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Abstract

Background: Effective disease management depends on timely and accurate diagnosis to guide control measures.
The capacity to distinguish between individuals in a pathogen population with specific properties such as fungicide
resistance, toxin production and virulence profiles is often essential to inform disease management approaches. The
genomics revolution has led to technologies that can rapidly produce high-resolution genotypic information to
define individual variants of a pathogen species. However, their application to complex fungal pathogens has
remained limited due to the frequent inability to culture these pathogens in the absence of their host and their
large genome sizes.

Results: Here, we describe the development of Mobile And Real-time PLant disEase (MARPLE) diagnostics, a
portable, genomics-based, point-of-care approach specifically tailored to identify individual strains of complex
fungal plant pathogens. We used targeted sequencing to overcome limitations associated with the size of fungal
genomes and their often obligately biotrophic nature. Focusing on the wheat yellow rust pathogen, Puccinia
striiformis f.sp. tritici (Pst), we demonstrate that our approach can be used to rapidly define individual strains, assign
strains to distinct genetic lineages that have been shown to correlate tightly with their virulence profiles and
monitor genes of importance.

Conclusions: MARPLE diagnostics enables rapid identification of individual pathogen strains and has the potential
to monitor those with specific properties such as fungicide resistance directly from field-collected infected plant
tissue in situ. Generating results within 48 h of field sampling, this new strategy has far-reaching implications for
tracking plant health threats.
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Background
Rapid and accurate point-of-care (PoC) diagnostics fa-
cilitate early intervention during plant disease outbreaks
and enable disease management decisions that limit the
spread of plant health threats. PoC diagnostics involve
portable equipment that can be used in-field to rapidly
confirm disease outbreaks and provide actionable infor-
mation [1]. At present, conventional plant disease diag-
nostics rely on visible inspections of disease symptoms
followed by basic laboratory tests through culturing and
pathogenicity assays [2]. Unfortunately, these conven-
tional methods tend to be subjective, time-consuming,
labour-intensive and reliant on specialised expertise and
equipment, providing only limited phenotypic informa-
tion [3]. These factors limit their utility in PoC
diagnosis.
Recent alternative approaches have focused on sero-

logical and nucleic acid assays [4]. Polyclonal and mono-
clonal antisera are frequently used to detect plant
pathogens using techniques such as enzyme-linked im-
munosorbent assay (ELISA), immunostrip assays and
immunoblotting [5]. In addition, following a flurry of
PCR-based diagnostic tests in the 1980s, the advent of
the loop-mediated isothermal amplification (LAMP)
assay at the turn of the twenty-first century provided
the first rapid nucleic acid amplification method to
accurately diagnose pathogens in situ in real time [6].
Both serological and DNA-based methods typically re-
quire high initial financial investments and specialised
expertise to develop new assays, are limited in sample
capacity, frequently are not reliable at the asymptom-
atic stage, and provide limited information beyond
the species level [1].
The capacity to distinguish between individuals in a

pathogen population with specific properties such as
fungicide resistance, toxin production and virulence pro-
files is often essential to inform disease management ap-
proaches. In the past two decades, the genomics
revolution has led to technologies that can rapidly gen-
erate genome-scale genetic information to define indi-
vidual variants of a pathogen species [4]. These
emerging, data-driven, PoC diagnostic tools have the po-
tential to rapidly track shifting pathogen populations in
near real-time, providing copious genetic information at
the strain level that can be used in early warning systems
and disease forecasting.
The value of portable genomic-based diagnostics and

surveillance was first illustrated during emergent human
health outbreaks. For instance, during the Ebola crisis in
West Africa in 2015, genome sequencing of the virus
was carried out in situ on the first portable genome se-
quencer, the Oxford Nanopore Technologies MinION
sequencer [7]. The resulting real-time genomic informa-
tion on evolutionary rates and epidemiological trends

