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Abstract

Background: Decisions in the cell that lead to its ultimate fate are important for fundamental cellular functions
such as proliferation, growth, differentiation, development, and death. These cell fate decisions can be influenced
by both the gene regulatory network and also environmental factors and can be modeled using simple gene
feedback circuits. Negative auto-regulation is a common feedback motif in the gene circuits. It can act to reduce
gene expression noise or induce oscillatory expression and is thought to lead to only one cell fate. Here, we
present experimental and modeling data to suggest that a self-repressor circuit can lead to two cell fates under
specific conditions.

Results: We show that the introduction of inducers capable of binding and unbinding to a self-repressing gene
product (protein), thus regulating the associated gene, can lead to the emergence of two cell states. We suggest
that the inducers can alter the effective regulatory binding and unbinding speed of the self-repressor regulatory
protein to its destination DNA without changing the gene itself. The corresponding simulation results are
consistent with the experimental findings. We propose physical and quantitative explanations for the origin
of the two phenotypic cell fates.

Conclusions: Our results suggest a mechanism for the emergence of multiple cell fates. This may explain the
heterogeneity often observed among cell states, while illustrating that altering gene regulation strength can
influence cell fates and their decision-making processes without genetic changes.
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Background

Uncovering the origin of the phenotypes or fates of the
cell and their associated switching is important for the
full understanding of cell functions such as proliferation,
growth, differentiation, development, and death. This re-
mains a challenging issue in biology. It is clear that the
underlying gene regulatory networks are crucial in deter-
mining the function of the cell [1-6]. Usually, pheno-
types of organisms or cells can be determined and are
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measurable. A phenotype is often thought to be deter-
mined by the genotype in the conventional perspective
[7-11]. Recently, some studies have indicated that mi-
croenvironments or epigenetics can also alter the fates
of the cell or its phenotypes even with the same geno-
types [12-21]. In other words, there is a possibility that
apart from mutating the genes or the nodes themselves
in the gene circuit, changing the underlying gene regula-
tory wirings among the genes or nodes in the regulatory
network can alter the cell phenotypes or fates. In this
study, we aim to study how altering gene regulation de-
termines cell fates.

Negative auto-regulation is abundant: it is found in
nearly 50% of the feedback loops in gene regulatory net-
works. It is widely believed that negative auto-regulation
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leads to a reduction of the gene expression noise, an in-
crease of gene response times, an induction of possible
oscillatory gene expression, and an improvement of the
stability of proteins produced by the underlying gene
networks [22-26]. Despite these novel findings, most ex-
perimental studies have been focused on the influences
of the genetic structures themselves, rather than the
environmental or the epigenetic effects on the self-
repressor.

For a self-repressing system, the expression distribu-
tion is commonly more concentrated and well-
distributed as a unimodal distribution [27]. Many previ-
ous investigations have reached similar conclusions, ob-
serving only one cell fate [25, 28-30]. However, these
experiments were performed mostly in simple organisms
such as bacteria, for which it is often assumed that the
speed of regulatory protein binding/unbinding to the
corresponding DNA for switching is significantly faster
than the synthesis and degradation of the corresponding
regulatory proteins. In fact, in most organisms, cell com-
plexes such as the nuclei inside mammalian cells may
give rise to effectively slower processes of the underlying
gene regulatory binding/unbinding, due to environmen-
tal complexities such as epigenetic effects through his-
tone modification or DNA methylation. That is, the
effective rates of binding/unbinding of the regulatory
proteins to the DNA can be comparable to, or even
slower than, the production and degradation rate of the
regulatory proteins [31]. Modeling studies [32-34] indi-
cate that, in this case, the protein expressions of a nega-
tive feedback loop motif may not always show a simple
single steady state, but instead can show two steady
states, resulting in two different cell fates. Since the
auto-regulation circuit involves only a single gene, it is
the simplest gene regulation in vivo. We will show ex-
perimentally that this simple gene auto-regulation circuit
can lead to different cell fates or phenotypes under spe-
cific conditions, rather than that of only one cell fate as
is commonly expected.

Results

Self-repressing gene circuit and non-regulatory gene
circuit

In this study, we have designed and constructed a purely
negative auto-regulation feedback loop circuit (self-
repressing gene circuit) in Escherichia coli (E. coli). The
Ptet promoter including two TetO operons controls the
production of its repressor, TetR. Meanwhile, the TetR
was fused with a fluorescence protein (Venus) for ex-
perimental measurements of the TetR expressions. The
inducer, aTc (anhydrotetracycline), was introduced to
regulate expressions of the self-repression system. In the
presence of an inducer, the repressor TetR can change
its conformation and dissociate from specific binding
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sequences of the DNA (TetO). This allows for the tran-
scription of TetR-Venus (Fig. 1a). In order to avoid fluc-
tuations in copy numbers of the plasmids, the
constructed circuit in the plasmid was integrated into
the chromosome of E. coli. We also constructed a series
of self-repressing circuits with different affinities to the
TetR protein (MG::PR-WT, MG::PR-1G) (Additional file 1:
Figure S2). We chose MG::PR-8 T as the main circuit of
this study for its stability and bimodal behavior. To com-
pare this with our self-repressing circuit construction
MG:PR-8 T, we designed a non-regulatory circuit as a
control group: the MG::PR-8 T-P39K circuit (Fig. 1b).

