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Abstract

Background: Activity in populations of neurons often takes the form of assemblies, where specific groups of
neurons tend to activate at the same time. However, in calcium imaging data, reliably identifying these assemblies is a
challenging problem, and the relative performance of different assembly-detection algorithms is unknown.

Results: To test the performance of several recently proposed assembly-detection algorithms, we first generated
large surrogate datasets of calcium imaging data with predefined assembly structures and characterised the ability of
the algorithms to recover known assemblies. The algorithms we tested are based on independent component
analysis (ICA), principal component analysis (Promax), similarity analysis (CORE), singular value decomposition (SVD),
graph theory (SGC), and frequent item set mining (FIM-X). When applied to the simulated data and tested against
parameters such as array size, number of assemblies, assembly size and overlap, and signal strength, the SGC and ICA
algorithms and a modified form of the Promax algorithm performed well, while PCA-Promax and FIM-X did less well,
for instance, showing a strong dependence on the size of the neural array. Notably, we identified additional analyses
that can improve their importance. Next, we applied the same algorithms to a dataset of activity in the zebrafish optic
tectum evoked by simple visual stimuli, and found that the SGC algorithm recovered assemblies closest to the
averaged responses.

Conclusions: Our findings suggest that the neural assemblies recovered from calcium imaging data can vary
considerably with the choice of algorithm, but that some algorithms reliably perform better than others. This suggests
that previous results using these algorithms may need to be reevaluated in this light.
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Background
A prominent functional property of both spontaneous
and evoked neural activity is its organisation into neu-
ral assemblies [1]. Although several different meanings of
the term “neural assembly” have been proposed, here we
define it to mean a group of neurons whose activity tends
to be coincidentally elevated, given a specific timescale
for “coincident.” Such assemblies have been demonstrated
in, for instance, the mammalian cortex and hippocam-
pus [2–11] and the zebrafish optic tectum [12–15] and
are believed to form a critical substrate for neural com-
putation [3, 16–19]. Assemblies present in spontaneous
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activity are often similar to those driven by evoked activity
[7, 12, 20, 21], and it has been suggested that this similar-
ity increases during development as the network develops
expectations about the statistics of sensorily evoked neu-
ral activity [4].
Neural population activity is sometimes recorded in the

form of spikes with high temporal precision [22, 23], but
more often it comes from imaging of fluorescent calcium
indicators such as the GCaMP family [24, 25]. These sig-
nals can have hundreds or even thousands of dimensions
and can have both high background noise and low tem-
poral resolution. While it can be qualitatively obvious
from visual inspection of the resulting time-lapse movies
that neurons are organised into assemblies, quantitatively
identifying and extracting these assemblies based on their
firing statistics is a challenging problem. Assemblies may
overlap, each neuron may be active more often than the
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assemblies of which it is a member, and the activity of
a particular assembly may not predict with certainty the
activity of every neuron it contains [15].
One starting point for extracting assemblies from a cal-

cium imaging recording is the covariance matrix of the
calcium activity. By applying principal components analy-
sis [26], followed by either independent component anal-
ysis (ICA) [27] or Promax oblique rotation (Promax) [12]
to the principal components, groups of temporally corre-
lated neurons can be extracted. We identify two subtypes
of these algorithms based on their null models for signif-
icance of the principal components, “CS” (circular shifts)
and “MP” (Marčenko-Pastur) (see “Methods” section). For
ICA-CS and Promax-CS significance, and the number of
assemblies present was estimated using shuffling through
circular random shifts, while for ICA-MP and Promax-
MP this was achieved by examining eigenvalues of the
covariance matrix lying outside a particular range [28]. A
different starting point for the problem is to first threshold
the calcium activity to a digital code, where each neuron is
considered either active or not at each timestep. Frequent
item set mining (FIM), which is well-established in fields
of data mining such as market basket analysis, together
with subsequent statistical tests (collectively FIM-X), can
be used to identify groups of neurons which tend to be fre-
quently coactive [29, 30]. Alternatively, restricting to only
population activity patterns with an overall high level of
activity, every set of similar patterns can be assigned a rep-
resentative. These representatives can then subsequently
be clustered (CORE) [7] or a singular value decompo-
sition can be applied to a similarity map of these pat-
terns to find significant states (SVD) [31]. A different
approach based on graph theory, similarity graph cluster-
ing (SCG) [15], considers the population activity patterns
as the nodes of a graph, and Bayesian statistical tech-
niques are used to estimate the number of clusters of
activity patterns present. Subsequently, spectral cluster-
ing [32] can be used to extract the clusters and, from
these, reconstruct the groups of neurons that tend to be
coactive.
However, for real data, it is difficult to know how well

these algorithms actually work, since there is usually no
way of independently verifying whether the results are
accurate or not. To assess whether reliable inferences are
being drawn from biological data, it is therefore criti-
cal to investigate the performance of these algorithms
on surrogate data with known ground truth. Preliminary
tests of the algorithms mentioned above have been per-
formed, but mostly for spiking rather than calcium data,
and only in a very limited manner, for instance using only
small numbers of neurons and assemblies. It is therefore
unknown how the performance of these different algo-
rithms compares, or indeed if they perform well at all, for
larger-scale, more realistic data.

Here we first investigated the performance of these
algorithms on a large datasets of surrogate calcium imag-
ing data, where performance was measured in terms
of how reliably the assemblies known to be embedded
were recovered. We found that SGC and ICA-CS per-
formed very well, while Promax-MP, SVD and FIM-X
generally performed poorly. For instance, Promax-MP
and FIM-X showed a strong dependence on the size
of the neural array. However, we also found that ICA-
MP and Promax-CS could achieve performance often
comparable to SGC and ICA-CS. We then applied all
these algorithms to a dataset of activity in the zebrafish
optic tectum evoked by simple visual stimuli, and asked
whether the algorithms could recover the assemblies
estimated by averaging activity patterns over presen-
tations for each stimulus. Here the performance of
SGC exceeded that of other algorithms. Overall, we
therefore conclude that only some algorithms perform
well for reconstructing neural assemblies from calcium
imaging data.

Results
Generation of surrogate calcium imaging data
The methods we used to generate surrogate data were
broadly similar to previous work. To specify groups of
neurons which tended to be coactive, i.e., coordinatedly
increasing their firing rate, neurons were positioned on
a hexagonal lattice (though spatial relationships between
neurons were not taken into account in the subsequent
analysis). To select the neurons in the assembly, a posi-
tion in the plane was chosen at random, and then points
were drawn from a two-dimensional normal distribu-
tion around this position, so that a neuron was consid-
ered part of the assembly when at least one of these
random points fell into its immediate neighbourhood
(see “Methods” section). Doing this multiple times
allowed us to create many sets of assemblies, with a sta-
tistically controlled number of neurons per assembly and
degree of overlap between assemblies for each set (Fig. 1a,
b). In addition, we varied the size of the neural array
while the above parameters were fixed, so that different
densities of assemblies within the array were considered
(see “Methods” section).
All neurons in the array were assumed to fire Poisson

spikes with a fixed background rate chosen randomly for
each neuron [26]. With a constant probability at each time
step, each neuron elevated its rate by a factor λ for that
time step. If this occurred for any neuron in an assem-
bly, then all neurons in that assembly also increased their
rate by a factor λ at that time step (Fig. 1c, d). With small
probability, two assemblies could therefore be active at
the same time, but this was very unlikely to occur more
than once in each dataset (i.e. each simulated recording).
The resulting spike trains were then convolved with an
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Fig. 1. Generation of surrogate calcium imaging data. a On the left, points were drawn from a two-dimensional normal distribution, and a neuron
was considered part of the assembly when at least one point fell within distance 1

2 of its corresponding lattice point at its centre. The contour lines
around the mean indicate regions of probability mass 50%, 90%, 99%, and 99.9%. The corresponding assembly is shown on the right. b An example
of 10 assemblies (colour coded) embedded in a neural array of 469 neurons. Annuli represent neurons which overlap between two assemblies. c An
example of the firing rates for 19 neurons over the course of 120 s. Neurons within the same assemblies simultaneously elevated their firing rates
(here at 60 s, 77.5 s and 92 s). d The spike counts for the neurons over the course of 120 s as determined from independent Poisson random
variables based on the firing rates shown in c. e The spiking events of a single neuron in a time-window of 10 s (top) and the corresponding calcium
fluorescence after convolution with an exponential kernel (bottom). f The calcium fluorescence for the neurons over the course of 120 s. g The
deflection of calcium fluorescence from baseline level, �F