revealed frequent transmission across the Guinea border
[7], which informed subsequent disease control mea-
sures. For plant diseases, a similar approach in the la-
boratory environment successfully identified Plum pox
virus and ‘Candidatus Liberibacter asiaticus’, which
causes citrus greening in infected insect and plant tis-
sues [8], exemplifying the potential for the development
of portable genomic-based diagnostics for plant health
threats. However, for higher-order fungal pathogens
which constitute the largest and most widely dispersed
group of plant pathogens [9], the utility of mobile
genomic-based PoC diagnostics remains to be fully rea-
lised. The sheer size of fungal genomes, which can be
tens or even hundreds of thousands of times larger than
viral genomes, makes full-genome or whole-
transcriptome sequencing on portable sequencing de-
vices currently prohibitively expensive.
In this study, we developed an approach for generating

high-throughput sequencing data in situ from the com-
plex obligately biotrophic fungal pathogen Puccinia strii-
formis f. sp. tritici (Pst). Pst is a basidiomycete and
heterokaryotic fungus that causes wheat yellow rust dis-
ease, which is a constant and significant threat to wheat
production worldwide [10]. We demonstrate herein that
our approach can be used to rapidly define individual
Pst strains, assign strains to distinct genetic lineages that
have been shown to correlate tightly with their virulence
profiles [11], and monitor mutations in genes of import-
ance. As Pst is an obligate biotroph, the genetic material
of the pathogen and plant have to be analysed together
in field-collected infected samples. Furthermore, the
pathogen’s genome is more than 10,000 times larger
than that of, for instance, the Ebola virus.
To address these complexities, we first utilised a com-

parative genomics approach to define genomic regions
of high variability between pathogen strains that could
then be amplified for sequencing directly from field-
infected wheat samples on the mobile nanopore sequen-
cer. This new approach thereby circumvents the need to
carry out lengthy in-lab processes of purification and
multiplication of isolates prior to high molecular weight
DNA extraction that is a requirement for full genome
sequencing. This targeted sequencing approach also re-
duced the complexity and amount of data generated per
sample, thereby accelerating the speed of processing and
reducing the cost. Furthermore, we developed a mobile
lab system to enable deployment of our diagnostic plat-
form in resource-poor regions without the need for con-
tinuous electricity or access to additional laboratory
equipment. This Mobile And Real-time PLant disEase
(MARPLE) diagnostics system was designed with simpli-
city and mobility in mind to enable true PoC plant dis-
ease diagnostics. This new strategy has the potential to
revolutionise plant disease diagnostics, changing how
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plant health threats are identified and tracked into the
future.

Results
Capturing the global diversity of the Pst population
To reduce the complexity of the genomic data generated
from Pst-infected wheat samples, we aimed to define re-
gions of the Pst genome showing high variability be-
tween pathogen strains that could be subsequently
amplified for sequencing on the MinION platform from
Oxford Nanopore Technologies. The first step was to
capture the diversity of the Pst global population. To
achieve this, we carried out transcriptome sequencing
on 100 Pst-infected wheat samples collected between
2015 and 2017 from nine countries, including those in
eastern and southern Africa, Europe, North America
and Asia (Additional file 1: Table S1). Total RNA was
extracted from each sample and subjected to RNA se-
quencing (RNA-seq) analysis using the Illumina HiSeq
platform and our previously described field pathoge-
nomics strategy [11]. To maximise the geographical dis-
tribution of Pst isolates, we combined these 100 RNA-
seq datasets with previously published genomic and
transcriptomic datasets from a further 201 Pst strains
spanning a total of 19 countries, including Chile, New
Zealand, Pakistan and an array of European countries
[11, 12] (Additional file 1: Table S1). Raw reads were fil-
tered for quality, and data from each Pst sample were in-
dependently aligned to the Pst race PST-130 reference
genome [13]. An average of 37.3% (± 18.2%, S.D.) reads
aligned to the reference genome for the combined RNA-
seq datasets, and 82.7% (± 4.9%, S.D.) reads aligned for
the genomic datasets [11] (Additional file 1: Tables S2
and S3). Overall, the data from this global collection of
Pst isolates comprised 280 transcriptomic and 21 gen-
omic datasets from Pst isolates spanning 24 countries
that could then be used for subsequent population gen-
etic analysis.
To determine the genetic relationships between these