The expression distributions of the self-repressor gene
circuit under microscopy

To obtain the expressions of TetR under different induc-
tion conditions, we measured the average fluorescence
signals of the reporter protein Venus for the strain of
MG::PR-8 T at different inducer concentrations (300—
1500 ng/mL) across cell populations using a wide-field
fluorescence microscope. Cells were collected and mea-
sured after being cultured in M9 medium and induced
by aTc for 4~6h to a logarithmic phase. To ensure ac-
curacy of the expression distribution, we collected no
less than 10® cells to measure for each sample. All ex-
pression distributions under different induction concen-
trations are shown in Fig. 2. The results indicate that
TetR expression distributions vary with inducer (aTc)
concentrations. Under low inducer concentrations, the
expression levels of the negative regulated gene circuit
were quite low, and this gene can be considered to be in
the “off” state for a long time. With increased inducer
concentrations, the expression levels were significantly
enhanced (Fig. 2a). From the results shown in the micro-
scope, we can clearly see that when inducers are added
to the system, the repressor TetR can no longer prevent
the transcription of TetR. When the inducer concentra-
tions are high enough (such as 1400 ng/mL and 1500
ng/mL), the steady state expression distribution can be-
come bimodal, with two states of low and high expres-
sion levels. Meanwhile, the percentage of the cells in the
low expression state gradually increases with the in-
crease of the inducer concentrations (Fig. 2a). Under
high inducer concentrations, the coexistence of both
phenotypes characterized by the bimodal steady state
distributions of the fluorescence intensities can be
clearly seen (Fig. 2e). When we further compare the im-
ages in Fig. 2d and e, it is clear to see that one section of
the cells in Fig. 2e is brighter, while other sections were
dimmer, compared to most of the cells in Fig. 2d. As can
be seen from the microscopy images, the morphologies
of the bacteria cells are not influenced by the aTc in-
ducers at a concentration level of 1500 ng/mL (Fig. 2e).
The corresponding distributions of those images are
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Fig. 1 Schematic illustrations of the self-repressing gene circuit (MG:PR-8 T) and the non-self-repressing gene circuit (MG:PR-8 T-P39K). a Two tet
operator sequences (TetO,) inserted downstream of the Ptet promoter are bound by TetR self-repressor dimers. In the absence of aTc (the inducers),
TetR-Venus dimers bind to the operators. This interaction prevents the binding of RNA polymerase, thereby inhibiting the TetR-Venus fusion protein
synthesis. When aTc diffuse into the cell, they bind to TetR, inducing an allosteric conformational change in the repressor protein which releases it
from DNA, allowing for the possibility of the gene being switched into the “on” state. All of these constitute a self-repressing gene circuit. b The TetR-
P39K mutant is not capable of recognizing the operators and is unable to repress the TetR-Venus expression, constituting a non-self-repression
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given in Fig. 2a. It is important to note that cells grow
normally (cell cycle 40-60 min) and have normal cell
morphology even at high concentration of aTc (Fig. 4b,
Additional file 1: Figure S8). Therefore, at this high aTc
concentration, there seems no significant cytotoxicity on
cells. In our control experiments, two state behaviors are
not found in the strain of MG::PR-8 T-P39K with non-
self-repressing gene circuit under the same conditions
(Additional file 1: Figure S3, Additional file 1: Figure S7).
This indicates that the two expression states of TetR
were due to the self-repressing circuit, rather than other
factors such as the influences of the inducers on the cell
growth and ribosomal effects. Meanwhile, the other two
strains of MG:PR-WT and MG::PR-1G even with self-
repressing gene circuit displayed only single peak distribu-
tions (Additional file 1: Figure S3). These results suggested
that the two states appear only under certain specific con-
ditions. This might explain why previous studies did not
see bimodality on negative auto-regulation system.

Fano factor and inhibition curve

To further understand our experimental observations,
we need to quantify the degrees of fluctuations. This can
be measured by the Fano factor quantified as the

variance of the observable (molecular number in the
cell) divided by the mean value [35]. The Fano factor
is equal to one (F=1) if the distribution of the ob-
servable (the molecular number) is exactly Poisson. A
large Fano factor implies significant statistical fluctua-
tions deviating from Poisson. As the concentration of
inducers increases, the Fano factor increases (Fig. 3a).
When the concentration of inducer reached 1300 ng/
mL, the change of Fano factor is more significant.
Qualitatively, the Poisson distribution should be a
good approximation for the individual “on” and “off”
states when the observed distribution of fluorescence
intensity is bimodal, because each gene state can pro-
duce proteins almost independently of gene switching.
However, the overall Fano factor for the combined
probability distribution of “on” and “off” states is
much larger than the case of the zero or smaller in-
ducer concentration. This is because the system is
close to a two-peak (non-Poisson) distribution with
different means summed together, producing large
statistical fluctuations deviating from the single Pois-
son distribution. This indicates that two Poisson pro-
cesses added together will not lead to a Poisson
distribution. In this study, we measured the Fano
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Fig. 2 Experimental expression distributions of the self-repressing gene circuit (MG:PR-8 T) at different aTc concentrations observed under a
microscope. a In M9 media with the inducer concentrations ranging from 300 to 1500 ng/mL of aTc, the resulting steady state fluorescence
distributions show that the ratio of the populations of the bimodal fluorescence distributions depend on the aTc concentration. Seven color
histograms represent different inducer concentrations. b—e Four representative fluorescence images at different concentrations of aTc (300, 700,
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factor quantified as the variance of the fluorescence observ-
able (proportional to the molecular number) divided by the
mean value to quantify the relative degree of the variance
or fluctuations. In other words, the phenotypic noise
strength, defined as the quantity 8%/, is a measure of the
spread of expression levels in a population. Here we point
out that even when the underlying population obeys the

Poisson distribution, the fluorescence observable which is
proportional to the population size may not have a Fano
factor equal to one. It is worth emphasizing here that we
care more about the trend or the changes of the Fano factor
upon inducer concentrations rather than the absolute
values here. This can help us to understand the degree of
the spread or fluctuations in protein expression distribution
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Fig. 3 The Fano factor curves and the probability of inhibition curves of the self-repressing gene circuit. a Dose-response of the Fano factor
(F = 0°/u) of the TetR-Venus expression for the self-repressing gene circuit (MG:PR-8T) at different inducer concentrations. The Fano factor is
defined as 0?/u, where ¢ and i are the variance and the mean of the probability distribution. b The probability of inhibition curves of the
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MG:PR-8 T circuit at different inducer concentrations. Seven color histograms represent different inducer concentrations. The inhibition curves
were obtained by the ratio of the cells with a fluorescence intensity lower than a certain value to the number of the total samples. ¢ The
probability distribution of the TetR proteins for the circuit of MG:PR-8 T with different concentrations of inducers from the stochastic simulation
model. P(n) (z axis) represents the probability distribution of the TetR protein numbers (x axis), n at different numbers of inducer (aTc) molecules
(y axis). d The probability of inhibition curves of the model. The cumulative distribution functions of the simulation were obtained from Fig. 3c.