F , for the neurons over the course of 120 s. This was the signal from which the algorithms
attempted to reconstruct assembly structure

exponential calcium decay kernel with half-life of τ 1
2

(Fig. 1e) [33, 34]. After applying a nonlinear saturation
function noise was added to this signal from a centred

normal distribution [35], and �F
F measurements were

extracted from the resulting calcium traces (Fig. 1f, g)
at a temporal resolution of �T . Notation and default
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parameter values are summarised in Table 1. Unless oth-
erwise indicated, graphs shown in the subsequent figures
represent performance variations as individual parame-
ters were varied from this default set.
Eight different algorithms were used to reconstruct

the embedded assemblies (Fig. 2). For most algorithms,
the implementations were either publicly available or
kindly given to us by the original authors. Four algo-
rithms considered the neuron-neuron correlation, apply-
ing PCA either in connection with ICA (ICA-CS)
[26, 27] or Promax oblique rotations (Promax-MP) [12,
36], and we also investigated a novel variant of ICA-
CS (ICA-MP), as well as a novel variant of Promax-MP
(Promax-CS) (see “Methods” section). Instead of look-
ing at neuron-neuron correlation, the remaining four
algorithms rather considered the relation between differ-
ent states of the whole population. One such algorithm
involved applying frequent item set mining in conjunc-
tion with additional statistical tests (FIM-X) [29, 30].
The CORE algorithm considers the similarity between
activity patterns and defined a set of core representa-
tives which were then subsequently clustered [7], while
another algorithm considered a similarity map of activ-
ity patterns to which SVD [31] was applied. Finally,
the algorithm which we refer to as “similarity graph
clustering” (SGC) represented the similarity of activ-
ity patterns on a graph and clustered them within this
graph [15].
The performance of the different algorithms was mea-

sured by the match between the number of assemblies
found versus the number embedded, and the similar-
ity of the embedded and the reconstructed assemblies.

Table 1 Table of default parameter values used to generate
surrogate calcium imaging datasets

Parameter Default value Variation range

Size of neural array 469 neurons 217–919 neurons

Number of embedded assemblies (k) 10 1–20

Mean assembly size 16 neurons 6–28 neurons

Assembly overlap [0,0.05] 0.05–0.35

Simulation duration (T ) 3600 s 0–7200 s

Temporal resolution (�T ) 500 ms 100–500 ms

Spike time temporal resolution (δT ) 1 ms —

Calcium indicator half-life (τ 1
2
) 1 s 0–2 s

Saturation constant (κ) ∞ 0–1000

Background firing rate (R) [1,6] Hz —

Event duration (�T∗) 500 ms —

Event frequency (f ∗) 10 mHz 0–10 mHz

Event firing rate multiplier (λ) 6 1–25

Standard deviation of Gaussian noise (σ ) 0 0–8

The latter was quantified with a “Best Match” score
[37] (see “Methods” section). Some of the algorithms
tended to overestimate the number of assemblies, which
consequently reduced the performance as measured by
the Best Match score even if some of the recovered
assemblies were similar to the embedded ones. As a
more generous estimate of performance, we therefore
also considered an “optimised Best Match” score (Addi-
tional file 2), where we measured the similarity between
the embedded assemblies and the subset of recov-
ered assemblies which most closely matched these (see
“Methods ’’ section).

Performance with varying array size, number of
assemblies, assembly size and overlap
We first investigated how the number of assemblies
detected by the algorithms varied with the size of the
neural array. Some neurons may not participate in any
assembly, and instead, their activity provides only noise.
We embedded 10 assemblies into an array of size vary-
ing from 217 to 919 neurons. SGC, ICA-CS, ICA-MP,
CORE, and SVD recovered the correct number of assem-
blies (Fig. 3a, b; Additional file 2), though the performance
of SVD (i.e. match of recovered assemblies to true assem-
blies) was low. For Promax-MP, the performance was good
when the neural array was small. While Promax-CS also
found the correct assemblies for small neural arrays, for
large arrays, it slightly underestimated the number of
assemblies.
Next, we tested how the number of assemblies detected

varied with the number of assemblies embedded. Again
SGC, ICA-CS, ICA-MP, and to some extent Promax-
CS performed well, but Promax-MP, FIM-X, and CORE
found an excess and of assemblies and SVD under-
estimated the total number (Fig. 3c, d; Additional
file 2). We then varied the mean assembly size for
10 embedded assemblies (Fig. 3e, f; Additional file 2).
Again, Promax-MP and FIM-X did not perform well for
any assembly size. The performance of SGC, ICA-CS,
ICA-MP, Promax-CS, and CORE was good except for
small assembly sizes, where the performance of SGC,
ICA-CS, and ICA-MP was similar to that of FIM-X.
The performance of all algorithms decreased with an
increasing degree of overlap in the assemblies (Additional
file 1 : Figure S1A,B; Additional file 2).
In summary, we found that the size of the neural

array strongly affects the performance of Promax-MP
and FIM-X. In contrast, SGC, ICA-CS, and ICA-MP
as well as Promax-CS detected the correct number
of assemblies irrespective of how many were embed-
ded, and their performance was generally better for
larger assemblies. The performance of SVD was
overall low despite recovering the correct number of
assemblies.
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Fig. 2. Schematics of the different algorithms investigated All algorithms can be divided into three phases: preprocessing, core assembly detection
and thresholding/optimisation. a In the ICA algorithms, PCA is applied to �F

F , followed by ICA to the significant principal components. The null
model for significance is either determined from circular shifts (ICA-CS) or given as the Marčenko-Pastur distribution (ICA-MP). The resulting principal
components are either thresholded directly (ICA-CS) or after a KS test (ICA-MP) in order to arrive at the assemblies. b In the Promax algorithms, �F

F is
first reduced to its significant calcium transients, before PCA is applied. The null model for significant principal components is either given as the
Marčenko-Pastur distribution (Promax-MP) or determined from circular shifts (Promax-CS). These principal components are rotated by means of
Promax before z-score thresholding the components to arrive at the assemblies. c In the CORE algorithm, �F

F is deconvolved and the resulting spike
probabilities are thresholded into a binary signal. The activity patterns with a high level of activity are reduced to a set of core activity patterns (or
ensembles) which are clustered using k-means clustering and the activity patterns of every community are averaged to arrive at the assemblies. d In
the SVD algorithm, �F

F is deconvolved and the resulting spike probabilities are thresholded into a binary signal. From the activity patterns with a
high level of activity a similarity map is constructed and thresholded before SVD is applied. The assemblies were then inferred from the activity
patterns corresponding to every significant singular vector. e In the SGC algorithm, �F

F is thresholded to a binary signal and the activity patterns
with a high level of activity are arranged into a graph according to their similarity. The graph is split into its communities using spectral clustering
and the activity patterns of every community are averaged to arrive at the assemblies. f In the FIM-X algorithm, �F

F is thresholded into a binary
signal and FIM is applied to find co-active neurons as frequent item sets. These frequent item sets are reduced by PSF and PSR involving some
additional statistical tests to arrive at the assemblies

Performance with varying signal strength
We then investigated how the performance of the
algorithms varied with the strength of the signal compared
to the noise. Signal strength is controlled by several factors
including the number of assembly events present (deter-
mined by the length of the simulation and the event fre-
quency), the temporal resolution of the calcium signal, the
calcium indicator’s decay time, the saturation of the cal-
cium indicator, the firing rate multiplier during assembly
events, and additional noise added to the calcium signal.