301 global Pst samples, we carried out phylogenetic ana-
lysis using the third codon position of 2034 PST-130
gene models (589,519 sites) using a maximum-likelihood
model (Additional files 2 and 3). Pst isolates tended to
cluster based on their geographical origin, with only four
of the 14 divisions containing Pst isolates that spanned
continental boundaries (Fig. 1a). These four clades in-
cluded (i) clade 2 with Pst isolates from China and the
USA, (ii) clade 9 with Pst isolates from Europe and
South Africa, (iii) clade 10 containing Pst isolates from
Ethiopia and New Zealand and (iv) clade 14 containing
isolates from Europe and New Zealand (Fig. 1a). This
represents relatively recent shared ancestry between the
populations within these four clades, which could be in-
dicative of long-distance transmission of Pst strains

either between these regions or from a common inde-
pendent source area.
We carried out multivariate discriminant analysis of

principal components (DAPC) to further define subdivi-
sions within the global Pst population. First, we gener-
ated a list of 135,372 synonymous single nucleotide
polymorphisms (SNPs), of which 135,139 were biallelic
in at least one Pst sample and were therefore used for
DAPC analysis. Assessment of the Bayesian Information
Criterion (BIC) supported division of the Pst isolates
into five groups of genetically related Pst isolates (Add-
itional file 4). However, due to the high level of diversity
within the global Pst population, this initial DAPC ana-
lysis was able to separate only Pst populations with high
levels of genetic differentiation and was unable to re-
solve lower levels of within-group variation [14] (Fig. 1b).
For instance, group 1 (C1) contained Pst isolates from
Pakistan, Ethiopia, Europe and New Zealand, and group
2 (C2) contained Pst isolates from China and two Euro-
pean races that have been shown to be genetically dis-
tinct in previous population studies [12, 15]. Therefore,
we performed further DAPC analysis on each of the five
population groups independently and, following analysis
of the BIC, Pst isolates were separated into clear subsets
of homogenous groups of individuals that better
reflected the phylogenetic clustering (Fig. 1b; Add-
itional file 4). Overall, this analysis indicated that the
global Pst population is highly diverse and, with only a
few exceptions, consists of geographically isolated
groups of distinct homogenous individuals.

A subset of genes can be used to capture the global
diversity of Pst isolates
To identify specific Pst genes contributing to the separ-
ation of isolates into distinct groups in the population
genetic analysis, we used comparative analysis to find
the most variable genes among the 301 global Pst iso-
lates that were conserved across all Pst isolates analysed.
First, we calculated the number of SNPs per kilobase for
each gene from alignments of sequences representing
the 301 Pst isolates against the PST-130 reference gen-
ome [13]. SNPs per kilobase values were calculated by
normalising the total number of SNPs found in the cod-
ing sequence of each gene across the 301 Pst isolates
relative to the length of the coding sequence for each
gene. A total of 1690 genes were identified as poly-
morphic (SNPs/kb ≥ 0.001) between Pst isolates and sub-
sequently utilised for phylogenetic analysis with a
maximum-likelihood model. Importantly, the sequences
from these 1690 polymorphic genes were sufficient to
reconstruct the topology of the global Pst phylogeny
(Additional file 5).
To determine the minimum number of gene se-

quences required to accurately reconstruct the global
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phylogeny, we ordered the 1690 genes based on the
number of polymorphic sites across the 301 Pst isolates
(Fig. 2a). We then selected 1006, 748, 500, 402, 301, 204,
151 and 100 of the most polymorphic genes using