Seven color histograms represent different inducer concentrations

upon inducer concentrations. The analysis of the coefficient
of variation (CV) in Additional file 1: Figure S6 also illus-
trates this same conclusion.

Furthermore, we investigated the inhibition curve,
which describes the proportion of the bacteria with a
fluorescence intensity lower than a certain value
(Fig. 3b). We can see that the proportion of the gene in
its inhibited state first decreases at low concentrations of
inducer (up to alc concentration at 1200 ng/mL) and
then increases as the inducer concentration becomes
higher. More inducers introduce more interactions with
the TetR molecules. This leads to a reduction in the
number of free TetR (Additional file 1: Figure S15), and
also slows down the effective binding and unbinding of
the TetR to the DNA (Details in Additional file 1: SI on
page 10). The reduction of the binding rate will lead to
the decrease of inhibition capability, and the decrease of

unbinding rate will lead to the increase of inhibition cap-
ability. When the concentration of inducer aTc is low
(higher free TetR concentration), the binding rate has a
greater influence (dimer with square dependence on the
free TetR concentration) on the overall inhibition cap-
ability than the unbinding rate (linear dependence on
the free TetR concentration [43-52]). Therefore, at low
inducer concentrations, when the inducer concentration
increases (up to aTc concentration at 1200 ng/mL), the
free TetR concentration decreases. This leads to the re-
duction of the binding rate. Since binding has square de-
pendence on the free TetR concentration and unbinding
has linear dependence on the free TetR concentration,
the binding has more significant influence than un-
binding on inhibition capability at relatively low aTc
concentration, i.e., relatively high free TetR concentra-
tions. Therefore, the reduction of the binding leads to
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the decrease of the inhibition probability at this in-
ducer concentration range (up to aTc concentration at
1200 ng/mL).

At certain concentrations of inducer aTc (1200 ng/
mL), the binding rate and unbinding rate have the same
effect on the inhibition capability. If the concentration of
the inducer further increases (at this concentration
range of aTc 1200-1500 ng/mL), the unbinding rate will
have a greater influence on the inhibition capability, that
is, the inhibition capability will increase as the inducer
concentration increases. This is because unbinding has
linear dependence on the free TetR concentration and
binding has square dependence on the free TetR concen-
tration; the unbinding has more significant influence
than binding on inhibition capability at relatively high
inducer concentration, i.e., at relatively low free TetR
concentrations. At extremely high aTc concentrations
(beyond 1900 ng/mL), the toxicity from aTc as antibac-
terial agent to the cells becomes effective. It is therefore
not feasible to observe the healthy cell expression distri-
bution at this extremely high concentration of aTc.

The dynamics of TetR expression in real time

We have seen that the self-repressing circuit can give a
bimodal distribution. In order to further explore the
underlying mechanism of this behavior, we monitored
the dynamics of TetR expression in real time. We
tracked cells during their growth and division on a
microscope with a FCS2 (Focht Chamber System 2,
Bioptechs) system which provides aTc continuously to
guarantee the cells growing in the right environments
(continuous flow of adequate nutrients from fresh
medium (M9) through the cells on agarose pad) and
avoids potential issue of heterogeneity of the environ-
ments. As shown in Fig. 4b, upon aTc induction, two
types of cell responses were observed: the fluorescence
intensity either changed significantly or almost remained
the same. When we track cells in real time, we can see
that, some cells switch between bright and dim, while
other cells stay with similar brightness (Fig. 4b). The
resulting fluorescence distribution is thus bimodal and a
fluorescence threshold can be defined for each cell in its
most probable induction state. The use of a microfluidic
device, coupled with cell tracking and fluorescence mea-
surements, allows us to generate fluorescence trajector-
ies for a single cell on reasonable time scales (~ 300 min)
for a single trajectory. Based on this, we collected 28
micro-colony movies and chose 163 fluorescence tra-
jectories. We observed that the trajectories of a
single-cell fluorescence fluctuated significantly. We
collected about 8200 fluorescence intensity data points
corresponding to the selected trajectories. Several repre-
sentative trajectories with significant fluctuations were
shown to demonstrate the existence of two states (From
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Fig. 4a, b, Additional file 1: Figure S8, Additional file 2:
Movie S1, Additional file 3: Movie S2 and Additional
file 4: Movie S3).

Two cell state identifications by hidden Markov chain
modeling

In order to explore the underlying mechanism of the bi-
modality, we collected the statistics of the fluorescence
intensity obtained from the trajectories. As expected, the
distribution of these intensities exhibits two peaks,
which is similar to the results in Fig. 2a. Here, it is im-
portant to note that, due to the different growth condi-
tions of the cells between the steady state and time-lapse
experiments, there should be certain differences on the
expression distribution curve. However, the images taken
under both steady state and time-lapse experiments
show two group of cells (bright and dim cells) (Fig. 2e
and Fig. 4b). This indicates that the two peaks should
come from the two groups of the cells on both experi-
ments. Therefore, we believe that the two state popula-
tions uncovered from the single-cell trajectories are the
same two state populations uncovered in the steady state
experiments. The emergence of the two peaks suggests
that most of the initial cells are either in a high expres-
sion state or in a low expression state in their progeny.
We then used a Hidden Markov Chain Model (HMM)
[36] to fit the real-time trajectories and identify the cell
states and then simulate the distribution of the fluor-
escence intensity (Fig. 4c). To assign protein expres-
sion states and the rates of inter-conversion between
them, we performed data fitting using the HMM.
From the HMM analysis, we obtained a correlation
coefficient of 0.975 between the measured and simu-
lated trajectories after identifying the cell states and
quantifying their switching rates. The simulated distri-
bution fits with the measured distribution well. From
the HMM analysis, we further determined the center
positions of the peaks to be at 2.690 and at 2.933 in
logarithm of fluorescence intensity. The variances of
the individual peak distributions are at 0.085 and at
0.080, respectively. For our system, the probability in
the high expression state is around 0.401, and we can
also see that the probability in the low expression
state is around 0.599.