As expected, the performance for all algorithms
increased with simulation duration and therefore the aver-
age absolute number of assembly events. This increase
was slow for Promax-MP and FIM-X, but relatively rapid
for SGC, ICA-CS, ICA-MP, Promax-CS, and CORE,
which apart from CORE eventually reached saturating
performance for the default parameter set (Fig. 4a, b;
Additional file 2). Surprisingly, the number of detected
assemblies for FIM-X peaked and then declined. Greater
temporal resolution of the calcium signal had no effect
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Fig. 3. Performance as a function of size of the neural array, number of embedded assemblies, and assembly size In every graph and for every
algorithm the mean is depicted by a solid line together with the region of one standard deviation above and below. In the graphs for the
performance, measured in terms of the Best Match score, the black dashed line indicates chance level of the Best Match score. a, b Varying the size
of the neural array. With an increasing size of the neural array, Promax-MP and FIM-X detected an increasing number of assemblies and,
consequently, their performance decreased. ICA-CS, ICA-MP, SGC, CORE, and SVD detected a constant number of assemblies and except for SVD
showed good performance. Promax-CS performed well for smaller neural arrays, but slightly underestimated the number of assemblies in larger
arrays. c, d Varying the number of embedded assemblies. Promax-MP detected an almost constant number of assemblies. ICA-CS, ICA-MP, SGC,
Promax-CS, and FIM-X detected an increasing number of assemblies as the number of embedded assemblies increased, although FIM-X
overestimated the total number. When there were only few assemblies embedded, Promax-CS underestimated the total number, while when there
were more assemblies embedded, CORE overestimated and SVD underestimated the total number. e, f Varying the assembly sizes. ICA-CS, ICA-MP,
SGC, Promax-CS, CORE, and SVD detected a constant number of assemblies except when the embedded assemblies were particularly small.
Promax-MP and FIM-X overestimated the number of assemblies

on the performance of SGC, ICA-CS, ICA-MP, and
Promax-CS, which was overall good, but decreased
the performance of Promax-MP and FIM-X, apparently
because they found increasing numbers of assemblies as
more data was available. For CORE, the absolute number

of assemblies was correct, while SVD underestimated it
(Fig. 4c, d; Additional file 2).
While results for SGC, ICA-CS, ICA-MP, Promax-CS,

CORE, and SVD were quite robust to calcium indicator
half-life τ 1

2
, the performance of Promax-MP and FIM-X
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Fig. 4. Performance as a function of simulation duration, temporal resolution, and calcium indicator half-life Graphing conventions as in Fig. 3. a,
b Varying the simulation duration T. With increasing T, the performance of ICA-CS, ICA-MP, SGC and Promax-CS increased and they detected a
constant number of assemblies beyond T = 1800s. Promax-MP overestimated the total number, and the number detected by FIM-X showed a
steep peak, while SVD underestimated the total number. c, d Varying the temporal resolution �T . With increasing �T , Promax-MP and FIM-X
detected a decreasing number of assemblies. They both overestimated the total number, particularly FIM-X at small �T . SVD underestimated the
total number of assemblies. ICA-CS, ICA-MP, SGC, Promax-CS and CORE detected a constant number of assemblies and ICA-CS, ICA-MP, SGC and
Promax-CS also showed good performance. e, f Varying the calcium indicator half-life τ 1

2
. With increasing τ 1

2
Promax-MP and FIM-X detected an

increasing number of assemblies. ICA-CS, ICA-MP, SGC, Promax-CS, CORE and SVD detected a constant number of assemblies and ICA-CS, ICA-MP,
SGC, Promax-CS and CORE showed good performance

decreased as τ 1
2
increased (Fig. 4e, f; Additional file 2).

However, for very low τ 1
2
neither Promax-MP or Promax-

CS returned results because their noise model was unable
to fit the data.
The performance of all algorithms increased with event

frequency, but much faster for SGC, ICA-CS, ICA-MP,
and Promax-CS than Promax-MP, FIM-X, CORE, and

SVD (Fig. 5a, b; Additional file 2). As for the simula-
tion duration, variations in the event frequency change
the average number of repetitions for every assembly
event. However, the noise activity between events dif-
fers between these scenarios, so that simulation duration
and event frequency are not interchangeable parameters
(Additional file 3). The event firing rate multiplier λ
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Fig. 5. Performance as a function of the event frequency, event firing rate multiplier, and the standard deviation of the noise Graphing conventions
as in Fig. 3. a, b Varying the event frequency f ∗ . With increasing f ∗ , the performance of ICA-CS, ICA-MP, SGC, Promax-CS and CORE increased and
they detected a constant number of assemblies beyond f ∗ = 5mHz. At low frequencies the performance of Promax-CS exceeded that of ICA-CS,
ICA-MP and SGC. Promax-MP and FIM-X both overestimated the number of assemblies. c, d Varying the event firing rate multiplier λ. With
increasing λ, the performance of ICA-CS, ICA-MP, SGC, and Promax-CS increased and, when λ exceeded about 4, they detected a constant number
of assemblies and showed good performance. Promax-MP and FIM-X both overestimated the number of assemblies. The performance of CORE first
increased but then consequently decreased as it underestimated the total number of assemblies. e, f Varying the standard deviation σ of the
Gaussian noise. With increasing σ , every algorithm (except FIM-X, which instead showed a peak, and SVD) detected a decreasing number of
assemblies and, consequently, their performance decreased. For noise levels beyond σ = 3 neither Promax-MP or Promax-CS yielded any results
since they were not able to fit the noise model to the data

determined the increase in firing rate when a neuron
was active, and thus how clearly distinguishable such
an event was in terms of the increase in fluorescence
from the background. As λ increased, SGC, ICA-CS,
ICA-MP, and Promax-CS showed a threshold at about
λ = 2 (for the default set of other parameters) below
which no assemblies were detected, and beyond which

the performance increased close to optimal (Fig. 5c, d;
Additional file 2). In contrast, the performance of Promax-
MP and FIM-X increased very slowly with λ, and again,
the number of assemblies found by FIM-X showed a
peak and then declined. As for SGC, ICA-CS, ICA-MP,
and Promax-CS, the number of detected assemblies and
performance first increased, but then decreased again.
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As the noise parameter σ added to the calcium signal
increased, the performance of SGC, ICA-CS, and ICA-MP
remained close to 1 until about σ = 2, beyond which their
performance declined slowly (Fig. 5e, f; Additional file 2).
The same behaviour could be seen in the performance
of CORE, however, at a lower value. The performance
of Promax-CS dropped more rapidly with σ , and nei-
ther Promax-MP, FIM-X, nor SVD performed well for any
value of σ .
In reality, calcium signals saturate. We therefore also

considered the effect of a simple nonlinear saturation in
the calcium signal with saturation constant κ [33–35].
However, this had very little effect on the performance of
any of the algorithms (Additional files 1 and 2).
In summary, for all algorithms, the performance

increased with either higher event frequency or longer
simulation durations. Performance remained constant for
SGC, ICA-CS, and ICA-MP, Promax-CS, as well as CORE
when the temporal resolution was increased, while for
Promax-MP and FIM-X it decreased. The calcium indi-
cator half-life did not affect the performance of SGC,
ICA-CS, ICA-MP, Promax-CS, or CORE. Furthermore,
performance increased with greater event firing rate mul-
tiplier for all algorithms, although SGC, ICA-CS and ICA-
MP reached peak performance faster. Again, performance
of SVD was low despite recovering the correct number of
assemblies.

Application to real data
We then tested the performance of the algorithms on
a dataset of stimulus-evoked activity in the zebrafish
optic tectum. Eleven different stimuli were shown to the
fish via a projector in the form of small spots sepa-
rated by 15° in the visual field (Fig. 6a). The responses
to these stimuli were clearly visible within the popula-
tion activity (Fig. 6b). �F

F values were much larger for
the spot presentations than for the intervening peri-
ods of spontaneous activity, and this contrast was also
much more pronounced than in our simulated data with
injected assemblies (Fig. 6c; cf. Fig. 1). We estimated a
reference assembly configuration from the average activ-
ity evoked by each stimulus over 20 repetitions, and
then asked if the algorithms would find these assem-
blies. A neuron was regarded as part of an assembly if
it was, on average, substantially more active in response
to the corresponding stimulus than across all stimuli (see
“Methods” section). Although tectal responses were seen
for all the stimuli, the activity evoked by stimuli 1–3 was
weaker and more overlapping (Fig. 6d). Thus we expected
that between 8 and 11 assemblies should be found for
these data.
All algorithms found sets of assemblies which were

appropriately localised, and preserved topographic order-
ing in the optic tectum (Fig. 6e–l). SGC found 8 and

SVD 5 relatively dense assemblies (Fig. 6e, h). For the
other algorithms, there was a large diversity in the sparse-
ness and the number of the assemblies they found,
ranging from 1 for CORE (Fig. 6i) to 27 for FIM-X
(Fig. 6l). Compared to the reference configuration as
defined above, either some assemblies appear to have been
missed or subdivided to produce a large number of sparse
assemblies.
Qualitatively, Fig. 6 suggests that SGC gave the most

accurate results, followed by Promax-CS and then ICA-
CS. We confirmed this quantitatively by calculating
the Best Match score with respect to the estimated
reference assembly configuration (Additional file 4).
This suggests that SGC was the best algorithm for
reconstructing assemblies defined by evoked activity in
real data.