progressively increasing cut-off values for SNPs per kilo-
base (0.006, 0.0105, 0.018, 0.023, 0.0285, 0.036, 0.042
and 0.051, respectively) and carried out phylogenetic
analysis as described above with each of these subsets
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Fig. 1 The global Pst population is highly diverse and largely consists of geographically isolated groups of distinct homogenous individuals. a
The global Pst population analysed herein consisted of 14 distinct groups of individuals. Phylogenetic analysis was performed on a total of 280
transcriptomic and 21 genomic datasets from Pst isolates spanning 24 countries, using a maximum-likelihood model and 100 bootstraps. Scale
indicates the mean number of nucleotide substitutions per site. Bootstrap values are provided in Additional file 3. b Multivariate discriminant
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(Additional file 5). We noted that a single Pst isolate
from clade 9 was mis-assigned to clade 4 in the phyloge-
nies reconstructed from fewer than 500 genes (Add-
itional file 5). This inconsistency was likely due to poor

gene coverage for this Pst isolate when the data were
aligned to the PST-130 reference genome; for instance,
96.5% of bases had less than 20× coverage when using
402 Pst genes to reconstruct the phylogeny. Therefore,
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Fig. 2 The sequences of 242 highly polymorphic Pst genes are sufficient to reconstruct the topology of the global phylogeny generated from full
transcriptome and genome sequencing. a Ordered distribution of average SNP content per gene across the 301 Pst global isolates. To determine
the minimum number of gene sequences required to accurately reconstruct the global phylogeny, the 1690 genes identified as polymorphic
(SNPs/kb≥ 0.001) between Pst isolates were ordered according to number of polymorphic sites across the 301 global Pst isolates. b The 242
polymorphic genes selected were not biased in their selection by a high degree of divergence from the reference race PST-130 for any particular
group of individuals. Box plots represent the total number of SNPs across these 242 genes for Pst isolates belonging to each of the five major
genetic groups identified through DAPC analysis. Bar represents median value, box signifies the upper (Q3) and lower (Q1) quartiles, data falling
outside the Q1–Q3 range are plotted as outliers. c The 242 genes selected could be used successfully to reconstruct the global phylogeny and
assign Pst isolates to the 14 previously defined groups (numbers in circles). Phylogenetic analysis was performed using sequence data for the 242
genes from the 301 global Pst isolates using a maximum-likelihood model and 100 bootstraps. Bootstrap values are provided in Additional file 7
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this Pst isolate (14.0115) was excluded from the general
evaluation. Overall, we concluded that whilst minor
changes in clade ordering were observed when using se-
quence data from less than 500 genes, sequence data
from as few as 100 genes were sufficient to generate a
similar phylogeny topology (Additional file 5) and assign
Pst isolates to the 14 previously defined groups.
The next step was to use the minimal number of poly-

morphic genes required to represent Pst population di-
versity to define a subset of genes for PCR amplification
in preparation for sequencing on the MinION platform.
We reasoned that sequencing a small subset of highly
variable genes would reduce the volume of data gener-
ated and associated cost per sample, whilst maintaining
our ability to define individual strains. We selected the
500 most polymorphic genes between Pst isolates and
within this subset randomly selected 250 of these genes;
oligonucleotides were successfully designed for 242
genes (Additional file 1: Table S4). Given that a mini-
mum of 100 genes was sufficient to accurately assign Pst
isolates, the additional 142 genes were included to en-
sure that Pst isolates could be correctly assigned even if
a large proportion (up to 58%) of the genes failed to
amplify under field conditions. To validate that the 242
polymorphic genes were not biased in their selection by
a high degree of divergence from the reference isolate
PST-130 for any particular group of individuals, we
assessed the total number of SNPs across these 242
genes for Pst isolates belonging to each of the five major
genetic groups identified through DAPC analysis
(Fig. 1b). The SNPs were distributed across all the major
genetic groups, with the least number of SNPs identified
in Pst isolates of genetic group 2 and the greatest num-
ber identified in Pst isolates from genetic group 4
(Fig. 2b). The low differentiation of Pst isolates in gen-
etic group 2 from the PST-130 reference isolate likely re-
flects a close genetic relationship. Finally, we confirmed
that the 242 genes selected could be used successfully to
reconstruct the global phylogeny and assign Pst isolates
to the 14 previously defined groups (Fig. 2c; Add-
itional files 6 and 7). Overall, this analysis illustrated that
using sequence data from a minimal set of 242 poly-
morphic Pst genes was sufficient to accurately genotype
Pst isolates and re-construct a comparable phylogeny to
that achieved from full-genome or transcriptome
sequencing.