In the high expression state, the system will continue
its behavior with a probability of 0.963 (the switching or
residence time will be discussed in the next section).
There is a small chance, with the probability of 0.037, to
switch to the low expression state from the high expres-
sion state. Meanwhile, there is additionally a probability
of 0.023 that the system will switch to the high expres-
sion state from the low expression state, instead of
remaining in the low expression state.
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Fig. 4 The mean fluorescence intensity distribution of the dynamical trajectories for MG:PR-8 T. Single-cell mean fluorescence intensities were
captured every 5 min. 28 micro-colonies were tracked by time-lapse microscopy. a Three representative single cell fluorescence trajectories
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induced by 1500 ng/mL aTc. Points represent experimental fluorescence values. Red vertical dashed lines demarcate cell divisions. b The bright
field and fluorescent field images of the corresponding measurements in the time-lapse experiment. The cells corresponding to the fluorescence
trajectory in Fig. 4a are marked with red circles. The average of bacteria mean fluorescence intensity is 556, and the average cell cycle time is 46
min in this micro-colony. ¢ The histogram gives the intensity distribution of the 163 single-cell fluorescence trajectories induced at 1500 ng/mL

aTc collected from the time-lapse experiments. The red solid curve is the fitted intensity distribution from HMM

The average residence times of the protein expression
states

To estimate the average residence times of the protein
expression state, we distinguished the states from the
trajectories using HMM analysis and calculated the resi-
dence times of each state (Additional file 1: Figure S11).
For each trajectory, we counted the total residence times
and the number of the state changes. The average

residence times were calculated as the quotient of the
total residence times and the number of states changed.
The length of the test fluorescence trajectory is finite
and limited. This may lead to some errors in estimating
the transition times. We take this into account in deter-
mining the time scale of the transitions (SI P8-P9). The
average residence time of the high expression state is es-
timated to be about 92~103 min, and that of the low
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expression state is estimated to be about 151~182 min.
The average residence time can be used to quantify the
switching time between two cell fates. Therefore, the
switching time from high (low) expression to low (high)
expression can be estimated to be about 92~103
(151~182) min. Through fluctuations, the bimodal dis-
tribution can be maintained in a dynamic balance be-
tween the high expression “on” state and the low
expression “off” state. When the inducer concentration
is fixed, the increasing number of proteins will promote
the inhibition probability of gene switching. Therefore,
the cells in the high expression state will have a ten-
dency to migrate to the low expression state. Conversely,
the cells with low expressions will be more likely to
move towards the “on” state. Therefore, the cells in the
low expression state will also have a tendency to migrate
to the high expression state.

Physical origin of the two cell fates

Intuitively, from a molecular perspective, we know that
the transcription process is suppressed when the pro-
moter site of the DNA is occupied by a repressor (the
gene is “off”) and enhanced when the repressor is disso-
ciated from DNA (the gene is “on”).

According theoretical studies [32], when the binding/
unbinding is much faster relative to the synthesis/deg-
radation, the gene regulatory network is under adiabatic
limit. In this case, the “on” and “off’ of gene states
switch rapidly, but the protein molecules synthesize or
degrade much slower in this self-repressor circuit.
Therefore, the expression of the protein and associated
gene are strongly coupled together. As soon as the pro-
teins are synthesized, they will immediately bind to the
gene. Therefore, the protein is always repressed (self-re-
pressor) and the protein expression displays a single
peak at the long time scale. When the binding/unbind-
ing is lower or comparable relative to the synthesis/deg-
radation, the gene regulatory network is in non-adiabatic
limit. In this case, the gene state changes slowly. After
the proteins are synthesized, they will take certain
amount of time for binding. During this period of time,
the gene state can be on without binding while after this
time the gene will be off due to the protein binding to
the gene. Therefore, there is a fraction of time the gene
is in on and off state. This leads to the emergence of the
protein distribution with two distinct peaks showing two
different gene states.

Although we did not directly measure the binding/un-
binding rate of TetR, recent single-molecule experiments
[43-52], using force spectroscopy, fluorescence micros-
copy, and analog computation have determined the un-
binding rate of some proteins bound to the DNA. The
results showed that the unbinding rate depends on the
concentration of freely diffusing proteins in the solution.
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For the unbinding mechanism, Paramanathan et al. pro-
posed a universal rapid rebinding model to quantitatively
explain the kinetic process of competitor-induced dis-
sociation. The protein bound to DNA undergoes rapid
dissociation and rebinding in the vicinity of the inhib-
ition site. Other proteins in this region can interact with
the inhibition site to accelerate the unbinding rate. We
suggest that this model can explain our experimental ob-
served behaviors well. For the binding reaction, TetR
dimer binds to DNA inhibition site to repress the gene
expression, two TetR monomers combine to form a TetR
dimer, and then the binding reaction can be simplified
to a reaction between the gene and two TetR monomers.
This leads to the quadratic dependence of the binding
rate on the TetR concentrations. For the unbinding reac-
tion, according to the rebinding model, the gene will
react with the competitor. Due to the presence of the in-
ducer, the conformation change of TetR will lead the
TetR dimer to convert into monomers [53], so the com-
petitor can be chosen as TetR monomer. This leads to
the linear dependence of the unbinding rate with respect
to the free TetR concentrations.

