hyperlipidemia

Table 2 Discordance transcription factors’ target function similarity and target gene similarity

TF pair classification Counts Significant sharing
of known functionsc

P value

Description Target-function sharing Target-gene sharing

Unexpected target function similarity Significanta Low 329 117 (35.6%) 0.0010 OR = 1.45

Other pairs with low target gene sharing Not Low 42,373 11,704 (27.6%)

Expected target function similarity Significanta Highb 4583 1772 (38.7%) 7.7 × 10-13 OR = 1.27

Other pairs with high target gene sharing Not Highb 26,251 8727 (33.2%)
aSignificant target-function sharing: target function overlap significantly higher than expected by change (FDR ≤ 0.05)
bHigh sharing of target gene: odds ratio of target gene sharing between a pair of TF is ≥ 1
cSignificant sharing of known functions: known function overlap significantly higher than expected by change (FDR ≤ 0.01, see Additional file 1: Table S9 for
results at threshold 0.05)
OR odds ratio
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TG sharing among TFs
While the TGs of a TF define its biological functions,
the TG sharing between two TFs also reflects the func-
tional relatedness between TFs. We studied the relation-
ship between the TG overlaps and target function
sharing between pairs of TFs.
As expected, the TG sharing, measured by Pearson’s

phi coefficient ϕTG, was highly associated with the
target function sharing ϕTarget Fun (Wald t statistic
126.95, or 109.75 when controlling for the number of
TGs, both P < 2.2 × 10-16). Among 73,536 possible TF
pairs (Additional file 1: Figure S7), 12,434 (16.9%) showed
significant TG sharing at a FDR of 0.01 based on Fisher’s
exact test. We refer to these similar TFs as TF neighbors.
Relatedly, there were 11,205 pairs of TFs with one or more
shared target functions, including 5866 pairs that also
showed significant TG sharing (odds ratio 9.3).
Despite the overall consistency between target func-

tion overlap and TG sharing, many exceptions occur.
Significant TG sharing was observed for 6568 pairs of
TFs that did not share any target functions, including
428 pairs that surprisingly showed negative correlations
between their target function association profiles.1 This
could be caused by unknown or poorly understood func-
tions common to these TF neighbors, and suggests that
the TG-based TF neighbors may provide functional in-
formation missed by the target functions; therefore, the
TF neighbors may serve as an additional layer in the TF
function annotations. On the other hand, significant tar-
get function sharing (at a FDR < 0.05) was observed for
329 pairs of TFs that had lower-than-expected TG over-
laps. To validate these unexpected target function simi-
larities, we examined the known (literature reported)
functions of these TF pairs. Indeed, 35.6% [74] out of
the 329 pairs are supported by the literature, com-
pared to 27.6% of the other TF pairs (P = 0.001 by
Fisher’s exact test, see Table 2). The top five TF pairs
by target function sharing were MXI1 and RFX1,
TRIM28 and VDR, LMO2 and ZNF263, ARNTL and
BHLHE40, and ETV5 and MXI1. Among these, two
pairs, TRIM28 and VDR, and ARNTL and BHLHE40,
did not share any TGs. However, TRIM28 and VDR
shared 12 target functions, e.g., Reactome Telomere
Maintenance, out of 15 and 14 target functions for
the two TFs, respectively; while ARNTL and
BHLHE40 shared two target functions, Reactome
Bmal1 Clock Npas2 Activates Circadian Expression
and Reactome Circadian Clock, out of four and two
target functions for the two TFs, respectively. Mouse
gene knock-out confirmed an abnormal circadian
rhythm as a phenotype for both ARNTL [75, 76] and
BHLHE40 [77], and the two proteins may be inter-
action partners [78]. A complete list of the TF pairs
is available in Additional file 4: Table S8.

TFs link apparently unrelated functions: coffee and warfarin
Parallel to the TF–TG sharing and TF–target function
sharing, we observed extensive member gene overlaps
and regulator sharing between pairs of functional
concepts (Additional file 1: Supplemental Material
Section 1.3). The majority of TFs (64%) had two or more
target functions. We observed that apparently unrelated
gene functions were frequently linked by TFs. For ex-
ample, AHR was found to be associated with coffee con-
sumption and the PK pathways for drugs amodiaquine,
warfarin, erlotinib, and phenytoin, as well as the estro-
gen metabolism pathways (Fig. 3e). Based on these
observations, we hypothesized that coffee consumption
would interfere with the metabolism of these drugs and
estrogen, either through modifying the activities of AHR
target enzymes or by impacting the expression of the en-
zyme genes through feedback regulation of AHR activity.
The interactions of coffee drinking with both warfarin
[79] and phenytoin [80] have been reported. On the
other hand, coffee consumption is actually associated
with decreased venous thromboembolism [81], which
warfarin can effectively treat. The coffee–estrogen link is
even more intriguing. High coffee intake has been found
in multiple studies to be significantly associated with de-
creased risk of estrogen receptor-negative breast cancer
[82, 83] and breast cancer risk in BRCA mutant carriers
[84]. In addition, high coffee intake impacts the risk of
Parkinson’s disease in female in an estrogen-dependent
manner [85, 86], possibly through modifying blood
estrogen levels [87].
Indeed, we believe two apparently unrelated functions

or phenotypes can be inherently related, and the rela-
tionship can be discovered through the TG based on TF
function annotation as performed herein.
Obviously, when two functional concepts are statisti-

cally associated, i.e., when they share a significant num-
ber of member genes, they will likely be linked to the
same regulators (Fig. 4a and Additional file 1: Figure
S9A); however, the inverse is not true. Two functions
can be linked by TFs even when they do not share a sig-
nificant portion of member genes (Fig. 4b and
Additional file 1: Figure S9B). In fact, of the 954 function
pairs that shared identical sets of regulators, 356 (37%)
pairs had less gene overlap than expected by chance
(Additional file 2: Table S6), i.e., with odds ratio < 1.
Most of such function pairs did not share any member
genes. For example, hereditary lipid storage diseases did
not share any genes with Reactome pathways iron
uptake and transport and insulin receptor recycling, but
the three functions were found to share regulators
ATF3, NFE2, USF1, and USF2, while iron uptake and
transport was also a target function of ARNT (Fig. 4c).
Other examples include ventricular septal defect and de-
velopmental pattern specification process, which are both
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targeted by SUZ12 and CTBP2, PECAM1 Interactions
and disease agammaglobulinemia targeted by EBF1,
intestinal disease and Human immunodeficiency virus
infectious disease both targeted by NFKB1, prostate
cancer and intestinal cancer both targeted by TP53, and
Metalloendopeptidase Activity and cognitive disorder
both targeted by ETV4, among many others.

Measuring the functional pleiotropy of TFs
A TF is functional pleiotropic if it targets multiple unre-
lated functions. The above analyses suggest extensive
functional pleiotropy of TFs. In addition, while examin-
ing the functional pleiotropy of TFs, we observed that it
was correlated with the regulator diversity of the TFs.
Here, we quantified the functional pleiotropy of TFs in
order to further study, in the next section, its causes
from the perspective of transcriptional regulation. The
number of target functions nTarget Fun can be a measure
of TF functional pleiotropy, with the caveat that it
double counts closely related or redundant functional
concepts. We hence defined function diversity πTarget Fun

as the ‘effective’, i.e., non-redundant, number of target
functions by weighting each function by its uniqueness,
which is the inverse of the accumulative similarity
between the function and other functional concepts.
Similarly, we define regulator diversity πReg of a gene as
the effective, i.e., non-redundant, number of regulators.
The regulator diversity corrects for related or

cooperative TFs that are counted independently in the
number of regulators nReg targeting a gene (Methods
and Additional file 1: Supplemental Material Section
1.4). To motivate further analysis, we present examples
of TFs with different levels of functional pleiotropy and
regulator diversity in Table 3 as well as in Figs. 5a,
Table 4, and Additional file 1: Figure S11A.