Discussion
We have shown that assembly detection algorithms can
produce very divergent results on the same set of calcium
imaging data (real or surrogate), in terms of both the num-
ber and neural identity of the assemblies found. In general,
SGC and ICA-CS performed very well and were quite
robust to the number and overlap of assemblies, the size
of the array, and the temporal resolution. By making novel
modifications to ICA-CS (i.e. ICA-MP) and Promax-MP
(i.e. Promax-CS), we found that these algorithms could
also perform very well on a wide range of surrogate data,
with ICA-MP being much faster than ICA-CS. However,
SGC still produced the best match for real data. There
were big differences in the computational requirements of
the algorithms (Additional file 5), with the success of SGC
coming at the cost of one to three orders of magnitude
more runtime than other algorithms. However, in future
work, the SGC algorithm could potentially be paral-
lelised to reduce this cost. An important observation was
that performance of all algorithms could depend strongly
on the parameters of the data (e.g. duration and event
frequency), suggesting caution in attempting to extract
assemblies from data which may not be well suited to such
analysis.
The original Promax-MP algorithm relies on compar-

ing the eigenvalues of the covariance matrix with the null
distribution expected for a random matrix (Marčenko-
Pastur), with the eigenvectors associated with the eigen-
values falling outside the support of the null distribution
providing the assemblies [28]. However, the data we have
investigated here is unlikely to satisfy the assumptions
required for this procedure to work well, hence explaining
the algorithm’s relatively poor performance. In particular,
for the Marčenko-Pastur distribution to be a valid null
distribution, independence within the fluorescence time
series is assumed. However, due to the slow dynamics
of the calcium indicator, this assumption is not met in
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Fig. 6. Application of the different algorithms to stimulus-evoked calcium imaging data from the larval zebrafish optic tectum. a 11 different stimuli
were shown to the fish. The stimuli were separated by 15° in the visual field of the fish. b The deflection of calcium fluorescence from baseline level,
�F
F , for the 160 neurons over about 180 s of the recording. The neurons are ordered by their anterior-posterior position in the tectum. The stimuli
were presented in the order 11 – 1 – 10 – 2 – 6 – 3 – 8 – 4 – 9 – 5 – 7 as indicated. c Example calcium trace over the course of the whole experiment
from a neuron particularly responsive to stimulus 11, whose onset is indicated. The overall noise is relatively low and the peaks in fluorescence are
clearly visible. d The average population response in terms of fluorescence (�F

F ) to the 11 different stimuli. The responses to the first 3 stimuli were
weak compared to the others. e–j Graphical representations of the assemblies recovered by the different algorithms. The neurons which were part
of the respective assemblies are marked in black. e SGC recovered 8 assemblies. f ICA-CS recovered 5 assemblies. g Promax-CS recovered 5
assemblies. h SVD recovered 5 assemblies. i CORE recovered 1 assembly. j ICA-MP recovered 2 assemblies. k Promax-MP recovered 16 assemblies.
l FIM-X recovered 27 assemblies

the context of calcium imaging. If there are any tem-
poral auto-correlations in the signals of the single neu-
rons, the threshold on the significant correlations derived

from the Marčenko-Pastur distribution will always over-
estimate the true number of assemblies. Moreover, the
number of these correlations increase with the size of the
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neural array. However, this effect can be compensated by
applying further statistical tests as we have demonstrated
in case of the ICA-MP, where the algorithm was then able
to produce results almost as good as ICA-CS but at a
much lower computational cost.
The algorithms we have investigated in this study can be

divided into two classes, with ICA-CS, ICA-MP, Promax-
MP and Promax-CS in one class and SGC, CORE, SVD
and FIM-X in the other. The algorithms in the first class
are all based on the application of PCA to the pair-
wise correlations between neurons. Since the principal
components are necessarily orthogonal, PCA alone will
generally yield disjoint assemblies. In order to overcome
this limitation, these methods further transform the prin-
cipal components by means of ICA or Promax oblique
rotation. The algorithms in the second class instead con-
sider binary patterns of activity in a population. From
that perspective, these algorithms can then be broadly
described as performing some form of clustering of
activity patterns, without restricting the shape of the
assemblies.
However, the overarching problem in all algorithms,

besides distributing neurons into the assemblies, is to esti-
mate the number of assemblies in the first place. The
impact of this estimate can be seen in the compari-
son between Promax-MP and Promax-CS. As discussed
above, the only difference between these two algorithms
is the evaluation of the significance of principal compo-
nents, which translates into an estimate for the number
of assemblies. The SGC algorithm instead expends great
computational effort to find an estimate for the number
of assemblies. The same is true for the FIM-X algorithm,
though this was less successful in the context studied here.
With the ICA-MP and the Promax-CS algorithms, we

have introduced slight variations which offer improve-
ments over their original versions: ICA-MP is more com-
putationally efficient than the ICA-CS algorithm, and
Promax-CS detects assemblies better than the Promax-
MP algorithm. In principal, there are many more algo-
rithmic variations that could be obtained by combining
components from different algorithms to create new vari-
ants, and some of these could potentially improve per-
formance in terms of computational efficiency and/or
assembly detection. However, our focus here has been pri-
marily on comparing algorithms in the form in which they
were originally proposed.
It is important to note that here we have only investi-

gated calcium imaging data, which can be quite different
from electrophysiology data. Indeed FIM-X was originally
designed for the latter and has not previously been applied
to calcium imaging data. In particular, we noticed that
assemblies found by FIM-X tended to be sparse. This was
a consequence of the sporadic activity of single neurons
and the fact that an assembly is required to be active

as a whole at every instance in order to be detected in
this algorithm. The normally high temporal resolution
of electrophysiology data means that many interesting
questions can then be asked about patterns of sequential
activation between neurons [38–42], which are normally
not addressed in the context of calcium imaging where
the temporal resolution is limited by the calcium indi-
cators. How such temporal patterns could be detected
has been addressed by several different methods [43–47].
The idea between one of these [47] is quite similar to
the SGC algorithm: After defining a notion of distance
between sequences of activity patterns, these are clustered
in a feature space, from which the assemblies are then
reconstructed.
A recent development of FIM-X is the SPADE algorithm

[46], which is intended to be applicable to both spiking
and calcium imaging data. We attempted to include this
algorithm in our study based on code kindly provided
by the authors, but unfortunately the runtime proved
too long for our test datasets. In general, we restricted
our consideration to algorithms for which robust code
was already available. However, the code we are mak-
ing available with this paper provide the opportunity
to test the performance of any other algorithm in the
future.
In summary, each algorithm has advantages and

disadvantages. The ICA and Promax algorithms are
computationally very fast but correctly estimating the
number of assemblies tends to be a challenge, although
this can be alleviated in the CS variants. In addition,
these algorithms implicitly assume the assemblies are
non-overlapping, though later steps relax this condition.
The CORE algorithm embraces shuffling as a means of
model-free estimating the significance of various correla-
tions in the data. However, in particular for large datasets,
this makes the algorithm also computationally slow. The
FIM-X algorithm is based on well-established algorithms,
but is quite sensitive to noise. The SGC algorithm pro-
vides good estimates for the number of assemblies with
minimal assumptions about their shape and relation to
each other. However, its runtime is at least an order of
magnitude greater than any other algorithm, and three
orders of magnitude greater than ICA-MP. On the other
hand, unlike most other algorithms, its runtime does not
increase with the number of neurons.

Conclusions
Overall, our study demonstrated that the detection of
neural assemblies varies considerably with the choice of
algorithm. For real data, each experiment may occupy a
slightly different region of parameter space, and low Best
Match scores do not necessarily imply that any general
qualitative inferences drawn from the biological data are
incorrect. However, our findings do argue that previous
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results using these algorithms may need to be reevaluated
in this light.