For dimer binding, the binding rate is expected to be
proportional to the square of the concentration of the
free TetR. The binding of aTc and TetR will lead to a de-
crease in the number of free TetR (Additional file 1: Fig-
ure S15). This will further lead to a decrease in the
binding and unbinding rate between the TetR and the
promoter. Therefore, when the inducer concentration is
low, increasing the inducer concentration will decrease
the free TetR and slow down the binding and unbinding
rate of free TetR to the promoter. This will increase the
probability of the gene being at the “on state” and “off
state.” When the free TetR concentration is not too low,
the effect of binding (quadratic dependence on the free
TetR concentration) is more significant compared to the
effect of unbinding (linear dependence on free TetR con-
centration). As the aTc increases, free TetR decreases.
This reduces the binding rate more significantly than the
unbinding rate. The less effective binding is expected to
lead to more chances of genes being at on state. Further-
more, the binding and unbinding rates are usually faster
than the degradation rate of TetR, the resulting synthesis
is faster. As a result of all above, the higher expressions
emerge. This explains the shift of the expression peak
from low to high as inducer concentration increases.

When the inducer concentration further increases to
sufficiently high values, the free TetR molecules will be
fewer, the binding and unbinding rate will also be lower.
This will increase the residence time of genes being at
“on state” and “off state.” At the “on state,” more TetR
will be generated, and then bind with the inducer, corre-
sponding to the high expression peak. However, when
the free TetR concentration is very low, the effect of
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unbinding (linear dependence on the free TetR concen-
tration) is more significant compared to the effect of
binding (quadratic dependence on free TetR concentra-
tion). As the aTc increases further, free TetR decreases.
This reduces the unbinding rate more significantly than
the binding rate. The less effective unbinding is expected
to lead to more chances of genes being at off state. As a
result, the lower expressions emerge. This explains the
shift of the expression peak from high to low as inducer
concentration further increases.

When the average residence time of “off state” is lon-
ger than the average degradation time of TetR, the free
TetR and the TetR binding with aTc will be degraded sig-
nificantly. The resulting synthesis and degradation of the
proteins can reach the steady state. This will make the
low expression peak more stable. Further increases of
the inducer concentrations will lead to less free TetR
and the longer residence time of “off state.” This leads to
greater weighting of low expression peak rather than
high expression peak.

Stochastic simulations of bimodality

To verify our explanation about emergence of two states
on our TetR self-repressor system discussed above, we
further explored the stochastic dynamics of self-
regulative feedback genes through a mathematical
model, which can be used to explain and simulate the
experimental observations (Fig. 3c). The mathematical
model clarifies the underlying mechanism of how bimo-
dality emerges. Under faster regulation binding, the self-
repressor is forced to stay in the repressed state. This is
because once produced, the regulatory protein immedi-
ately binds to the gene and therefore represses protein
production. In our study, slower binding of the regula-
tory protein to the gene is realized through the inducer
binding to the regulatory protein, which effectively
blocks the ability of the protein to bind to the promoter.
Under slower regulatory binding, the self-repressor may
function in two different ways: it may bind to the DNA
for some time and repress protein production, or unbind
from the DNA for some time, leading to increased pro-
tein production. This generates two cell phenotypes.
Furthermore, due to the intrinsic statistical fluctuations
of the number of proteins, there is a possibility of
switching between the high expression and low expres-
sion state. We have observed such phenotypic switching
in real-time experiments. The simulation results are
consistent with the experimental observations for the
emergence of the two peak distributions in Fig. 2a.

On the other hand, the trajectories in Fig. 4a and Add-
itional file 1: Figure S8 showed comparable growth rates
in high expression state and in low expression state. It is
possible that high expression cells in our study have not
reached the threshold for significant metabolic burden

Page 9 of 14

to slow down the growth. The inhibition curves of the
different inducer concentrations in Fig. 3b and the dy-
namic balance by intrinsic fluctuations also imply that
the bimodality of the protein expression distribution is
not due to cell growth. The simulation results of Fig. 3d
are also consistent with the experimental finding for in-
hibition probability shown in the Fig. 3b.

Biomodality in self-repressing circuits at different
affinities

We constructed three self-repressing circuits with different
affinities to the TetR protein [38] (relative affinity of TetR
between WT, 8T, and 1G is 100, 79, and 13). We chose
MG@G:PR-8 T as the main circuit of this study for its stability
and bimodal behavior since we did not observe good repro-
ducible bimodal behavior on the other two circuits under
our current experimental conditions. We hypothesize that
the differences in affinities between the gene circuits and
the TetR protein are the main cause of the differences in
behaviors. It is reasonable to expect that the same behavior
such as bimodal behavior for the systems with different af-
finities requires different experimental conditions.

Here, we can give a more detailed possible explanation
from the simulations. In the simulation, we used rate par-
ameter f/h to quantify and clarify the important role of af-
finity in the self-repressor. Different affinities correspond
to different equilibrium constants f/h in the inverse fash-
ion. We started the unbinding/binding ration f/h corre-
sponding to 8 T circuit. Since the relative affinity of 1G
circuit is lower than 8 T, to stimulate the affinity of 1G cir-
cuit, we increased the value of f/h, and the results were
given in Additional file 1: Figure S16. Bistability can still
be observed but at much higher aTc concentration. As
mentioned before, the cells can hardly survive in such an
environment. This may explain why we did not observe
bimodal behavior in the strain of MG::PR-1G. On the
other hand, we also stimulated the WT circuit with higher
affinity. The results are shown when the unbinding/bind-
ing ratio of f/h decreases, in Additional file 1: Figure S17.
Although bimodal behavior in principle can be reached at
lower aTc concentrations, it is very difficult to distinguish
and clearly separate the two states due to the fluctuations,
noises and errors at lower concentrations of proteins in
the strains of MG::PR-WT. In this study, the behavior of
MG:PR-8T is sufficient to illustrate that the self-
repressing circuits can become bimodal. Therefore, we
conclude that the bimodality can emerge for self-repressor
systems under certain experimental conditions.