Upstream regulation enables functional pleiotropy of TFs
Over the set of 384 TFs in the TFTG compendium, we
observed a global positive association between the target
function diversity of TFs with the regulator diversity
(Wald test P = 3.3 × 10-10 between diversity measures
πTarget Fun and πReg, or P = 1.6 × 10-9 between raw counts
nTarget Fun and nReg), i.e., TFs with more effectively unre-
lated upstream regulators also tended to have more ef-
fectively unrelated target functions, suggesting diverse
modes of upstream regulation as a mechanism for TFs
to realize functional pleiotropy. To eliminate technical
biases due to ChIP-seq experiment quality or uneven
research attention for different TFs, we controlled for
nTG, the number of TGs per TF, as a confounding factor
through a linear model. However, regulator diversity
remained a significant predictor of the TF’s function di-
versity (P = 5.3 × 10-6, Wald test). Further, we examined
the known functions of TFs, which, unlike the target
functions, were independent of the TFTG data compen-
dium. A significant association remained between the

a

c

b

Fig. 4 Transcription factor sharing among apparently unrelated functional concepts. a Two functional concepts with high member gene overlaps
always have similar regulators, but (b) two functional concepts with nearly identical regulators do not always have high member gene sharing. c
A Venn diagram for three functional concepts for which shared transcription factors are identified for functions without gene overlaps. The arrows
connect the significant regulators for the functions. Note that Iron Uptake and Transport and Insulin Receptor Recycling do share member genes
significantly, but neither of them shares member genes with Lipid Storage Disease
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known function diversity and the regulator diversity of
TFs (P = 6.3 × 10-5 between diversity measures πKnown
Fun and πReg, or P = 0.00022 between raw counts nKnown
Fun and nReg). This was true regardless of the number of
TGs for the TFs. In fact, a slightly stronger correlation
was observed when TFs with less than 100 TGs were
removed (Additional file 1: Figure S12). Finally, to com-
pletely eliminate the impact of human research biases
toward popular TFs, which could result in a higher
number of literature-reported TGs as well as literature-
reported upstream regulators for the popular TFs, we re-
peated all of the above experiments after removing all
low-throughput (literature derived) data in the TFTG
compendium. We observed that regulator diversity and
function diversity remained significantly associated
(Additional file 1: Supplemental Material Section 1.5).
As a control, we evaluated the association between the
TF’s functional pleiotropy and its hierarchical location
within the gene regulatory network, measured by
PageRank [88]. Neither the PageRank-function diversity
nor the PageRank-target function diversity associations
were significant after controlling for the number of TGs
of TFs (Additional file 1: Supplemental Material Section
1.6 [89, 90]).
In addition, we observed that the positive association

was universal for all six types of function annotations.
The trends were stronger for biological processes and
molecular pathways, and weaker for GWAS and disease
phenotypes (Fig. 5b). The association between function
and regulator diversities extended to non-TF genes as
well, with P = 7.9 × 10-5 between diversity measures πFun
and πReg, and P = 3.0 × 10-18 between raw counts nFun
and nReg for 11,345 genes that have both regulator and
function annotations (Additional file 1: Supplemental
Material Section 1.7).
If regulator diversity is indeed a cause of TF function

diversity, it is likely through driving the expression of
the TF in diverse conditions. To evaluate this mechan-
ism, we examined the expression of TFs in a collection

Table 3 Functional pleiotropy and regulator diversity of selected transcription factors (TFs), including two most functional pleiotropic
TFs, BRCA1 and ZNF143, two TFs with the highest upstream regulatory diversity, MYC and TP53, and three TFs with lower functional
pleiotropy, HNF1A, NFKB1, and SUZ12

TF Function pleiotropy Regulator diversity

Target function Effective target function Known function Effective known function Upstream regulator Effective upstream regulator

BRCA1 272 45.5 101 14.5 33 15.9

ZNF143 242 35.4 22 2.8 53 22.1

MYC 159 24.2 68 12.4 50 25.1

TP53 175 26.8 166 25.4 49 23.0

HNF1A 30 6.3 58 11.2 9 3.8

NFKB1 143 23.7 34 6.2 26 11.7

SUZ12 48 8.3 4 1.0 11 4.9

a

b

Fig. 5 The relationship between functional diversity and regulator
diversity of transcription factors (TFs). a The target functions of TF
HNF1A form three major clusters based on similarities (member gene
sharing) among the functions, while the upstream regulators of HNF1A
form clusters based on the functional similarities (target gene overlaps)
among these regulators. The regulator and functional diversities of a
gene measures the effective number of regulators and effective
number of functions for a gene. The coloring schema is the same as in
Fig. 3 and the clustering of TFs and functions are based on the TF’s
target gene overlaps and the function’s member gene overlaps. b
Significant associations exist between the regulator diversity and target
function diversity of TFs for six types of function annotations separately
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of 327 human tissue types and cell lines [91]. As
expected, expression diversity of TFs was significantly
associated with the regulator diversity (Spearman rank
correlation 0.22, P = 2.7 × 10-6, or Spearman rank correl-
ation 0.26, P = 3.6 × 10-7 for the raw counts). On the
other hand, there was a significant association between
expression diversity of TFs and the target-function

diversity (Spearman’s rank correlation 0.10, P = 0.048)
and the function diversity (Spearman’s rank correlation
0.26, P = 2.2× 10-7). Similarly, we observed strong associ-
ations between expression diversity of general genes and
the function and regulator diversities of genes
(Additional file 1: Supplemental Material Section 1.7).
These findings support transcriptional regulation

Table 4 Complete target gene-based annotations for two example transcription factors (TFs) (A) NFKB1 and (B) SUZ12. Three types of in-
formation are provided (1) the top TF neighbors obtained by TF distance (target-gene overlap measured by Pearson’s phi coefficient) < 0.8,
(2) the target functions in six categories, and (3) the functional diversities in six categories and total diversity. See Additional file 1: Figure S9
for a visualization of the regulator and target function networks surrounding NFKB1

A

Annotation of NFKB1 Similar TFs: REL, BCL11A

Significant target functions (log10 P value) Functional diversity

GWAS phenotype Arthritis, rheumatoid (8.4)
Psoriasis (6.95)
Colitis, ulcerative (6.29)

2.0

Mendelian disease Disease of cellular proliferation (7)
Organ system cancer (6.84)
Cancer (6.64)
+ 10 more

2.5

PD/PK pathway EGFR inhibitor pathway (PD) (6.13)
Doxorubicin pathway (cancer cell) (PD) (5.47)

1.2

Signaling/metabolic pathway Immune system (17.11)
Cytokine signaling in immune system (14.62)
Interferon gamma signaling (10.89)
+ 46 more

13.2

Biological process (GO) Adaptive immune response (5.86)
Regulation of protein metabolic process (5.81)
Regulation of cytokine production (5.72)
+ 71 more

10.2

Molecular function (GO) Cytokine activity (14.33)
Receptor binding (8.3)
Chemokine activity (7.22)
+ 4 more

3.2

Total Diversity: 23.7

B

Annotation of SUZ12 Similar TFs: CTBP2

Significant Target Functions (log10 P value) Functional diversity

GWAS phenotype – 0

Mendelian disease Heart septal defect (8.13)
Congenital heart disease (7.57)
Disease (7.14)
+ 6 more

1.8

PD/PK pathway – 0

Signaling/metabolic pathway Regulation of beta cell development (12.19)
Regulation of gene expression in beta cells (6.26)
Class b 2 secretin family receptors (4.08)

1.2

Biological process (GO) Anatomical structure development (40.03)
Multicellular organismal development (33.22)
System development (32.56)
+ 29 more

5.8

Molecular function (GO) Transcription factor activity (36.68)
DNA binding (33.55)
RNA polymerase II transcription factor activity (11.83) + 1 more

2.2

Total Diversity: 8.3
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diversity as a mechanism for functional pleiotropy of
TFs and other genes.