Genes selected for amplicon sequencing are distributed
across the Pst genome and the majority encode enzymes
To characterise the 242 Pst genes selected for sequen-
cing on the MinION platform, we carried out positional
and functional annotation. To assess the distribution of
the 242 polymorphic genes across the Pst genome, we
identified their genomic locations in the highly

contiguous Pst-104 reference genome [16]. For 241 of
the 242 genes, near-identical (> 94% pairwise identity)
hits in the genome were obtained when gene sequences
were mapped to the genome using minimap2 [17].
These 241 genes were distributed across a total of 135
genome scaffolds, with the majority of genes (60%) lo-
cated on scaffolds that contained only one of the 241
genes (Additional file 1: Table S5). Only 10 scaffolds
contained more than five of these genes, suggesting that
the majority of the 241 genes were scattered across the
genome and not grouped in gene clusters (Fig. 3a).
Using gene ontology (GO) term analysis, we found that
the majority (64%) of the 242 genes encoded proteins
with enzymatic functions (GO: 0003824—catalytic activ-
ity; GO: 0005488—binding) and were involved in differ-
ent metabolic and cellular processes (Fig. 3b;
Additional file 1: Table S5). Overall, this analysis indi-
cates that 241 of the 242 Pst genes selected are well dis-
tributed across the Pst genome and are enriched for
functions in fungal metabolism.

Comparative analysis of the Illumina and Oxford
Nanopore sequencing platforms
To assess the suitability of the mobile MinION sequen-
cer for population diversity analysis using the 242 Pst
genes selected, we carried out a comparative analysis
with data generated on the Illumina MiSeq platform,
which is frequently used for this purpose [18]. Four Pst-
infected wheat samples were collected in 2017 in
Ethiopia (Additional file 1: Table S1). Following genomic
DNA extraction, each of the aforementioned 242 Pst
genes was amplified from each sample. Each gene was
then used for amplicon sequencing on both the MinION
and MiSeq platforms. A total of 6.9, 3.6, 6.2 and 6.4 mil-
lion paired-end Illumina reads and 109, 102, 128 and
113 thousand MinION reads were generated for each of
the four Pst-infected wheat samples (17.0504, 17.0505,
17.0506 and 17.0507 respectively). Following base calling
and quality filtering, reads were aligned to the gene se-
quences for the 242 genes from the PST-130 reference
[13] (Additional file 1: Table S6 and S7). For each Pst-in-
fected sample, consensus sequences were generated for
each of the 242 genes, using data produced on the Illu-
mina MiSeq platform. Each consensus gene set separ-
ately incorporated the SNPs identified within the gene
space by mapping the reads from each of the four Pst
isolates against the gene sequences of the 242 genes.
These four sets of sequences formed an accurate base-
line for comparison with sequence data generated on the
MinION sequencer.
To evaluate the minimum depth of coverage required

to obtain similar levels of accuracy on the MinION se-
quencer, we performed a comparative analysis between
the two platforms. Sequence data generated on the
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MinION platform were used to create consensus se-
quences for each of the aforementioned 242 Pst genes
using varying depths of coverage for each of the four
Pst-infected wheat samples. The percentage identity of
these consensus sequences was then determined through
comparative analysis with the MiSeq baseline consensus
sequences. A minimum depth of 20× coverage on the

MinION sequencer was sufficient to achieve 98.74% se-
quence identity between the two datasets (Fig. 4a).
We then investigated whether there was any notable

selective bias during library preparation and sequencing
of individual genes using either the MiSeq or MinION
platform. We determined the percentage coverage for
each of the 242 genes sequenced for the four Pst isolates
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on the two sequencing platforms. The average coverage
per gene for the MiSeq (0.41 ± 0.02, S.E.) and MinION
(0.41 ± 0.03, S.E.) platforms was comparable (Fig. 4b).
Using the predefined 20× coverage level, we evaluated

the required run time to achieve this level of coverage
across all 242 selected Pst genes on the MinION plat-
form. Assuming equal coverage of all genes, we deter-
mined that to reach 20× coverage for all 242 genes in
each of the four samples (4840 reads) would take less
than 30min from starting the MinION sequencing run