Biomodality and trend of biomodality upon inducer
impacts and their relationships to TetR concentration
dependence of binding/unbinding regulations

Another issue of concern is that whether TetR concen-
tration dependence is necessary for the bistability to
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occur. Based on the simulation results, we can see that
the distribution with the unbinding rate independent on
the concentration can still be bimodal. In other words,
when the concentration dependence for unbinding is re-
moved, we can also reach the bimodal distribution, as
shown in the Additional file 1: Figure S18. However, the
trends and shapes of the expression distribution with re-
spect to the inducer concentration are not consistent
with the experimental observations. We can see that
when the inducer concentrations are high enough (such
as 1400 ng/mL and 1500 ng/mL), the steady state expres-
sion distribution can become bimodal, with two states of
low and high expression levels, respectively. Meanwhile,
the percentage of the cells in the low expression state
gradually increases with the increase of the inducer con-
centrations (Fig. 2a). When the concentration depend-
ence of unbinding is removed, the percentage of the
high expression state gradually increases with the in-
crease of the inducer concentrations when the bimodal-
ity is emerged, which is not consistent with the
experimental observation.

To illustrate this more specifically, let us consider the
following scenario. When the concentration of inducer
is low, the concentration of free TetR is high, and the
gene is mostly in the off state. Then, the gene expression
would have a single peak distribution. Increasing the in-
ducer concentration will decrease the free TetR concen-
tration and slow down the binding rate of free TetR to
the promoter, this will increase the probability of the
gene being at the “on state.” If we assume that the un-
binding rate is constant, the probability of the gene be-
ing at the “off state” is invariant. Hence, the shift of gene
expression peak is from low to high.

When the inducer concentration is further increased,
the probability of “on state” would continue to increase.
Due to the very fast expression rate, we will reach a
higher expression peak corresponding to the higher
probability of “on state.” As the inducer alc concentra-
tion increases further, the free TetR decreases and the
probability of “on state” continues to increase, this leads
to greater increase of the weight of high expression peak
rather than low expression peak (Additional file 1: Figure
S$18). In this condition, the simulation results with un-
binding rate independent of TetR concentration are not
consistent with the experimental observations.

Discussion

Our study shows explicitly in this concrete gene circuit
that different cell fates can emerge not only from the
changes in the genes (such as mutations) but also from
the changes in regulatory wirings or links through mi-
croenvironments without altering the gene itself. In fact,
even when the topology of the wiring for the underlying
gene regulatory network is fixed, there is still a
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possibility of cell phenotypic changes due to the changes
in the regulation strengths induced by the environment.
Furthermore, we observed in both real-time experiments
and simulations that the cell phenotypes or fates can be
switched from one to the other. We also obtained the
average time of this switching which quantifies how dif-
ficult it is to communicate globally from one cell fate to
the other. Therefore, using real-time trajectories, we de-
termine both the speed and the underlying processes of
the cell fate decision-making/phenotypic state-switching.

Epigenetic effects are often challenging to study in
eukaryotic cells. Our study in bacteria illustrates how
the environments can influence the cell fates and cell
fate decision-making in a controllable way. The experi-
ments in bacteria are relatively easy and straightforward
to perform and control. The epigenetic and micro-
environmental effects can be mimicked through the
modulation of inducers in our study. The essence of the
effects of the epigenetics is the change of the effective
time scales of the regulatory binding/unbinding. Here
the introduction of the inducers into the culture
medium changes the microenvironment of the cell and
leads to the changes of the time scales of the regulatory
binding/unbinding, mimicking the effects of the epigen-
etics. This is an advantage of our approach. We plan to
apply our method to a variety of core regulatory motifs
and modules in the gene networks to investigate how
the microenvironments or epigenetics influence the cell
fates and the cell fate decision-making processes.

Conclusions

From the results of this experimental study, we suggest
that different phenotypes can emerge from the same geno-
type under environmental changes, in this case that intro-
duction of an inducer to a self-repressor circuit can, in
certain conditions, lead to the emergence of two cell fates
rather than the expected one fate. We observe the switch-
ing dynamics for cell fate decision-making between these
two types of populations and propose a model to show
that slow binding/unbinding, rather than stochastic fluc-
tuations, may underlie the emergence of bimodality.

Materials and methods
Strains and plasmid construction
The tetracycline inducible promoter (PLtetO-1) and a
strong ribosome binding site (RBS, BBa_B0030) were
obtained from the plasmid of pZE11, which was kindly
provided by Bujard [26]. The PLtetO-1 promoter has two
TetO2 operator sites. This promoter is tightly repressed
by the Tnl0-encoded Tet repressor (TetR) and can be
activated by a supply of anhydrotetracycline (aTc).

All strains were constructed using standard cloning
techniques. The sequences of the PCR primers used in
this study are shown in Additional file 1: Table S1. The
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fusion PCR was used to construct the TetR-Venus fusion
protein. The protocol is based on two rounds of PCR:
The first PCR uses TetR-F/Linker-R and Linker-F/
Venus-R as primer pairs, whose templates are the plas-
mid pBR322 (Invitrogen™) and E. coli SX4 genomic
DNA from Xie [23], respectively. In the second PCR, the
fragments from the first round were amplified and fused
using primers TetR-F/Venus-R, resulting in the TetR-
Venus fragment. The TetR-Venus fusion protein was
connected with the flexible linker, which provided the
proper distance between TetR and Venus to avoid
interference.

The entire TetR-Venus fragment was digested with
Kpnl and Xbal and ligated into the pZE11 vector back-
bone, which placed the TetR-Venus under the control of
the PLtetO-1 promoter, yielding the plasmid pZE11l-
PLtetO-1-TetR-Venus.