Discussion
A major challenge in data-driven TF function annotation
is to minimize the impacts from false bindings and to re-
liably extract gene function signals. We combined mul-
tiple statistical strategies to achieve this. First, TGs from
ChIP-seq experiments were extracted with a stringent
FDR, which was calculated using a statistical framework
modified from TIP [45] by combining binding locations
and intensity information to enrich for true TF-DNA
binding events over false signals. Second, we defined the
target functions of TFs as the consensus functions
among the putative TGs. The statistical enrichment ana-
lysis hence further filtered noises from the remaining
false TGs. Third, we chose conservative gene universes
specific to the types of functions, so as to minimize
spurious associations. Finally, we applied the Benjamini–
Hochberg multi-test correction procedure and required
a FDR of 5% for all associations reported. With these,
approximately 10,000 significant TF-target function
associations were obtained. Meanwhile, the total number
of true TF-target function associations was estimated to
be over 80,000, indicating the presence of rich functional
signals in the TFTG data (Fig. 3). We believe there is
room for further improvement to retrieve a higher
number of TF-target function annotations at a
controlled FDR.
We globally validated the TF-target function associa-

tions by comparing them with known TF-function rela-
tionships, and showed that the target functions cover
both known and novel TF-function relationships.
Despite the fact that TF-target function and TF-function
relationships did not always have direct correspondence,
we observed a good prediction performance with an
AUC 0.80 with six types of gene functions combined. In
addition, we manually validated the top target diseases,
phenotypes, and pharmacogenetic pathways based on
the literature, and found the majority to be supported by
direct genetic evidence, such as direct mutations or
GWAS implicated associations of a TF in patients with
the target disease, or phenotypes of mouse knock-out
models of the TF (Table 1, Additional file 1: Tables S3
and S4 [49, 71, 92–115]), even when they were not
annotated as a known function of the TFs. Given that
our knowledge was incomplete for even the most well
studied TFs, we believe the non-validated TF-target
functions represent opportunities for future experimen-
tal studies of the TFs.
The foundation of this study was the hypothesis that

genes regulated by a same TF are functionally related.
We believe this extends to the functional concept level,
i.e., that multiple concepts targeted by the same TF(s)

are also functionally related at some higher level. Based
on co-regulation, we predicted the interaction between
coffee consumption and the metabolism of multiple
drugs, including warfarin, as well as the interaction be-
tween coffee consumption and estrogen metabolism,
both of which are validated by multiple published ex-
perimental studies [79–86]. Further, we showed that TFs
link hundreds of functional concept pairs that do not
share any member genes. This highlights the potential
usage of the TF-target function network to study the
high-level organization principles among biological func-
tions that is unattainable by solely studying the member
genes of functions, e.g., through a member gene-based
function–function association network.
Based on the TF-target function network, we exam-

ined the functional pleiotropy of TFs. We discovered
that a TF with more target functions (or known func-
tions) were themselves regulated by significantly more
TFs, and both function and regulator diversities were as-
sociated with the expression diversity of the TF in cell
lines and tissues. These findings suggest that regulator
diversity may be a cause of function diversity of TFs,
and it works by driving the expression diversity of genes.
TF–TG interactions mediated by distant cis-

regulatory regions, e.g., enhancers, are challenging to
identify due to the large variations in the relative
locations of enhancers. Such signals are not captured
in this study. In an attempt to capture distant regula-
tions, we relaxed the window size from 6000 to
20,000 bps in the statistical inference of TF-target
genes (Additional file 1: Supplemental Methods section
2.1). We observed that the majority of the TF–TG rela-
tionship remained the same. Given that the statistical
signal is expected to be weaker for bindings at larger
distance to TSS, the existing experimental and compu-
tational frameworks are in general inefficient in captur-
ing enhancer regulations. In addition, an overly wild
window would reduce statistical power in detecting the
true signals. This study therefore focused on the
smaller 6000-bp window.
Gene regulation is well known to be cell type-specific,

and co-expression of TFs is required for the co-
regulation of TFs on the shared TGs [24]. However,
current high-throughput studies for in vivo TF-DNA
binding, including the ENCODE project [32, 116], are
generally limited to a small number of tissue/cell types.
Comprehensive ChIP-seq analysis on a large number of
cell types remains unrealistic due to cost and resource
requirements. We therefore compiled the TF–TG rela-
tionships in a cell type- and development stage-agnostic
manner. Contingent on data availability, this work can
be easily extended to perform cell type-specific TF func-
tion annotation. Despite this limitation, the resulting
TFTG data partially captured the cell type specificity of
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TFs, as we observed that TFs sharing similar tissue
expression patterns also shared a greater amount of TGs
(Wald t test, P = 1.9 × 10-78).

Conclusion
In an effort to manually annotate TF functions [22], over
100 experts joined efforts to curate and integrate pub-
lished knowledge and provide mini-reviews on TFs. We
believe automated yet accurate function annotation and
manual curation are complementary and will together
greatly facilitate our understanding of the biological
functions of human TFs.
Despite large consortium efforts such as ENCODE

[32, 117], existing data for TF–TG relationships remains
scarce. Our TFTG compendium covers 384 unique TFs.
This is the largest collection, to our knowledge, com-
pared to 237 TFs in a recently published study [74], yet
it only covers a small fraction (20–25%) of the putative
1500–2000 TFs in human [23, 26]. Relatedly, we notice
that the TFTG compendium is biased toward the well-
known TFs, likely due to preferential attachment of
research efforts to popular TFs. For the same reason,
some TFs enjoy higher TG coverage than the others.
These biases currently limit the power of TG-based TF
function annotation. However, with the maturity of
ChIP-seq and related high-throughput assays for in vivo
protein-DNA binding and the availability of the tech-
nologies to more labs, we expect a steady accumulation
of TFTG data with improved accuracy and complete-
ness, yet with reduced biases. Such data will ultimately
enable the annotation of all TFs in the human genome,
and serve as the foundation for hypothesis generation
and further experimental studies of the roles of TFs in
normal biological processes and diseases.

Methods
Transcription factor TG data compendium
We compiled TFTG relationships from multiple sources.
ChIP-seq experiments from both large- [28, 32, 37] and
small-scale studies were included. Meta-data of 413
ChIP-seq experiments for 235 unique TFs were curated
manually by October 2013 from GEO [118], in addition to
approximately 450 ChIP-seq experiments for 115 unique
TFs from the ENCyclopedia of DNA elements (ENCODE)
[32, 37]. The binding signals from TGs were differentiated
from those from non-TGs using a modified version of the
TIP algorithm [45], which combines the binding location
and intensity information for statistical determination of
TF TGs (Additional file 1: Supplemental Methods section
2.1 [119–121]). Manually curated low-throughput TG
annotations were compiled from multiple databases, in-
cluding BIND, HTRI, PAZAR, and TRED [122–125]. Only
TFTG relationships with direct literature evidence from
low-throughput experiments [126, 127], e.g., as

electrophoretic mobility shift assays, were included. We
did not differentiate sequence-specific DNA-binding TFs
from other DNA binding transcriptional regulators. Some
cofactors that do not directly bind DNA were also
included when ChIP-seq data were available. Despite this,
we refer to all these transcriptional regulators as TFs in
this study.