[18.75 (17.0504), 21.77 (17.0505), 17.65 (17.0506) and
19.20 (17.0507) minutes] (Additional file 1: Table S8).
Finally, using the minimum level of 20× depth of

coverage for data generated on the MinION sequen-
cer, we defined the number of SNPs per gene in each
of the four MinION datasets. This was then com-
pared with SNP analysis using sequence data gener-
ated on the MiSeq platform. SNP profiles for each of
the samples sequenced on the MinION and the
MiSeq platforms were largely comparable, with the
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general trend being that more SNPs (compared with
the reference) were identified when sequencing was
carried out on the MinION platform (Fig. 4c; Add-
itional file 1: Table S9). In particular, we observed
that several positions that were designated as being
homokaryotic from data generated on the MiSeq plat-
form appeared as heterokaryotic when using the Min-
ION sequencer. The average ratio of heterokaryotic to
homokaryotic nucleotide positions using the MiSeq
platform was 0.01 (± 0.0002, S.D.), which was 20%
higher (0.012 ± 0.0004, S.D.) when the MinION se-
quencer was used (Additional file 1: Table S10). How-
ever, as the overall average sequence identity between
samples sequenced using the MiSeq and MinION
platforms was > 98%, we concluded that when a mini-
mum of 20× depth of coverage is achieved, the data
generated on the MinION sequencer are largely com-
parable in accuracy to those from the MiSeq platform
and therefore should be suitable for population gen-
etic analysis.

Pst isolates from Ethiopia in the 2017/2018 wheat crop
season are genetically closely related
To further assess the ability of the MinION-based se-
quencing platform to accurately define Pst genotypes in
field-collected infected samples, we expanded our ana-
lysis to a larger sample of 51 Pst-infected wheat samples
collected in Ethiopia predominantly during the 2017/
2018 growing season (Additional file 1: Table S1). DNA
was extracted from each sample independently, and each
of the aforementioned 242 Pst genes was amplified and
prepared for amplicon sequencing on the MinION plat-
form. In parallel, RNA was extracted and RNA-seq ana-
lysis was undertaken using the Illumina HiSeq platform
and our field pathogenomics strategy for comparison
[11]. An average of 114,519.37 (± 91,448.42, S.D.) reads
per library were generated using the MinION sequencer
and a total of 23,434,565.49 (± 2,468,438.63, S.D.) reads
per library were generated on the HiSeq platform (Add-
itional file 1: Tables S7 and S11). Following base calling
and data filtering, reads generated on the HiSeq or

Older French isolates

Pre-2013

Genetic group 1
Genetic group 2
Genetic group 3
Genetic group 4

Collected in 2013 & 2014

Older UK isolates

New Zealand 2006-2012

Additional Global Pst isolates

Ethiopia (pre-2016)

Pakistan
Chile

Europe

USA

Canada
China
South Africa

European Pst isolates

Collected in 2015 - 2017
Genetic group 5-1

Ethiopian Pst isolates

Ethiopia field samples (2016/17)

Ethiopia field samples (2018)

Characterised Pst isolates

1

2

3

4

5

6

7

8

US312/14: -
AZ160/16: PstS2, v27
UZ180/13: PstS5, v17
UZ14/10: PstS5, v17

DK14/16: PstS7

DK52/16: PstS8

UZ189/16: PstS9, v17
DK15/16: PstS10

1

5

7

6
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10

13

2
11

9

12

9

10
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ET08/10: PstS6

SE225/15: PstS4
KE86058: PstS1
SE427/17: PstS7 
AZ165/16: PstS2 v27

0.0002

Fig. 5 Gene sequencing on the MinION platform can be used to accurately genotype Pst isolates and define specific race groups. All Ethiopian
Pst isolates collected from 2016 onwards cluster in a single monophyletic group (orange diamonds). The 13 representatives of previously defined
race groups (numbered squares) tended to cluster in the phylogeny with Pst isolates of a similar genetic background. Phylogenetic analysis was
carried out using a maximum-likelihood model and 100 bootstraps. Scale indicates the mean number of nucleotide substitutions per site.
Bootstrap values are provided in Additional file 10
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MinION platforms were aligned independently for the
51 Pst isolates to sequences of the 242 Pst genes
selected.
We then carried out the phylogenetic analysis as de-