Recombination of chromosomes
E. coli K-12 MG1655 was chosen as the host strain of
the self-repressing circuit model system due to its hypo-
toxicity and its known genomic sequence. It demon-
strates good performance for the foreign protein
expression and has been used in genetic studies in la-
boratories worldwide. This is crucial for the expressions
of the regulatory proteins in the self-repressing circuit.
The CRIM (conditional-replication, integration, and
modular) plasmid pAH150, the corresponding helper
plasmids pINT-ts, and E. coli MG1655 (F-\-ilvG-rfb-
50rph-1), were kindly provided by Wanner [37]. The
vectors are designed to integrate into the bacterial
chromosome at different phage attachment sites. The
PLtetO-1-TetR-Venus was inserted into the pAH150 at
the Xhol and Xbal sites, and as-prepared plasmid
pAH150-PLtetO-1-TetR-Venus (Additional file 1: Figure
S1) was transformed into the DH5a A pir® strain for
amplification. The resultant plasmids were integrated
into the chromosome of the MG 1655/pINT-ts strain by
standard electro-transformation protocol. A single copy
of the integrant was screened from the transformants:
the self-repressing gene circuit MG1655::PLtetO-1-TetR-
Venus (MG::PR-WT).

The construction of other self-repressing gene circuits
We mutated the operators to change their affinities to
the repressor (Additional file 1: Figure S2). The mutated
PLtetO-1 gene circuits were amplified by PCR using
pAH150-PLtetO-1-TetR-Venus as a template, Ptet-X-F
(X=8T, 1G) as a forward primer and Venus-R as a re-
verse primer. These were then inserted into the pAH150
plasmid [38]. The constructed plasmids were integrated
into the chromosome of MG 1655 to obtain MG::PR-8
T. We thus constructed a series of self-repressing cir-
cuits with different affinities to the TetR protein.
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Construction of the control non-regulatory gene circuit
To investigate whether the bimodality phenomena is pro-
duced by the self-repressing circuit, we designed a non-
regulatory gene circuit as a control (Fig. 1b). The TetR
mutant was introduced by site-directed mutagenesis with
the pAH150-PLtetO-1-8 T-TetR-Venus plasmid as a tem-
plate and P39K-F and P39K-R as a forward and a reverse
primer according to standard procedures. The purified
product was integrated into MG1655 as mentioned above,
generating the  MG1655:PLtetO-1-8 T-TetR-P39K-
Venus (MG::PR-8 T-P39K) circuit. The differences in
binding affinities of the mutated TetR (TetR-P39K)
and the wild-type TetR (wtTetR) may be attributed to
their different interactions with the Tet operator. The
mutant amino acid decreased the interaction strengths
between TetR-P39K and TetO, without affecting TetR
and aTc interactions [39].

Microscopy measurements and image analysis
Cells were cultured overnight in M9 minimal media sup-
plemented with vitamins (MEM vitamin solution, Gibco)
containing appropriate antibiotics by shaking at 250 rpm
at 37°C. For microscopy measurements, the overnight
cultures were diluted 1000-fold into 5 mL of M9 media
with different aTc concentrations (300-1500 ng/mL)
(Additional file 1: Table S2) and were continuously
shaken at 250 rpm. After four and a half hours, the cul-
tures were washed twice with sterile water by centrifuga-
tion. The resulting pellet was re-suspended in M9 media
with appropriate antibiotics to an ODggy of 0.2-0.4.
Small gel pads were prepared using 3% low-melting-
temperature agarose in M9 media between microscope
slides. 0.4 pL of the prepared cell cultures were dropped
on each pad for imaging using a fluorescent microscope.
The fluorescence values of the single cells were mea-
sured using an inverted fluorescence microscope (Ti-E,
Nikon) with automated stage and focus, equipped with a
x 100 oil immersion objective. We applied 514 nm of an
argon ion laser and set the output power at 5mW (only
10% of the laser beam into the microscope objective). For
each experiment, images of about 3000 cells on each slide
were collected using a cooled EM-CCD camera (iXon3EM
DU-897, Andor, Connecticut, USA). These images were
acquired by Metamorph. Data analysis was accomplished
through a combination of manual and automated analysis
using custom MATLAB code (Schnitzcells).

The time-lapse experiment and image analysis

Overnight cultures in M9 media at 37 °C were diluted
1000-fold into M9 media with 1500 ng/mL of aTc and
agitated at 37°C for 3h. According to the preliminary
experiment, the concentration of aTc in the time-lapse
experiment was set as 1500 ng/mL. 0.4 pL of washed and
re-suspended cell cultures in M9 media were dropped
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onto an agarose pad (3% agarose in M9 media with
1500 ng/mL of aTc). The agarose pad was covered with a
cover slide, resulting in cell placement into a FCS2
chamber [40]. Bioptechs-FCS2 system settings were ap-
plied: we used a media flow rate of 1-2 pL/s, a media
temperature of 37°C, and a microscope objective
temperature of 35 °C. All settings were adapted for opti-
mizing the E. coli cell monolayer growth without physic-
ally disturbing the cells. The laser can be tuned at 514
nm for the Venus protein, and the output laser power
was set at 3 mW (only 10% of the laser beam up into the
microscope objective). The fluorescent images were peri-
odically captured and recorded in the transmitted and
fluorescent channels every 5 min over a period of around
6-7 h with an exposure time of 50 ms. All images were
acquired using both bright field imaging and fluorescent
field imaging.

Based on the custom analysis codes (Schnitzcells)
compiled by MATLAB from Elowitz’s lab [41, 42], we
applied some modifications to adapt to our require-
ments. Such improved analysis codes were used to iden-
tify and follow the cells, to reconstruct their lineage in
time-lapse analysis by fluorescence imaging, and to iden-
tify cells in statistical analysis. Finally, we collected the
fluorescent data of each cell at each time point for the
following discussion.