Gene function annotation data
Six types of gene annotations were used in this analysis
to annotate TFs. GO [25] for biological processes and
molecular functions, together with the Reactome path-
ways [128] were retrieved from the MSigDB v4.0 [129].
The pharmacogenomics pathways for PD and PK were
retrieved on January 20, 2013, from the Pharmacogen-
omics Knowledgebase (PharmGKB) [130]. Gene disease
association data from GWAS were obtained on May 4,
2014, from dbGAP [131] and NHGRI [132] catalogs with
P value cutoffs at 1 × 10-3 (loose set) or 1 × 10-5 (strin-
gent set), and the closest gene (or two genes if the SNP
was intergenic) to each SNP was retained. When not
specified, the loose set was used. Of note, a large P value
cutoff was used to capture the majority of the true
disease-related genes rather than to select for confident
ones, as our goal here was to associate complex pheno-
types and diseases rather than individual genes with TFs.
The gene–Mendelian disease annotations were obtained
on July 5, 2014, from the Online Mendelian Inheritance
in Man (OMIM) [49], and the disease genes were further
grouped in a hierarchical manner to disease classes
based on the disease ontology [133]. For all data, only
genes uniquely mapped to the Entrez Gene database
[134] were retained.

Defining coding genes and Literature Rich genes
Coding genes were defined as all Entrez genes that have
associated protein products in Ensembl Protein or
UniProt databases. Literature Rich genes were defined as
coding genes annotated in any of the following seven
data sources: GO Biological Processes, GO Molecular
Functions, Reactome, PharmGKB, Kyoto Encyclopedia
of Genes and Genomes pathways [135], Biocart [136],
and OMIM [49]. There were 19,847 coding and 10,931
Literature Rich genes in total. Interestingly, 333 of the
Literature Rich genes were not Coding genes, but pseu-
dogenes, discontinued gene records, or gene loci without
defined genes. These were removed, leaving 10,561
Literature Rich genes in total.

Measuring the associations between binary variables
Fisher’s exact test [137] was used for testing the associa-
tions between TFs and biological functions by detecting
significant enrichment of genes that were TGs of a TF
and were also annotated with a given function. G-test
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was used as a fast approximation to Fisher’s exact test in
preliminary analyses and to demonstrate the presence of
functional signals in the TF TG data (Fig. 3). To perform
multi-test correction, we calculated the Benjamini–
Hochberg FDR [138] on the P values for each type of
annotation separately.
Since Fisher’s exact test does not have a test statistic that

can be used to measure the similarities between two bin-
ary variables, we used Pearson’s phi coefficient (ϕ, PPC) to
measure association strength,

ϕ ¼ n11n00−n10n01
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n10 þ n11ð Þ n00 þ n10ð Þ n01 þ n11ð Þ n00 þ n01ð Þp ;

where nij are the observed number of ij value pairs for
the two random variables. The strengths of TF–function
association, TF–TF TG sharing, TF–TF target function
sharing, TF-TF known function sharing, and function–
function member gene sharing are denoted as ϕTF_Fun,
ϕTG, ϕTargetFun, ϕFun, and ϕFun_Fun respectively. PPC is
sample size independent, and serves as a good measure
of the magnitude of associations. The sign of PPC indi-
cates the directionality of an association.

Functional and regulator diversities of TFs
We measured the effective number of TFs (i.e., the regu-
latory diversity) of a function or gene and the effective
number of target functions (i.e., the function diversity)
of a TF by down weighting the TFs (or functions) that
were correlated with other TFs (or functions). Given
Pearson’s phi coefficient ϕtt0 between TFs t and t', the
uniqueness of TF t is defined as ut ¼ 1=

P

t0∈TFsϕ
2
tt0 .

Note that ut is always within 0 to 1, since the association
between a TF with itself is always 1, i.e., ϕtt

2 = 1. The
regulator diversity πReg.g of a function or gene (including
TF) g is then defined as the weighted counts of the TFs
targeting the function or gene, πReg.g = ∑t ∈ TFs regulating

gut. The regulator diversity measures the effective (non-
redundant) number of regulators for a gene (or a TF).
Similarly, we can define the uniqueness of each function
annotation term, phenotype, or disease, and then define
the target function diversity πTarget Fun (i.e., effective
number of target functions) of a TF or the function
diversity πFun (i.e., effective number of known functions)
of a gene.

Endnotes
1The target function association profile of a TF is com-

prised of the Pearson’s phi coefficients between the TF
and all 3715 functional concepts. A lack of positive cor-
relation between two profiles indicates that the two TFs
are likely functionally unrelated based on the known
functional concepts.

Additional files

Additional file 1: Supplementary Material. Supplementary Results,
Methods, Figures (S1-S12), Tables (S1-S5, and S9). Tables S6, S7, S8, S10,
S11 are available as separate files. Tables S10 and S11 correspond to the
raw transcription factor–target gene (TFTG) relationships for 6000 and
20,000 windows, respectively, in GMT format [45, 47–49, 51–62, 71, 89, 90,
92–115, 119–121, 139–147, 155]. (DOCX 7176 kb)

Additional file 2: Table S6. A list of negatively associated functional
concepts regulated by shared transcription factors. Negative association
of two concepts is defined as a negative Phi coefficient defined based on
the member genes of two functional concepts A and B. (XLSX 413 kb)

Additional file 3: Table S7. The complete transcription factor annotation
results. –Log10 (P value) are provided in parentheses following the target
functions. (XLSX 153 kb)

Additional file 4: Table S8. The complete list of TF pairs with significant
target function overlaps but lower than expected target gene overlaps.
Negative association (i.e., lower than expected target gene overlaps) of two
TFs is defined as a negative Phi coefficient of the target gene overlaps of
two TFs – TF1 and TF2. (XLSX 46 kb)

Additional file 5: Table S10. The raw transcription factor–target gene
(TFTG) relationships in GMT file format for 6000bp window size. (GMT
987 kb)

Additional file 6: Table S11. The raw transcription factor–target gene
(TFTG) relationships in GMT file format for 20,000bp window size. (GMT
1413 kb)

Abbreviations
ChIP-Seq: chromatin immunoprecipitation sequencing; GO: gene ontology;
PD: pharmacodynamics; PK: pharmacokinetic; TF: transcription factor;
TG: target gene

Acknowledgements
We thank Dr. Fuxiao Xin for comments on the manuscripts.

Funding
YFL would like to acknowledge the support of TRAM pilot grant for part of
this work. RBA would like to acknowledge funding NIH GM102365, GM61374
and HL117798.

Availability of data and materials
The Cytoscape (.cys) file for the full TF-function network, covering both target
functions and known functions, is available at simtk.org under identifier
TFAnno (https://simtk.org/projects/tfanno). The full network is made available
through the Network Data Exchange (http://www.ndexbio.org/#/network/
5fa36fcb-da4e-11e7-adc1-0ac135e8bacf?accesskey=b069469e31913038-
fe792aed03701040244dfa9e5c455b9ab4a1d67169d103a5) and may be
accessed within Cytoscape through the Network Data Exchange app. The full
target function annotations for TFs are available as Additional file 3: Table S7.
Two GMT files for the raw TF–TG relationship at window sizes 6000 and
20,000 bps are available as Additional file 5: Table S10 and Additional file 6:
Table S11 respectively.

Authors’ contributions
YFL designed and carried out the study and wrote the manuscript. RBL
participated in the study design and revised the manuscript. All authors read
and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests

Li and Altman BMC Biology  (2018) 16:4 Page 14 of 18

dx.doi.org/10.1186/s12915-017-0469-0
dx.doi.org/10.1186/s12915-017-0469-0
dx.doi.org/10.1186/s12915-017-0469-0
dx.doi.org/10.1186/s12915-017-0469-0
dx.doi.org/10.1186/s12915-017-0469-0
dx.doi.org/10.1186/s12915-017-0469-0
https://simtk.org/projects/tfanno
http://www.ndexbio.org/#/network/5fa36fcb-da4e-11e7-adc1-0ac135e8bacf?accesskey=b069469e31913038fe792aed03701040244dfa9e5c455b9ab4a1d67169d103a5
http://www.ndexbio.org/#/network/5fa36fcb-da4e-11e7-adc1-0ac135e8bacf?accesskey=b069469e31913038fe792aed03701040244dfa9e5c455b9ab4a1d67169d103a5
http://www.ndexbio.org/#/network/5fa36fcb-da4e-11e7-adc1-0ac135e8bacf?accesskey=b069469e31913038fe792aed03701040244dfa9e5c455b9ab4a1d67169d103a5


Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Stanford Genome Technology Center, Stanford, CA, USA. 2Department of
Bioengineering, Stanford University, Stanford, CA, USA. 3Present address:
Department of Bioinformatics, Illumina Inc., San Diego, CA, USA. 4Department
of Genetics, Stanford University, Stanford, CA, USA.