Methods
Neural arrays and generation of sets of random assemblies
To arrange a set of neurons in a plane, we used a hexago-
nal lattice of unit spacing, in which a neuron was placed at
every lattice point. An assembly was generated by draw-
ing points from a two-dimensional normal distribution
with mean μ, standard deviation σ and corresponding
isotropic covariance matrix σ 2I (where I is the identity
matrix). The centre μ was drawn from a uniform distri-
bution on a ball around the origin. A neuron in the array
was then considered part of the assembly when at least
one of the points drawn from the two-dimensional nor-
mal distribution fell within distance 1

2 of its correspond-
ing lattice point in the hexagonal neural array. When
considering sets of many assemblies, we controlled the
overlap between the assemblies in terms of the mean
pairwise Szymkiewicz-Simpson coefficient, defined as

|A∩A′|
min{|A|,|A′|} for two sets A and A′ (A∪A′ and A∩A′ denote
the union and intersection of A and A′ respectively, and
| · | for a set is its cardinality), by varying the radius of the
region from which the assembly centres were drawn.

Simulation of population calcium fluorescence activity
Calcium fluorescence activity was simulated in two steps.
The first step was to assign firing rates. Every neuron
in the array was assigned a background firing rate inde-
pendently and uniformly from the range R, so that for
neuron n the firing rate was r(n)(t) = r(n)

0 , constant for
t = 1, . . . � T

�T � (we denote by � · � and 	 · 
 the ceiling
and floor functions respectively). At each time t, every
neuron n had a probability f ∗�T of increasing its firing
rate by a factor of λ so that r(n)(t) = λr(n)

0 ; however,
for neurons within an assembly, this increase in firing
rate was coordinated across all neurons of the assembly.
Hence, given the collection of assemblies A, we selected
the events for every assembly A ∈ A independently and
increased the firing rate at these times for every unit
n ∈ A, after which we proceeded separately for every
neuron which was not part of any assembly (Fig. 1c).
In order to realise a fixed event duration �T∗ irrespec-
tive of the duration of a time step �T , given the times
t for an event, we extended it to the times t + 1, . . . t +
	�T∗

�T 
−1 and in addition with probability �T∗
�T −	�T∗

�T 
 ∈
[0, 1[ to the time t + 	�T∗

�T 
 independently for every
event and unit. The spike counts at every time inter-
val t and for every unit n, s(n)(t), were then determined
from independent Poisson random variables with mean
r(n)(t)�T (Fig. 1d) [26].
The second step was to generate spikes and the corre-

sponding calcium fluorescence signal. Every time interval

t for every unit n was expanded into spike-time intervals
δT , and s(n)(t) of them were selected independently for a
spike to occur within. This resulted in a spike sequence
of length T

δT for every unit n, z(n), where for t = 1, . . . T
δT

z(n)(t) = 1 if there is a spike in the time interval and
z(n)(t) = 0 otherwise, from which we obtained the cal-
cium fluorescence signal by a discrete convolution with
an exponential kernel with a half-life time of τ 1

2
and sub-

sequent application of a nonlinear saturation function
[33–35]. We then added noise from a centred normal dis-
tribution. More precisely, the calcium fluorescence signal
of unit n at time resolution δT was given as

F ′(n)
(t)=Sκ

⎛
⎜⎜⎝

�2 log2(10)
τ1/2
δT �∑

t′=0
z(n)(t − t′)e

− ln(2) t
′δT

τ1/2

⎞
⎟⎟⎠

+ N (n)
0,σ (t) for t=1, . . .

T
δT

where it was assumed that z(n)(t − t′) = 0 whenever t −
t′ < 1, Sκ(x) = κ x

x+κ
is a nonlinear saturation function,

where Sκ(x) = x for κ = ∞, and N (n)
0,σ (t) a sequence of

independent and normally distributed random variables
with mean 0 and standard deviation σ .
In order to obtain the calcium fluorescence signal at

time resolution, �T this calcium fluorescence signal was
downsampled in steps of �T

δT , so that the (downsampled)
calcium fluorescence signal for neuron n was

F(n)(t) = F ′(n)

(
�T
δT

t
)

for t = 1, . . .
T

�T
.

Generally, when simulating this calcium fluorescence
activity, we extended the duration of the simulation by an
offset time in order for the calcium activity to build up.
We chose this time to be twice the calcium indicator’s
half-life. This offset was later removed from the calcium
fluorescence signal.
From the calcium fluorescence signal, the deflection

from the baseline fluorescence level, �F
F

(n) for neuron n,
was determined, where the baseline fluorescence was fit
using a Kalman smoother with a width factor of 15 s

�T and a
Gaussian noise model [48].
This model for generating calcium fluorescence sig-

nals is relatively simple and does not consider a number
of additional potential sources of noise. These include
mixing of signals from neighbouring cells due to lim-
ited spatial resolution, noise induced by the neuropil in
mammalian cortex, and non-uniform expression of the
fluorescent indicator between different cells. However, we
show that some algorithms already do not perform well
even without taking into account these additional noise
sources.
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Application of the different algorithms
ICA-CS algorithm
In its original form, the ICA-CS algorithm [26, 27],
whose implementation was kindly made available to us by
Vítor Lopes-dos-Santos, started with a set of spike trains,
which were then binned at a temporal resolution �T
so that the objects under consideration were effectively
the spike counts (z-score normalised per neuron). These
spike counts were arranged in a N × P matrix X with
N the number of neurons and P the number of time-
bins, where due to the z-score normalisation the rows
of X had zero mean and unit variance. The eigenvalue
distribution of the corresponding auto-correlation matrix
1
PXX

T was then compared with a null distribution. This
null distribution was obtained by means of circular ran-
dom shifts [27], where for every neuron independently the
spike counts were circularly shifted by a random offset.
Thus, while correlations between neurons were destroyed,
temporal correlations for each neuron were preserved.
Iterating the circular random shifts, the null distribution
was estimated as the average eigenvalue distribution from
500 rounds, and eigenvalues exceeding the 95th percentile
of this null distribution were then assumed to be due to
correlations between neurons in the data. In particular,
the eigenvectors (principal components) corresponding to
these eigenvalues were assumed to represent the assem-
blies. These principal components were then rotated by
means of ICA [49] in 500 iterations of the fastICA algo-
rithm in order to find the ideal assembly vectors in which
every neuron’s component was interpreted as correspond-
ing to its affinity to the respective assembly. The assembly
was defined as the neurons with particularly strong affin-
ity, determined by thresholding the absolute values of the
components at two standard deviations above the mean
for that vector. Applying this method to calcium activity
data, we used �F

F as a proxy for the actual spike counts or
firing rates.

ICA-MP algorithm
Instead of using circular shifts, the significant principal
components could alternatively be estimated employing
the Marčenko-Pastur distribution [28, 50] to compare
with the observed eigenvalue distribution. TheMarčenko-
Pastur distribution is the limit of the empirical spectral
density of an auto-correlation matrix, if all its compo-
nents were independent. Hence, eigenvalues outside of the
compact support of this distribution were then assumed
to be due to correlations in the data. Computationally,
this was more efficient than estimating the null distribu-
tion from circular random shifts. However, close inspec-
tion of the assembly vectors found revealed those among
them where no neurons had a particularly large affin-
ity to the assembly, resulting in the detection of spurious
assemblies. To address this problem, we discriminated

the assembly vectors before the thresholding using a one-
sample Kolmogorov-Smirnov (KS) test on the z-scored
components at a significance level of α = 10−10 (deter-
mined empirically), and considered only those assem-
bly vectors that were rejected given the null hypothesis
of a standard normal distribution. From the remaining
assembly vectors, we reconstructed the assemblies as
before.