A simple mathematical model explaining the self-
repressor bimodal distribution

We simulated the stochastic dynamical process of the
self-repression gene circuit under intrinsic fluctuations
from the finite number of molecules in the cell. The
dimer consists of two regulator proteins TetR where
each can be bound on to the DNA promoter with rate
%h n (n-1). Meanwhile, the dimer can be dissociated
from the promoter with rates f *n, and this rate is the
unbinding rate which is proportional to the number (n)
of free TetR. [50]. The binding and unbinding reactions
of TetR with DNA are listed as follows:

AM £ 2TetR 2 A1, A1 1 TetR L A 4 2TetR + TetR

AN £ OTetR2 A, A% 4 TetR L A 4 2TetR + TetR

A 4 2TetR 2 AP, A% 4 TetR %> A 4 2TetR + TetR

A% 4 2TetR 2 A%, A% 1 TerR L, A% 4 2TetR + TetR

where AV denotes the unbound (bound) state of the gene
that synthesize the TetR protein (i represents one regula-
tor protein of the dimer binding and j represents an-
other regulator protein of the dimer binding, 1 and 0
represent on and off state of the genes, respectively). For
the self-repression gene circuit, A'' denotes that the
gene is completely switched “on” when the operator of
the gene is unoccupied and active. A% denotes that the
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gene is completely switched “off” when the operator of
the gene is occupied and repressed. For the binding re-
action, TetR dimer binds to DNA inhibition site to re-
press the gene expression, two TetR monomers bind to
form a TetR dimer, and then the binding reaction can be
simplified into a reaction between the gene and two
TetR monomers. This leads to the quadratic dependence
of the binding rate on the TetR concentrations. For the
unbinding reaction, according to the rebinding model,
the gene can react with the competitor. Due to the pres-
ence of the inducer, the conformation change of TetR
can lead to the monomerization of TetR dimer [53], so
the TetR monomer can act as competitor. This leads to
the linear dependence of the unbinding rate with respect
to the free TetR concentrations.

We combined the transcription and translation steps
for simplicity. Then, the transcription-translation step is
described as follows:

%) 5 TetR for A7, TetR LY 1%}

where @ is used to represent a protein sink or source.
The source for synthesis comes from the gene activa-
tions while the sink comes from the protein degrada-
tions. g; is the protein synthesis rate when promoters
are active or inactive for gene state A, respectively.
When we added the inducers into the cells, the inducers
aTc were found to bind with the regulator protein TetR.
The resulting binding complex cannot bind effectively to
the promoter and therefore cannot have a significant in-
fluence on regulating gene transcription for synthesizing
the protein. The binding complex of aTc and TetR may
also degrade. This process can be described as follows:

b
TetR + I,po = Ta, Ta3 g
a

c
EaTc ? IaTc

where Ta denotes the binding complex of TetR and aTc.
These binding complexes of aTc and TetR cannot occupy
the binding site of the promoter. I,y and E,r. denote
the internal and the external inducer (in and out of the
cells). The internal and external inducers can mutually
diffuse through the cell membrane with diffusion coeffi-
cient c. We define w = f/k, which quantifies the ratio be-
tween the unbinding rate of TetR to the promoter and
the speed of the TetR protein degradation. Likewise, the
equilibrium constant Xeq=f/h quantifies the relative
balance between dissociation and binding of TetR to the
promoter (Additional file 1: Table S3) and is directly re-
lated to the affinity.
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Additional file 1: Supplementary Text. Table S1-S3. Figure S1-518.
Table S1. PCR primers. Table S2. The corresponding relationship between
the mass concentration and the molar concentration. Table S3. Rate
constants in mathematical model. Figure S1. The recombinant plasmid
map. Figure S2. Diagram of synthetic circuit constructs. Figure S3. The
distributions of mean fluorescence intensity of MG:PR-WT and MG:PR-1G.
Figure S4. The distributions of mean fluorescence intensity of MG:PR-8T.
Figure S5. Total probability of the DNA in the bound state. Figure S6. Fano
factor curves and the overall coefficient of variation (CV) curves. Figure
S7. Expression distributions of MG::PR-8 T-P39K. Figure S8. The
representative trajectories for the MG:PR-8 T strain. Figure S9. The
fluorescence images of MG:PR-8 T-P39K. Figure S10. A representative
trajectory collected at 50 ng/mL.

Figure S11. The schematic diagram of calculating the average
residence time (each frame lasts 5 min). Figure $12. The bifurcation
diagram in total number of TetR (in nmol/L) molecules and aTc (in ng/
mL) molecules. Figure S13. The bifurcation diagram in total number of
TetR (in nmol/L) molecules and aTc (in nmol/L) molecules. Figure S14.
The simulated steady state probability distribution in total TetR (in mol/
L) and aTc (in mol/L) molecules. Figure S15. The simulated steady
state probability distribution in free TetR (in mol/L) and aTc (in mol/L)
molecules. Figure S16. The simulated steady state probability
distribution with much higher aTc concentration. Figure S17. The
simulated steady state probability distribution in different aTc
concentrations. Figure S18. The simulated steady state probability
distribution in different aTc concentrations when the unbinding rate is
assumed not to be concentration dependent. (DOCX 4940 kb)

Additional file 2: Movie S1. This movie file shows a time-lapse micros-
copy of MG:PR-8T strains continuously induced with 1500 ng/mL of aTc
at a constant temperature of 37 °C. The total time of the movie is 225
min with a rate of one image every 5 min. (AVI 203 kb)

Additional file 3: Movie S2. This movie file shows a time-lapse

microscopy of MG:PR-8T strains continuously induced with 1500 ng/
mL of aTc at a constant temperature of 37 °C. The total time of the
movie is 375min with a rate of one image every 5min. (AVI 273 kb)

Additional file 4: Movie S3. This movie file shows a time-lapse microscopy
of MG:PR-8T strains continuously induced with 50 ng/mL of aTc at a constant
temperature of 37 °C. The total time of the movie is 112 min with a rate of
one image every 8 min. (AVI 74 kb)
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