Received: 20 February 2017 Accepted: 6 December 2017

References
1. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al.

Master transcription factors and mediator establish super-enhancers at key
cell identity genes. Cell. 2013;153(2):307–19.

2. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian
development. Nature. 2007;447(7143):425–32.

3. López-Maury L, Marguerat S, Bähler J. Tuning gene expression to changing
environments: from rapid responses to evolutionary adaptation. Nat Rev
Genet. 2008;9(8):583–93.

4. Lenhard B, Sandelin A, Carninci P. Regulatory elements: Metazoan
promoters: emerging characteristics and insights into transcriptional
regulation. Nature. 2012;13(4):233–45.

5. Perissi V, Rosenfeld MG. Controlling nuclear receptors: the circular logic of
cofactor cycles. Nat Rev Mol Cell Biol. 2005;6(7):542–54.

6. Maniatis T, Goodbourn S, Fischer J. Regulation of inducible and tissue-
specific gene expression. Science. 1987;236(4806):1237–45.

7. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse
embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

8. Park I-H, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, et al.
Reprogramming of human somatic cells to pluripotency with defined
factors. Nature. 2008;451(7175):141–6.

9. Lee TI, Young RA. Transcriptional regulation and its misregulation in disease.
Cell. 2013;152(6):1237–51.

10. Jopling C, Boue S, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation
and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol.
2011;12(2):79–89.

11. Yamashita H, Takenoshita M, Sakurai M, Bruick RK, Henzel WJ,
Shillinglaw W, et al. A glucose-responsive transcription factor that
regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S
A. 2001;98(16):9116–21.

12. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The
transcription factor myc controls metabolic reprogramming upon T
lymphocyte activation. Immunity. 2011;35(6):871–82.

13. Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative
stress. Free Radic Biol Med. 2009;47(9):1304–9.

14. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, et al.
FoxOs are critical mediators of hematopoietic stem cell resistance to
physiologic oxidative stress. Cell. 2007;128(2):325–39.

15. Kumar A, Boriek AM. Mechanical stress activates the nuclear factor-kappaB
pathway in skeletal muscle fibers: a possible role in Duchenne muscular
dystrophy. FASEB J. 2003;17(3):386–96.

16. Mendez MG, Janmey PA. Transcription factor regulation by mechanical
stress. Int J Biochem Cell Biol. 2012;44(5):728–32.

17. Whitney O, Pfenning AR, Howard JT, Blatti CA, Liu F, Ward JM, et al. Core
and region-enriched networks of behaviorally regulated genes and the
singing genome. Science. 2014;346(6215):1256780.

18. Pfenning AR, Hara E, Whitney O, Rivas MV, Wang R, Roulhac PL, et al.
Convergent transcriptional specializations in the brains of humans and
song-learning birds. Science. 2014;346(6215):1256846.

19. Greer EL, Brunet A. FOXO transcription factors at the interface between
longevity and tumor suppression. Oncogene. 2005;24(50):7410–25.

20. Salih DA, Brunet A. FoxO transcription factors in the maintenance of cellular
homeostasis during aging. Curr Opin Cell Biol. 2008;20(2):126–36.

21. Tilstra J, Robinson A, Wang J. NF-κB inhibition delays DNA damage–induced
senescence and aging in mice. J Clin Invest. 2012;122(7):2601–12.

22. Yusuf D, Butland SL, Swanson MI, Bolotin E, Ticoll A, Cheung WA, et al.
The transcription factor encyclopedia. Genome Biol. 2012;13(3):R24.

23. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of
human transcription factors: function, expression and evolution. Nat Rev
Genet. 2009;10(4):252–63.

24. Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, et al. An atlas of
combinatorial transcriptional regulation in mouse and man. Cell. 2010;140(5):744–52.

25. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al.
Gene ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet. 2000;25(1):25–9.

26. Kummerfeld SK, Teichmann SA. DBD: a transcription factor prediction
database. Nucleic Acids Res. 2006;34(Database issue):D74–81.

27. The Gene Ontology Consortium. Gene Ontology Consortium: going
forward. Nucleic Acids Res. 2015;43(D1):D1049–56.

28. Yan J, Enge M, Whitington T, Dave K, Liu J, Sur I, et al. Transcription factor
binding in human cells occurs in dense clusters formed around cohesin
anchor sites. Cell. 2013;154(4):801–13.

29. Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P,
et al. Determination and inference of eukaryotic transcription factor
sequence specificity. Cell. 2014;158(6):1431–43.

30. Jolma A, Yin Y, Nitta KR, Dave K, Popov A, Taipale M, et al. DNA-dependent
formation of transcription factor pairs alters their binding specificity. Nature.
2015;527(7578):384–8.

31. Furey TS. ChIP–seq and beyond: new and improved methodologies to
detect and characterize protein–DNA interactions. Nat Rev Genet. 2012;
13(December):840–52.

32. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan K-K, Cheng C, et al.
Architecture of the human regulatory network derived from ENCODE data.
Nature. 2012;489(7414):91–100.

33. Kheradpour P, Kellis M. Systematic discovery and characterization of
regulatory motifs in ENCODE TF binding experiments. Nucleic Acids Res.
2014;42(5):2976–87.

34. Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, et al. DNA-binding
specificities of human transcription factors. Cell. 2013;152(1–2):327–39.

35. Cheng C, Yan K-K, Hwang W, Qian J, Bhardwaj N, Rozowsky J, et al.
Construction and analysis of an integrated regulatory network derived
from high-throughput sequencing data. PLoS Comput Biol. 2011;7(11):
e1002190.

36. Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E,
Stamatoyannopoulos JA. Circuitry and dynamics of human transcription
factor regulatory networks. Cell. 2012;150(6):1274–86.

37. Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M. An
integrated encyclopedia of DNA elements in the human genome. Nature.
2012;489(7414):57–74.

38. Jiang P, Singh M. CCAT: Combinatorial Code Analysis Tool for transcriptional
regulation. Nucleic Acids Res. 2014;42(5):2833–47.

39. Ji H, Jiang H, Ma W, Wong WH. Using CisGenome to analyze ChIP-chip and
ChIP-seq data. Curr Protoc Bioinformatics. 2011;Chapter 2:Unit2.13.

40. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et
al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):
R137.

41. Spyrou C, Stark R, Lynch AG, Tavaré S. BayesPeak: Bayesian analysis of ChIP-
seq data. BMC Bioinformatics. 2009;10(1):299.

42. Zhu LJ, Gazin C, Lawson ND, Pagès H, Lin SM, Lapointe DS, et al.
ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics. 2010;11:237.

43. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT
improves functional interpretation of cis-regulatory regions. Nat Biotechnol.
2010;28(5):495–501.

44. Welch RP, Lee C, Imbriano PM, Patil S, Weymouth TE, Smith RA, et al. ChIP-
Enrich: Gene set enrichment testing for ChIP-seq data. Nucleic Acids Res.
2014;42(13):1–13.

45. Cheng C, Min R, Gerstein M. TIP: a probabilistic method for identifying
transcription factor target genes from ChIP-seq binding profiles.
Bioinformatics. 2011;27(23):3221–7.

46. Barabási A. Emergence of Scaling in Random Networks. Science. 1999;
286(5439):509–12.

47. Gude NA, Emmanuel G, Wu W, Cottage CT, Fischer K, Quijada P, et al.
Activation of Notch-mediated protective signaling in the myocardium. Circ
Res. 2008;102(9):1025–35.