Promax-MP algorithm
The Promax-MP algorithm [12], similar to the ICA algo-
rithms above, aimed to detect significant correlations
between neurons using PCA, but with adaptations for cal-
cium imaging data and some further statistical tests. The
implementation, as part of a toolbox for the analysis of
calcium imaging data, is available at https://github.com/
zebrain-lab/Toolbox-Romano-et-al [51].
Instead of applying principal component analysis

directly to the calcium fluorescence signals, first a noise
model was fitted. Calcium transients which differed sig-
nificantly from this noise signal were then extracted and
the calcium signals around the significant transients were
set to 0. As above for the ICA-MP algorithm, signifi-
cant principal components of the auto-correlation matrix
were determined by means of the Marčenko-Pastur dis-
tribution but including the Tracy-Widom correction to
account for finite size effects. The significant princi-
pal components were rotated by means of the Pro-
max algorithm [52], in order to concentrate the prin-
cipal component loadings along them. Lastly, neurons
were assigned to assemblies if their z-score normalised
vector component along the respective rotated princi-
pal component exceeded a threshold determined from
the data.
Given the calcium �F

F fluorescence signals which we
obtained before, we used the algorithm in its original
implementation as a module of the toolbox [36, 51] apart
from minor adjustments in order to allow it to run unat-
tended. In particular, referring to the steps outlined by
[53], in Step 21, we set the imaging frequency to 1

�T and
the decay time constant to τ1/2

ln 2 . In Step 25, we chose the
Gaussian model to estimate the noise in the fluorescence
signal. In Step 26, we chose the dynamic threshold to esti-
mate the significance of fluorescence transients and, in
Step 28, set the minimal confidence for significance to
95%. Finally, in Step 40, we chose PCA-promax as the
clustering algorithm. In Steps 41 and 42, we automated
the choice of the zMax-cut-off value by selecting the first
local minimum of the distribution after smoothing it with
10,000 points and a half of the suggested standard band-
width. In the rare case when this unattended procedure
failed or yielded an unsatisfactory zMax-cut-off value, e.g.
when the distribution did not have a local minimum, we
made the selection manually.

https://github.com/zebrain-lab/Toolbox-Romano-et-al
https://github.com/zebrain-lab/Toolbox-Romano-et-al
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Promax-CS algorithm
In the Promax-MP algorithm, the significant principal
components were estimated employing the Marčenko-
Pastur distribution as a null model. Alternatively and
analogously to the ICA-CS algorithm, this could also be
done using circular shifts. Thus, leaving the rest of the
algorithm unchanged, we estimated the null distribution
with 500 iterations of circular shifts to estimate the null
distribution, thresholding at the 95th percentile using the
same functions as in the ICA algorithm.

SGC algorithm
The SGC algorithm [15] takes a different approach from
the algorithms described above, which are based on pair-
wise correlations between neurons. Instead, it groups
frames based on their pairwise similarity, regarding
similar frames as representations of the same assembly.
This idea is formalised in a graph-theoretic setting, in
which identifying assemblies becomes analogous to iden-
tifying community structure in a graph.
A set of (binary) activity patterns was obtained from

the calcium imaging data by thresholding the calcium �F
F

fluorescence signal for every neuron n at two standard
deviations above the mean, yielding a binary indicator sig-
nal for the units’ activity over the course of the recording.
The activity of the whole array at a time t is referred
to as the activity pattern, given by the binary N-tuple in
which every component represented the state of activity
of a neuron. When no assemblies were active (i.e. solely
in the presence of noise), these activity patterns tended to
be rather sparse. Therefore, only activity patterns with an
overall high activity potentially corresponding to assembly
events were considered. These patterns were determined
when the number of active units (i.e. coactivity level)
exceeded a significance threshold. This threshold was esti-
mated by permuting the binary signals for every neuron
independently 1000 times as the 95th percentile of the
coactivity level.
The high activity activity patterns {xτ }τ were put into

relation to each other on a graph where every edge repre-
sented similarity between the incident nodes. More pre-
cisely, distance between activity patterns was measured in
terms of the cosine-distance dcosine(x, x′) = 1 − 〈x , x′〉

‖x‖ ‖x′‖
and the graph constructed as an unweighted k-nearest-
neighbour graph. k was initially chosen to be equal to
�ln |{xτ }τ |� [32]. In the unusual event that this led to a
graph that was disconnected, k was increased in steps of 1
until the resulting graph was connected.
By construction, community structure in such a graph

corresponded to groups of activity patterns which were
more similar within each group than to other groups.
Thus, in order to extract assemblies, the community struc-
ture within the graph needed to be identified. While there
are many graph clustering algorithms, they generally all

assume some prior knowledge of the number of commu-
nities, i.e. the expected number of assemblies. To esti-
mate this number, we used a recently proposed approach
based on statistical inference methods [54, 55]. Using this
approach, a degree-corrected stochastic block model is
fitted to the observed graph and from this fit the most
likely number of communities present can be inferred.
Given this number, the graph was decomposed into its
communities using spectral clustering methods [32, 56],
in order to arrive at a clustering of the activity patterns
{{xτr }τr }r .
Every group or community {xτr }τr obtained from that

consisted of a set of similar activity patterns, and we
obtained assembly patterns by averaging over the patterns
in each group. This resulted in continuous-valued com-
ponents. Since the value for a neuron in this pattern was
1 when it was consistently active for all the patterns in a
group and 0 when it was never active, the values within
these assembly activity patterns were interpreted as the
affinity of each neuron to the pattern.
However, we found that the results could be improved

by disregarding activity patterns from averaging that were
due merely to a high level of noise. In particular, we
applied an optimisation procedure to reject certain activ-
ity patterns. Given the groups of activity patterns from
the spectral clustering, first any group which consisted
of too few activity patterns, i.e. less then 5, was rejected.
Then, assuming that every assembly was active, a com-
parable number of times, every group which was smaller
than one and a half standard deviations below the mean
was rejected. From the remaining groups, we obtained a
set of preliminary core assembly patterns by averaging the
activity patterns and binarising the resulting mean pattern
at a threshold value of s = 1

5 , α̂r = 1[s,∞[
({xτr }τr

)
, where

the bar denotes averaging and the indicator function is
applied component-wise to the average activity pattern.
Groups were then merged if the similarity between their
corresponding core assembly patterns exceeded a thresh-
old, in particular

min
( 〈α̂′ , α̂〉

‖α̂‖2 ,
〈α̂ , α̂′〉
‖α̂′‖2

)
> p

for α̂ and α̂′ two distinct core assembly patterns with
p = 2

3 . Doing this recursively gave potentially different
groups and therefore a new set of preliminary core assem-
bly patterns. The groups so far were disregarded and the
preliminary core assembly patterns defined a new set of
groups. Provided that an activity pattern x was similar
enough to one of the preliminary core assembly patterns
α̂, in the sense that the conditions

〈α̂ , x〉
‖α̂‖2 > p and

‖x‖2
‖α̂‖2 > p
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were satisfied with p = 1
2 , it was assigned to the group

defined by the most similar preliminary core assembly
pattern, otherwise it was rejected. This yielded a usually
different and smaller clustering of the activity patterns
of the form {{xτr }τr }r . These conditions ensured that at
least a fraction p of the activity pattern’s (active) neurons
overlapped with those of the preliminary core assembly
pattern and that at least a fraction p of the overall activity
in the preliminary core assembly pattern was also present
in the activity pattern.
After every activity pattern was assigned to a group

defined by one of the preliminary core assembly pat-
terns, or rejected, finally also all the activity patterns
from groups whose size was smaller than one and a
half standard deviations below the mean were rejected.
The remaining groups defined the core assembly pat-
terns, which were obtained by averaging the correspond-
ing activity patterns, αr = {xτr }τr , while the strength of
affinity of every neuron to the assembly pattern was used
to determine whether to assign the unit to an assembly by
thresholding at an affinity level s.

CORE algorithm
Similar to the SGC algorithm, the CORE algorithm [7]
also effectively groups frames on their pairwise similarity
in order to recover the assemblies. In this case, first spike
probabilities were inferred from the calcium �F

F fluores-
cence signal, applying fast, nonnegative deconvolution
[33] of every neuron separately. In order to interpret the
output as probability, it was normalised to a maximum
value of 1 for every unit. The spike probabilities were then
thresholded at three standard deviations from 0, yielding
a binary indicator signal for the units’ activity over the
course of the recording. As in the SGC algorithm, the
activity of the whole array at time t is referred to as an
activity pattern, given by a binary N-tuple, and only activ-
ity patterns with an overall high activity were considered
and determined using the same permutation test as for
SCG.
The activity patterns {xτ }τ with an overall high level of

coactivation, in that context also referred to as ensem-
bles, were then compared to each other using Pearson’s
correlation coefficient. The significance for each com-
parison was determined using a permutation test. The
ensembles were permutated independently 50,000 times
and the significance threshold was estimated as the 95th
percentile. Given an ensemble xτ and with [xτ ] being the
set of ensembles which are significantly similar to xτ ,
the corresponding core ensemble was defined as x̂τ =
1[s,∞[

(
[ xτ ]

)
with a threshold value of s = 1

2 . While s = 1
in the original description of the algorithm, we found this
to be too restrictive, as the core ensembles turned out to
be very sparse or even empty.