48. Li Y, Hiroi Y, Ngoy S, Okamoto R, Noma K, Wang C-Y, et al. Notch1 in bone
marrow-derived cells mediates cardiac repair after myocardial infarction.
Circulation. 2011;123(8):866–76.

Li and Altman BMC Biology  (2018) 16:4 Page 15 of 18



49. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online
Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes
and genetic disorders. Nucleic Acids Res. 2005;33(Database issue):D514–7.

50. Phillips JD, Steensma DP, Pulsipher MA, Spangrude GJ, Kushner JP.
Congenital erythropoietic porphyria due to a mutation in GATA1: the first
trans-acting mutation causative for a human porphyria. Blood. 2007;109(6):
2618–21.

51. DeSandro A, Nagarajan UM, Boss JM. The bare lymphocyte syndrome:
molecular clues to the transcriptional regulation of major histocompatibility
complex class II genes. Am J Hum Genet. 1999;65(2):279–86.

52. Reith W, Mach B. The bare lymphocyte syndrome and the regulation of
MHC expression. Annu Rev Immunol. 2001;19:331–73.

53. Masternak K, Barras E, Zufferey M, Conrad B, Corthals G, Aebersold R,
et al. A gene encoding a novel RFX-associated transactivator is mutated
in the majority of MHC class II deficiency patients. Nat Genet. 1998;
20(3):273–7.

54. Clausen BE, Waldburger JM, Schwenk F, Barras E, Mach B, Rajewsky K, et al.
Residual MHC class II expression on mature dendritic cells and activated B
cells in RFX5-deficient mice. Immunity. 1998;8(2):143–55.

55. Sulem P, Gudbjartsson DF, Geller F, Prokopenko I, Feenstra B, Aben KKH,
et al. Sequence variants at CYP1A1-CYP1A2 and AHR associate with coffee
consumption. Hum Mol Genet. 2011;20(10):2071–7.

56. Cornelis MC, Monda KL, Yu K, Paynter N, Azzato EM, Bennett SN, et al. Genome-
wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as
determinants of habitual caffeine consumption. PLoS Genet. 2011;7(4):e1002033.

57. Cornelis MC, Byrne EM, Esko T, Nalls MA, Ganna A, Paynter N, et al.
Genome-wide meta-analysis identifies six novel loci associated with habitual
coffee consumption. Mol Psychiatry. 2015;20(5):647–56.

58. Reiner AP, Gross MD, Carlson CS, Bielinski SJ, Lange LA, Fornage M, et al.
Common coding variants of the HNF1A gene are associated with multiple
cardiovascular risk phenotypes in community-based samples of younger
and older European-American adults: the Coronary Artery Risk Development
in Young Adults Study and The Cardiovascular Health Study. Circ Cardiovasc
Genet. 2009;2(3):244–54.

59. Steele AM, Shields BM, Shepherd M, Ellard S, Hattersley AT, Pearson ER.
Increased all-cause and cardiovascular mortality in monogenic diabetes
as a result of mutations in the HNF1A gene. Diabet Med. 2010;27(2):
157–61.

60. Pontoglio M, Barra J, Hadchouel M, Doyen A, Kress C, Bach JP, et al.
Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction,
phenylketonuria, and renal Fanconi syndrome. Cell. 1996;84(4):575–85.

61. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-
microbe interactions have shaped the genetic architecture of inflammatory
bowel disease. Nature. 2012;491(7422):119–24.

62. Shimano H, Shimomura I, Hammer RE, Herz J, Goldstein JL, Brown MS, et al.
Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice
homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest.
1997;100(8):2115–24.

63. Baeuerle PA, Baichwal VR. NF-kB as a frequent target for immunosuppressive
and anti-inflammatory molecules. Adv Immunol. 1997;65:111–38.

64. Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, Reith W.
CIITA is a transcriptional coactivator that is recruited to MHC class II
promoters by multiple synergistic interactions with an enhanceosome
complex. Genes Dev. 2000;14(9):1156–66.

65. Fliegauf M, L Bryant V, Frede N, Slade C, Woon S-T, Lehnert K, et al.
Haploinsufficiency of the NF-κB1 subunit p50 in common variable
immunodeficiency. Am J Hum Genet. 2015;97(3):389–403.

66. Sogawa K, Fujii-Kuriyama Y. Ah receptor, a novel ligand-activated
transcription factor. J Biochem. 1997;122(6):1075–9.

67. Lamba J, Lamba V, Schuetz E. Genetic variants of PXR (NR1I2) and CAR
(NR1I3) and their implications in drug metabolism and pharmacogenetics.
Curr Drug Metab. 2005;6(4):369–83.

68. Ma Q. Xenobiotic-activated receptors: from transcription to drug
metabolism to disease. Chem Res Toxicol. 2008;21(9):1651–71.

69. Li L, Davie JR. The role of Sp1 and Sp3 in normal and cancer cell biology.
Ann Anat. 2010;192(5):275–83.

70. Hollstein M, Sidransky D, Vogelstein B, Harris C. p53 mutations in human
cancers. Science. 1991;253(5015):49–53.

71. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki
M, et al. Biological, clinical and population relevance of 95 loci for blood
lipids. Nature. 2010;466(7307):707–13.

72. Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, et al. E2F
integrates cell cycle progression with DNA repair, replication, and G(2)/M
checkpoints. Genes Dev. 2002;16(2):245–56.

73. Gaubatz S, Lindeman GJ, Ishida S, Jakoi L, Nevins JR, Livingston DM, et al.
E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control.
Mol Cell. 2000;6(3):729–35.

74. Griffon A, Barbier Q, Dalino J, van Helden J, Spicuglia S, Ballester B.
Integrative analysis of public ChIP-seq experiments reveals a complex multi-
cell regulatory landscape. Nucleic Acids Res. 2015;43(4):e27.

75. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch
JB, et al. Mop3 is an essential component of the master circadian
pacemaker in mammals. Cell. 2000;103(7):1009–17.

76. Storch K-F, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, et al. Intrinsic
circadian clock of the mammalian retina: importance for retinal processing
of visual information. Cell. 2007;130(4):730–41.

77. Rossner MJ, Oster H, Wichert SP, Reinecke L, Wehr MC, Reinecke J, et al.
Disturbed clockwork resetting in Sharp-1 and Sharp-2 single and double
mutant mice. PLoS One. 2008;3(7):e2762.

78. Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, et al. Dec1
and Dec2 are regulators of the mammalian molecular clock. Nature. 2002;
419(6909):841–4.

79. Zambon C, Pengo V, Padrini R, Basso D, Schiavon S, Fogar P, et al. Research
article algorithm for warfarin dosing: an Italian retrospective study research
article. Pharmacogenomics. 2011;12:15–25.

80. Wietholtz H, Zysset T, Kreiten K, Kohl D, Büchsel R, Matern S. Effect of
phenytoin, carbamazepine, and valproic acid on caffeine metabolism. Eur J
Clin Pharmacol. 1989;36(4):401–6.

81. Enga KF, Braekkan SK, Hansen-Krone IJ, Wilsgaard T, Hansen J-B. Coffee
consumption and the risk of venous thromboembolism: the Tromsø study.
J Thromb Haemost. 2011;9:1334–9.

82. Li J, Seibold P, Chang-Claude J, Flesch-Janys D, Liu J, Czene K, et al. Coffee
consumption modifies risk of estrogen-receptor negative breast cancer.
Breast Cancer Res. 2011;13(3):R49.

83. Lowcock EC, Cotterchio M, Anderson LN, Boucher BA, El-Sohemy A. High
coffee intake, but not caffeine, is associated with reduced estrogen receptor
negative and postmenopausal breast cancer risk with no effect modification
by CYP1A2 genotype. Nutr Cancer. 2013;65(3):398–409.

84. Nkondjock A, Ghadirian P, Kotsopoulos J, Lubinski J, Lynch H, Kim-Sing C, et
al. Coffee consumption and breast cancer risk among BRCA1 and BRCA2
mutation carriers. Int J Cancer. 2006;118(1):103–7.

85. Ascherio A, Chen H, Schwarzschild MA, Zhang SM, Colditz GA, Speizer FE.
Caffeine, postmenopausal estrogen, and risk of Parkinson’s disease.
Neurology. 2003;60(5):790–5.

86. Ascherio A, Weisskopf MG, O’Reilly EJ, McCullough ML, Calle EE, Rodriguez
C, et al. Coffee consumption, gender, and Parkinson’s disease mortality in
the cancer prevention study II cohort: the modifying effects of estrogen.
Am J Epidemiol. 2004;160(10):977–84.

87. Nagata C, Kabuto M, Shimizu H. Association of coffee, green tea, and
caffeine intakes with serum concentrations of estradiol and sex hormone-
binding globulin in premenopausal Japanese women. Nutr Cancer. 1998;
30(1):21–4.

88. Page L, Brin S, Motwani R, Winograd T. The PageRank Citation Ranking:
Bringing Order to the Web. Stanford InfoLab. 1999. http://ilpubs.stanford.
edu:8090/422/. Accessed 19 Dec 2017.

89. Yu H, Gerstein M. Genomic analysis of the hierarchical structure of
regulatory networks. Proc Natl Acad Sci U S A. 2006;103(40):14724–31.

90. Bhardwaj N, Yan K-K, Gerstein MB. Analysis of diverse regulatory networks in
a hierarchical context shows consistent tendencies for collaboration in the
middle levels. Proc Natl Acad Sci U S A. 2010;107(15):6841–6.

91. McCall MN, Uppal K, Jaffee HA, Zilliox MJ, Irizarry RA. The gene
expression barcode: Leveraging public data repositories to begin
cataloging the human and murine transcriptomes. Nucleic Acids Res.
2011;39(1):1011–5.

92. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, et al. A
census of human cancer genes. Nat Rev Cancer. 2004;4(3):177–83.

93. Rebouissou S, Vasiliu V, Thomas C, Bellanné-Chantelot C, Bui H, Chrétien Y,
et al. Germline hepatocyte nuclear factor 1alpha and 1beta mutations in
renal cell carcinomas. Hum Mol Genet. 2005;14(5):603–14.

94. Yamada S, Nishigori H, Onda H, Utsugi T, Yanagawa T, Maruyama T, et al.
Identification of mutations in the hepatocyte nuclear factor (HNF)-1 alpha
gene in Japanese subjects with IDDM. Diabetes. 1997;46(10):1643–7.

Li and Altman BMC Biology  (2018) 16:4 Page 16 of 18

http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/


95. Hegele RA, Cao H, Harris SB, Hanley AJ, Zinman B. The hepatic nuclear
factor-1alpha G319S variant is associated with early-onset type 2 diabetes in
Canadian Oji-Cree. J Clin Endocrinol Metab. 1999;84(3):1077–82.

96. Kathiresan S, Manning AK, Demissie S, D’Agostino RB, Surti A, Guiducci C,
et al. A genome-wide association study for blood lipid phenotypes in the
Framingham Heart Study. BMC Med Genet. 2007;8 Suppl 1:S17.

97. Mandeville I, Aubin J, LeBlanc M, Lalancette-Hébert M, Janelle M-F, Tremblay
GM, et al. Impact of the loss of Hoxa5 function on lung alveogenesis. Am J
Pathol. 2006;169(4):1312–27.

98. Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, et al. HSF1 is
required for extra-embryonic development, postnatal growth and protection
during inflammatory responses in mice. EMBO J. 1999;18(21):5943–52.

99. Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, Dina C, Hamid YH, Joly
E, et al. Role of transcription factor KLF11 and its diabetes-associated gene
variants in pancreatic beta cell function. Proc Natl Acad Sci U S A. 2005;
102(13):4807–12.

100. Collins S, Groudine M. Amplification of endogenous myc-related DNA sequences
in a human myeloid leukaemia cell line. Nature. 1982;298(5875):679–81.

101. Yokota J, Tsunetsugu-Yokota Y, Battifora H, Le Fevre C, Cline M. Alterations
of myc, myb, and rasHa proto-oncogenes in cancers are frequent and show
clinical correlation. Science. 1986;231(4735):261–5.

102. Macfarlane WM, Frayling TM, Ellard S, Evans JC, Allen LI, Bulman MP, et al.
Missense mutations in the insulin promoter factor-1 gene predispose to
type 2 diabetes. J Clin Invest. 1999;104(9):R33–9.

103. Hani EH, Stoffers DA, Chèvre JC, Durand E, Stanojevic V, Dina C, et al.
Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-
onset type 2 diabetes mellitus. J Clin Invest. 1999;104(9):R41–8.

104. Coppola E, Rallu M, Richard J, Dufour S, Riethmacher D, Guillemot F, et al.
Epibranchial ganglia orchestrate the development of the cranial neurogenic
crest. Proc Natl Acad Sci U S A. 2010;107(5):2066–71.

105. Vohl MC, Lepage P, Gaudet D, Brewer CG, Bétard C, Perron P, et al.
Molecular scanning of the human PPARa gene: association of the
L162v mutation with hyperapobetalipoproteinemia. J Lipid Res. 2000;
41(6):945–52.

106. Gross B, Hennuyer N, Bouchaert E, Rommens C, Grillot D, Mezdour H, et al.
Generation and characterization of a humanized PPARδ mouse model. Br J
Pharmacol. 2011;164(1):192–208.

107. Mao C-A, Tsai W-W, Cho J-H, Pan P, Barton MC, Klein WH. Neuronal
transcriptional repressor REST suppresses an Atoh7-independent program
for initiating retinal ganglion cell development. Dev Biol. 2011;349(1):90–9.

108. Liang G, Yang J, Horton JD, Hammer RE, Goldstein JL, Brown MS.
Diminished hepatic response to fasting/refeeding and liver X receptor
agonists in mice with selective deficiency of sterol regulatory element-
binding protein-1c. J Biol Chem. 2002;277(11):9520–8.

109. Lin AE, Semina EV, Daack-Hirsch S, Roeder ER, Curry CJ, Rosenbaum K, et al.
Exclusion of the branchio-oto-renal syndrome locus (EYA1) from patients
with branchio-oculo-facial syndrome. Am J Med Genet. 2000;91(5):387–90.

110. Milunsky JM, Maher TA, Zhao G, Roberts AE, Stalker HJ, Zori RT, et al.
TFAP2A mutations result in branchio-oculo-facial syndrome. Am J Hum
Genet. 2008;82(5):1171–7.

111. Gestri G, Osborne RJ, Wyatt AW, Gerrelli D, Gribble S, Stewart H, et al.
Reduced TFAP2A function causes variable optic fissure closure and retinal
defects and sensitizes eye development to mutations in other
morphogenetic regulators. Hum Genet. 2009;126(6):791–803.

112. Chen PL, Chen YM, Bookstein R, Lee WH. Genetic mechanisms of tumor
suppression by the human p53 gene. Science. 1990;250(4987):1576–80.

113. Halevy O, Michalovitz D, Oren M. Different tumor-derived p53 mutants
exhibit distinct biological activities. Science. 1990;250(4977):113–6.

114. Chiang YJ, Difilippantonio MJ, Tessarollo L, Morse HC, Hodes RJ. Exon 1
disruption alters tissue-specific expression of mouse p53 and results in
selective development of B cell lymphomas. PLoS One. 2012;7(11):e49305.

115. Pelletier J, Bruening W, Li FP, Haber DA, Glaser T, Housman DE. WT1
mutations contribute to abnormal genital system development and
hereditary Wilms’ tumour. Nature. 1991;353(6343):431–4.