At this stage, we found that the set of core ensem-
bles contained groups of highly similar frames, so in a
final step, we clustered these core ensembles. We used
k-means clustering with distance between any two core
ensembles given by the Hamming distance. In particu-
lar, we chose the optimal number of clusters k which
yielded the maximal Silhouette coefficient [57] in 1000
rounds of k-means clustering and obtained the final
clustering after another 1000 rounds of k-means clus-
tering for the optimal number of clusters k and opti-
mising the Silhouette coefficient as {{x̂τr }τr }r . The core
ensemble pattern were then defined as αr = {xτr }τr ,
while the strength of affinity of every neuron to the
pattern was used to determine whether to assign the
unit to an assembly by thresholding at an affinity
level s.

SVD algorithm
For the SVD algorithm [31], we used the recent imple-
mentation available at https://github.com/hanshuting/
SVDEnsemble [58]. Here one starts by transforming the
calcium �F

F fluorescence signal into a binary signal. As in
the CORE algorithm spike probabilities were first inferred
by applying fast, nonnegative deconvolution [33], and
these probabilities were then thresholded. Only activity
patterns with an overall high activity were considered. The
threshold was determined using the 99th percentile of the
same permutation test.
The activity patterns {xτ }τ with an overall high level

of coactivation were then normalised according to a
term frequency-inverse document frequency (TF-IDF)
algorithm in order to find the most relevant neu-
rons. In that sense, the TF-IDF was a measure of
importance of a specific neuron to the activity of the
whole population. The TF-IDF-normalised activity pat-
terns {x̂τ }τ gave rise to a matrix

(
scosine(x̂τ , x̂τ ′)

)
τ ,τ ′ ,

the similarity map in terms of the cosine similarity
scosine(x, x′) = 〈x , x′〉

‖x‖ ‖x′‖ .
This matrix of similarity between activity patterns was

transformed into a binary matrix and the threshold was
determined by a permutation test as the 98th percentile
from 20 permutations. Afterwards, the binary similarity
map was once more transformed into a matrix which held
the pairwise similarities between columns (or rows) of
the binary similarity map in terms of the Jaccard index
and which was again thresholded using a permutation
test. In order to identify the neuronal ensembles, a sin-
gular decomposition was obtained for this matrix and
the number of significant singular values was inferred
from the singular values above the chance level. Finally,
the composition of the assemblies was determined from
the activity patterns corresponding to every significant
singular vector.

https://github.com/hanshuting/SVDEnsemble
https://github.com/hanshuting/SVDEnsemble
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FIM-X algorithm
For this algorithm [29, 30], we used the implementa-
tion available at http://www.borgelt.net/python/psf+psr.
zip [59]. Given the identity of every neuron which is
active at every point in time, the technique of fre-
quent item set mining [60, 61] was applied to find
every item set of neurons which was frequent with
a level smin, which were then considered candidates
for assemblies. Closed frequent item sets only were
considered.
In order to exclude item sets that were frequent sim-

ply by chance, shuffled datasets were analysed which were
generated from the original data with the intention of pre-
serving all essential features of the data, while destroying
any synchrony. Applying frequent item set mining to these
surrogates, all frequent item sets or rather their signatures
were collected. An item set’s signature was its support,
i.e. the number of instances where it appeared, together
with its size. The signatures frommany surrogate datasets
were then used to discriminate informative frequent item
sets in the original data from the rest by disregarding any
frequent item set whose signature also appeared in the
surrogate datasets (“pattern spectrum filtering” – PSF).
The rationale for doing so was that any frequent item set,
whose signature also occurred in surrogates, where syn-
chrony was destroyed so that items could be essentially
regarded as independent, cannot be informative in iden-
tifying an assembly. Finally, the remaining class of closed
frequent item sets was statistically analysed (“pattern set
reduction”—PSR). A pair of closed frequent item sets,
where one is a subset of the other, was assessed for the
conditional significance of one given that the other repre-
sents an assembly, and vice versa, in order to arrive at a
class of item sets which were pairwise mutually significant
when conditioned on each other. This class was then taken
to represent the assemblies underlying the original data.
We applied this algorithm to the binary activity patterns

which we obtained from thresholding every neuron’s �F
F

fluorescence signal at two standard deviations above its
mean. In particular, we used the implementation utilising
frequent item set mining on discrete time data as opposed
to its generalisation to continuous time data.While always
considering only closed frequent item sets, we set the
frequency threshold to smin = 6. We generated 1000 sur-
rogate datasets using the method of permutation by pair
swaps and used the covered-spike criterion (zA − 1)cA :
(zB − 1)cB for the pattern set reduction.

Measuring performance using Best Match score
While several measures have been proposed to eval-
uate the “difference” between two clusterings A ={
A1, . . .A|A|

}
and A′ =

{
A′
1, . . .A′

|A′|
}
, the elements

of every clustering were usually assumed to be pairwise
non-intersecting [37, 62]. Hence, since in our simulated

calcium activity we explicitly allowed for the possibil-
ity of overlapping assemblies, we measured differences of
clusterings in terms of a “Best Match” distance [37], which
was defined as

BestMatchd(A,A′) =
∑

A∈A
min
A′∈A′ d(A,A′)

+
∑

A′∈A′
min
A∈A d(A′,A),

with the set difference measure d(A,A′) = 1 − |A∩A′|
|A∪A′| to

measure the difference between two clusters A and A′ (as
before,A∪A′ andA∩A′ denote the union and intersection
of A and A′, and | · | for a set its cardinality). From that we
defined the Best Match score as

BestMatchd − score
(
A,A′)

= 1 − 1
|A| + |A′|BestMatchd

(
A,A′)

to quantify the similarity between two clusterings.
To interpret the Best Match score, we needed to identify

its chance level, i.e. the values expected when comparing
two random clusterings. Therefore, we assumed a popu-
lation of size N and two independent random variables
A and A′ which took values uniformly in the subsets of
{1, . . .N} with NA and NA′ elements respectively, where
NA and NA′ are random variables independent of each
other and ofA andA′. Then, since the number of elements
in the intersection of A and A′ is hypergeometrically
distributed, |A ∩ A′‖NA,NA′ ∼ HypergeomN ;NA,NA′ , we
obtained

P[ d
(
A,A′) = u]=

N∑
nA,nA′=1

P[NA = nA]P[NA′ = nA′ ]

×HypergeomN ;nA,nA′

(
(nA + nA′)

(
1 − u
2 − u

))
.

If we assumed a collection A′ of independent and iden-
tically distributed copies of A′, we had

P

[
min
A′∈A′ d

(
A,A′) = u

]
=P[ d

(
A,A′) ≥ u]|A′|

− P[ d
(
A,A′) > u]|A′|

so that, by the linearity of the expectation,

E[ BestMatchd − score(A,A′)]= 1 − 1
|A| + |A′|

×
(

|A|E
[
min
A′∈A′ d(A,A′)

]
+ |A′|E

[
min
A∈A

d(A′,A)

])
,

where E
[
minA′∈A′ d

(
A,A′)] could be computed

from its distribution given above, as well as also
E

[
minA∈A d

(
A′,A

)]
after reversing the roles of A and A′.

Since the Best Match score compared two clustering as
a whole, it reported low similarity even if one clustering
was essentially a subset of the other. Thus, given a ref-
erence clustering A we were interested in the “optimal

http://www.borgelt.net/python/psf+psr.zip
http://www.borgelt.net/python/psf+psr.zip
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Best Match score” as the Best Match score between this
clustering and some sub-clustering of A′, provided that
the latter was a larger clustering. Following a greedy
algorithm, we extracted such a sub-clustering iteratively,
selecting in every round pairs (A,A′) from A × A′ such
that the choice was optimal in the sense that the distance
between the two sets was minimal. More precisely, in the
rth round the pair selected was

(
Ar ,A′

r
) = argmin

(A,A′)∈(A\{A1,...Ar−1})×
(
A′\{A′

1,...A
′
r−1}

)d
(
A,A′).