116. Wang J, Zhuang J, Iyer S, Lin X-Y, Greven MC, Kim B-H, et al.
Factorbook.org: a Wiki-based database for transcription factor-binding
data generated by the ENCODE consortium. Nucleic Acids Res. 2013;
41(Database issue):D171–6.

117. Bailey T, Krajewski P, Ladunga I, Lefebvre C, Li Q, Liu T, et al. Practical
guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput
Biol. 2013;9(11):e1003326.

118. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.
NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids
Res. 2013;41(Database issue):D991–5.

119. Karolchik D. The UCSC Genome Browser Database. Nucleic Acids Res. 2003;
31(1):51–4.

120. Storey JD. The positive false discovery rate: a Bayesian interpretation and
the q-value. Ann Stat. 2003;31(6):2013–35.

121. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc
Natl Acad Sci U S A. 2003;100(16):9440–5.

122. Bader GD. BIND: the Biomolecular Interaction Network Database. Nucleic
Acids Res. 2003;31(1):248–50.

123. Bovolenta LA, Acencio ML, Lemke N. HTRIdb: an open-access database for
experimentally verified human transcriptional regulation interactions. BMC
Genomics. 2012;13:405.

124. Portales-Casamar E, Arenillas D, Lim J, Swanson MI, Jiang S, McCallum A,
et al. The PAZAR database of gene regulatory information coupled to the
ORCA toolkit for the study of regulatory sequences. Nucleic Acids Res. 2009;
37(Database issue):D54–60.

125. Jiang C, Xuan Z, Zhao F, Zhang MQ. TRED: a transcriptional regulatory
element database, new entries and other development. Nucleic Acids Res.
2007;35(Database):D137–40.

126. Yang VW. Issues and opinions in nutrition. Eukaryotic transcription factors:
identification, characterization. J Nutr. 1998;128:2045–51.

127. Geertz M, Maerkl SJ. Experimental strategies for studying transcription
factor-DNA binding specificities. Brief Funct Genomics. 2010;9(5–6):
362–73.

128. Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B,
et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res.
2005;33(Database issue):D428–32.

129. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P,
Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics.
2011;27(12):1739–40.

130. Hewett M. PharmGKB: the Pharmacogenetics Knowledge Base. Nucleic
Acids Res. 2002;30(1):163–5.

131. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, et al.
The NCBI dbGaP database of genotypes and phenotypes. Nat Genet.
2007;39(10):1181–6.

132. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The
NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic
Acids Res. 2014;42(D1):1001–6.

133. Schriml LM, Arze C, Nadendla S, Chang Y-WW, Mazaitis M, Felix V, et al.
Disease Ontology: a backbone for disease semantic integration. Nucleic
Acids Res. 2012;40(Database issue):D940–6.

134. Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez Gene: gene-centered
information at NCBI. Nucleic Acids Res. 2005;33(Database issue):D54–8.

135. Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic
Acids Res. 2000;28(1):27–30.

136. Nishimura D. BioCarta. Biotech Softw Internet Rep. 2001;2(3):117–20.
137. Mehta CR. Algorithm 643. FEXACT: a FORTRAN subroutine for Fisher’s exact

test on unordered rxc contingency tables. ACM Trans Math Softw. 1986;
12(2):154–61.

138. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57(1):289–300.

139. Hani EH, Suaud L, Boutin P, Chèvre JC, Durand E, Philippi A, et al. A
missense mutation in hepatocyte nuclear factor-4 alpha, resulting in a
reduced transactivation activity, in human late-onset non-insulin-dependent
diabetes mellitus. J Clin Invest. 1998;101(3):521–6.

140. Wang H, Maechler P, Antinozzi PA, Hagenfeldt KA, Wollheim CB. Hepatocyte
nuclear factor 4alpha regulates the expression of pancreatic beta -cell genes
implicated in glucose metabolism and nutrient-induced insulin secretion.
J Biol Chem. 2000;275(46):35953–9.

141. Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Préhu MO, Puliti A, et al.
SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat
Genet. 1998;18(2):171–3.

142. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011;
364(16):1533–43.

143. Forsythe E, Beales PL. Bardet-Biedl syndrome. Eur J Hum Genet. 2013;21(1):
8–13.

144. Bisgrove BW, Makova S, Yost HJ, Brueckner M. RFX2 is essential in the
ciliated organ of asymmetry and an RFX2 transgene identifies a population
of ciliated cells sufficient for fluid flow. Dev Biol. 2012;363(1):166–78.

Li and Altman BMC Biology  (2018) 16:4 Page 17 of 18



145. Chung M-I, Peyrot SM, LeBoeuf S, Park TJ, McGary KL, Marcotte EM, et al.
RFX2 is broadly required for ciliogenesis during vertebrate development.
Dev Biol. 2012;363(1):155–65.

146. Brown MS, Goldstein JL. The SREBP Pathway: regulation of cholesterol
metabolism by proteolysis of a membrane-bound transcription factor. Cell.
1997;89(3):331–40.

147. Hua X, Nohturfft A, Goldstein JL, Brown MS. Sterol resistance in CHO cells
traced to point mutation in SREBP cleavage-activating protein. Cell. 1996;
87(3):415–26.

148. Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T. Cytoscape 2.8: new
features for data integration and network visualization. Bioinformatics. 2011;
27(3):431–2.

149. Hildebrand JD, Soriano P. Overlapping and unique roles for C-terminal
binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell
Biol. 2002;22(15):5296–307.

150. Seth A, Watson DK. ETS transcription factors and their emerging roles in
human cancer. Eur J Cancer. 2005;41(16):2462–78.

151. He A, Ma Q, Cao J, von Gise A, Zhou P, Xie H, et al. Polycomb repressive
complex 2 regulates normal development of the mouse heart. Circ Res.
2012;110(3):406–15.

152. Malkin D, Li F, Strong L, Fraumeni J, Nelson C, Kim D, et al. Germ line p53
mutations in a familial syndrome of breast cancer, sarcomas, and other
neoplasms. Science. 1990;250(4985):1233–8.

153. Coon H, Xin Y, Hopkins PN, Cawthon RM, Hasstedt SJ, Hunt SC. Upstream
stimulatory factor 1 associated with familial combined hyperlipidemia, LDL
cholesterol, and triglycerides. Hum Genet. 2005;117(5):444–51.

154. Pajukanta P, Lilja HE, Sinsheimer JS, Cantor RM, Lusis AJ, Gentile M, et al.
Familial combined hyperlipidemia is associated with upstream transcription
factor 1 (USF1). Nat Genet. 2004;36(4):371–6.

155. Fernando MMA, Stevens CR, Walsh EC, De Jager PL, Goyette P, Plenge RM,
Vyse TJ, Rioux JD, Fisher EMC. Defining the Role of the MHC in
Autoimmunity: A Review and Pooled Analysis. PLoS Genetics. 2008;4(4):
e1000024.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Li and Altman BMC Biology  (2018) 16:4 Page 18 of 18


	Abstract
	Background
	Result
	Conclusion

	Background
	Results
	The compendium of human TF TGs
	Defining the target functions of TFs
	Gene universe impacts the detection of target functions
	TF–target function network
	Target functions predict known functions of TFs
	Mendelian diseases targeted by TFs
	Complex phenotypes targeted by TFs
	Pharmacogenetic pathways targeted by TFs
	TG sharing among TFs
	TFs link apparently unrelated functions: coffee and warfarin
	Measuring the functional pleiotropy of TFs
	Upstream regulation enables functional pleiotropy of TFs

	Discussion
	Conclusion
	Methods
	Transcription factor TG data compendium
	Gene function annotation data
	Defining coding genes and Literature Rich genes
	Measuring the associations between binary variables
	Functional and regulator diversities of TFs

	The target function association profile of a TF is comprised of the Pearson’s phi coefficients between the TF and all 3715 functional concepts. A lack of positive correlation between two profiles indicates that the two TFs are likely functionally unre...
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