In case this choice was not unique, a pair was
selected randomly among those satisfying the require-
ments. This iterative procedure terminated after round
R = min

(|A|, |A′|) and the optimal sub-clustering of A′
relative to A was given as A′∗ = {

A′
1, . . .A′

R
}
. Thus we

defined the optimal Best Match score between A and A′
as the Best Match score betweenA andA′∗.
Although A′∗ was introduced as the optimal sub-

clustering, it does not necessarily satisfy the relation that
BestMatchd−score(A,A′) ≤ BestMatchd−score(A,A′∗),
due to the normalisation factor. However, in practice the
optimal sub-clusteringA′∗ provided in most cases a better
match with respect toA thanA′.

Computational procedures
All simulations and analysis was performed on two
of The University of Queensland’s high-performance
computing clusters. For every parameter variation, 400
datasets of surrogate calcium imaging data were simu-
lated and analysed. The implementation was predomi-
nately done in MATLAB (MathWorks) and is available as
a GitHub repository, at https://github.com/GoodhillLab/
neural-assembly-detection.
The benchmark measurements were all conducted on a

cluster where each computing node was a Dell EMC Pow-
erEdge R740 server comprised of 2 Intel Xeon Gold 6132
processors with 14 cores at a base frequency of 2.60 GHz
each, 384 GB DDR4 RAM, and 1.6 TB Dell EMC NVMe
flash strorage. The benchmark measurements were allo-
cated 1 CPU core and 16 GB of RAM each and output was
written to the flash storage.

Experimental procedures
All procedures were performed with approval from
The University of Queensland Animal Ethics Commit-
tee. Nacre zebrafish (Danio rerio) embryos expressing
elavl3:H2B-GCaMP6s of either sex were collected and
raised according to established procedures [63] and kept
under a 14/10 h on/off light cycle. Larvae were fed rotifers
(Brachionus plicatilis) from 5 dpf (days postfertilization).
Nine dpf zebrafish larvae were embedded in 2% low-
melting point agarose in E3 embryo medium in a 35 mm
plastic petri dish and the agarose was overlaid with E3.

Calcium imaging was performed at a depth of 60 μm
from the dorsal surface of the tectal midline using a Zeiss
LSM 710 2-photon microscope equipped with a Zeiss
40×/1.0 NA water-dipping objective. The sample was
excited via a Spectra-PhysicsMai Tai DeepSee Ti:Sapphire
laser (Spectra-Physics) at an excitation wavelength of
940 nm and sampled at 2.2 Hz.
Visual stimuli were generated using MATLAB (Math-

Works) and the Psychophysics Toolbox, and consisted of
6-degree-wide black spots at 11 different azimuth posi-
tions, which were presented for 1 s each, followed by 15 s
of blank screen to allow calcium signals to return to base-
line levels. Eleven spots trials were presented 20 times
with 25 s of inter-trial interval. 90° azimuth was defined as
being orthogonal to the body axis at the eye. Visual stimuli
were projected onto the wall of the dish using an Optoma
PK302 mini-projector and covered 150° of the visual field,
from 15° to 165°. To synchronise image acquisition and
the delivery of visual stimuli, we used a NA-USB-6501 I/O
TTL device. Subsequent image processing and extraction
of neural activity was performed as in [15].

Estimation of a reference assembly configuration
Given the knowledge about the stimulus presentation
times, we reconstructed the underlying, stimulus-evoked
reference assembly configuration by examining the aver-
age population response to every stimulus presentation. In
particular, we obtained the average population response
for every stimulus by averaging the amplitude of neu-
ral traces in frames 3–7 after each stimulus onset. We
then considered a neuron as part of the correspond-
ing stimulus-evoked assembly if its average fluorescence
exceeded p standard deviation from the mean across aver-
age responses to all stimuli. This defined the pth reference
assembly configuration.

Additional files

Additional file 1: Performance as a function of assembly overlap and the
saturation constant. Graphing conventions as in Fig. 3. A, B: Varying the
assembly overlap. With increasing overlap, CORE detects a decreasing
number of assemblies, while for ICA-CS, ICA-MP and Promax-CS this is only
a slight decrease and, consequently, their performance decreased. SGC,
Promax-MP and FIM-X detected a constant number of assemblies, but
Promax-MP and FIM-X overestimated the number of assemblies. C, D:
Varying the saturation constant κ . For all algorithms the number of
detected assemblies and the overall performance was approximately
constant. (PDF 231 kb)

Additional file 2: Optimal performance (Optimal Best Match score) as a
function of all the varied parameters. Graphing conventions as in Fig. 3 for
the performance graphs.A: Varying the size of the neural array (cf. Fig. 3a, b).
ICA-CS, ICA-MP and SGC showed good optimal performance. The optimal
performance of all algorithms was approximately constant. B: Varying the
number of embedded assemblies (cf. Fig. 3c, d). ICA-CS, ICA-MP and SGC
showed good optimal performance. When increasing the number of
assemblies, Promax-CS showed an increase in optimal performance. The
optimal performance of all other algorithms was approximately constant.

https://github.com/GoodhillLab/neural-assembly-detection
https://github.com/GoodhillLab/neural-assembly-detection
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C: Varying the assembly sizes (cf. Fig. 3e, f). When increasing the assembly
size, the optimal performance of ICA-CS, ICA-MP, SGC and CORE increased
to good performance. While Promax-MP showed good optimal
performance for small assembly sizes, Promax-CS showed it over the whole
range. D: Varying the assembly overlap (cf. Additional file 1: Figure S1A,B).
When increasing the overlap, the optimal performance of all algorithms
except SGC decreased. E: Varying the simulation duration T (cf. Fig. 4a, b).
With increasing T, the performance of ICA-CS, ICA-MP, SGC and Promax-CS
increased to good optimal performance beyond T = 1800s. F: Varying the
temporal resolution �T (cf. Fig. 4c, d). ICA-CS, ICA-MP, Promax-CS and SGC
showed good optimal performance. The optimal performance of all
algorithms was approximately constant. G: Varying the calcium indicator
half-life τ 1

2
(cf. Fig. 4e, f). With increasing τ 1

2
, all algorithms showed a

decrease in optimal performance. ICA-CS, ICA-MP, SGC and Promax-CS
showed good optimal performance. H: Varying the event frequency f ∗ (cf.
Fig. 5a, b). With increasing f ∗ , the optimal performance of all algorithms
increased. ICA-CS, ICA-MP, SGC and Promax-CS reached good optimal
performance at large f ∗ . I: Varying the event firing rate multiplier λ (cf.
Fig. 5c, d). With increasing λ, the performance of ICA-CS, ICA-MP, SGC,
Promax-MP, Promax-CS and FIM-X increased and reached good optimal
performance at large λ. After an initial increase the performance of CORE
decreased towards large λ. J: Varying the standard deviation σ of the
Gaussian noise (cf. Fig. 5e, f). With increasing σ , the optimal performance of
every algorithm decreased. For noise levels beyond σ = 3 neither Promax-
MP or Promax-CS yielded any results as they were not able to fit the noise
model to the data. K: Varying the saturation constant κ (cf. Fig. S1c, d).
ICA-CS, ICA-MP and SGC showed good optimal performance. The optimal
performance of all algorithms was approximately constant. (PDF 561 kb)

Additional file 3: Performance as a function of the simulation duration
and event frequency, rescaled in terms of the average number of
activations per assembly. Graphing conventions as in Fig. 3. A, B: Varying
the simulation duration T (cf. Fig. 4a, b), rescaled as varying the average
number of activations per assembly. C, D: Varying the event frequency f ∗
(cf. Fig. 5a, b), rescaled as varying the average number of activations per
assembly. Notably variations in the simulation duration yield slightly
different results than variations in the event frequency. (PDF 219 kb)

Additional file 4: Assembly detection performance for the estimated
reference assembly configuration. The performance of the different
algorithms as a function of the parameter p of the reference assembly
configuration. For most values of p SGC performed best, apart from large
values of p where all algorithms performed poorly. (PDF 80.7 kb)

Additional file 5: Runtime (walltime) as a function of the size of the
neural array and the simulation duration. In every graph and for every
algorithm the mean is depicted by a solid line together with the region of
one standard deviation above and below. The measurements were
conducted on a high performance computing cluster, where for the
analysis of every dataset 1 CPU core and 16 GB of RAM were allocated and
output was written to the flash storage. The relative runtime for every
algorithm was computed relative to the runtime at the default parameters
(cf. Table. 1). A, B: Varying the size of the neural array. C, D: Varying the
simulation duration T. (PDF 189 kb)
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