scribed above, using data from either the MinION or
HiSeq platforms independently (Fig. 5; Additional files 8,
9, 10, 11 and 12). To compare the Ethiopian Pst isolates
with the global Pst population groups, we also included
sequence data for the 242 genes from the 301 global Pst
isolates in the phylogenetic analysis. The positioning of
the 51 Ethiopian samples in the phylogenies was similar
between the two datasets, with the 51 Pst field isolates
grouping in two closely related clades in both cases (Fig.
5 and Additional file 8). This analysis further supports
the conclusion that when a sufficient level of coverage is
used, data generated on the MinION platform can be
used to accurately define Pst genotypes.

Assigning Pst isolates to known genetic groups defined
by SSR marker analysis
To compare the phylogenetic clades with previously de-
fined Pst genetic groups based on simple sequence re-
peat (SSR) marker analysis and pathogenicity testing [15,
19–21], we selected 13 additional Pst isolates of diverse
origin representing these groups (Additional file 1: Table
S12). DNA was extracted from each sample independ-
ently, and the 242 Pst genes were amplified and prepared
for sequencing on the MinION platform. Following base
calling and quality filtering, reads were aligned to se-
quences of the 242 PST-130 genes. The resulting data
were then combined with those from the 301 global Pst
isolates and the 51 Ethiopian Pst isolates collected pre-
dominantly during the 2017/2018 field season, and
phylogenetic analysis was performed (Fig. 5; Add-
itional files 9 and 10).
The 13 Pst isolates representing previously defined Pst

groups and races clustered in the phylogeny as follows.
US312/14 (a.k.a AR13–06), representing a new group of
isolates in North America carrying virulence to the yellow
rust (Yr) resistance gene Yr17, grouped in a clade with
other recent Pst isolates that were collected in the USA
and Canada in 2015 and 2016. AZ160/16 and AZ165/16
belonging to the PstS2, v27 group, which has been preva-
lent in eastern and northern Africa and western Asia,
grouped with Pst isolates from Ethiopia. UZ180/13 and
UZ14/10, both representing the PstS5, v17 group preva-
lent in central Asia, was basal to a clade of Ethiopian Pst
isolates. UZ189/16 (PstS9, v17), frequently found in cen-
tral Asia, formed a distinct branch in the phylogeny.
ET08/10, representative of the PstS6 group and carrying
virulence to Yr27, formed a long unique branch. SE225/
15, which belongs to the PstS4 race (a.k.a. ‘Triticale2006’)
and is frequently found on triticale in Europe, formed a
distinct branch close to Pst isolates from Ethiopia.

KE86058, a representative of the PstS1 aggressive strain
recovered from the ‘Stubbs Collection’, grouped with iso-
lates from Ethiopia. DK14/16 and SE427/17 representing
the ‘Warrior’ PstS7 group, DK52/16 representing the ‘Kra-
nich’ PstS8 group and DK15/16 representing the ‘War-
rior(-)’ PstS10 group, shown to be analogous to ‘genetic
group 1’, ‘genetic group 5-1’ and ‘genetic group 4’, respect-
ively [12], clustered accordingly in the phylogeny (Fig. 5).
This result illustrates that data generated on the MinION
platform for the 242 polymorphic Pst genes can be used
to accurately distinguish the genetic groups previously de-
fined from SSR marker-based classification, providing
additional support to the methodology herein. Further-
more, the inclusion of these reference Pst isolates in future
analysis will enable isolates of similar genetic background
to be rapidly identified.

In-field MinION-based diagnostics can define Pst isolates
in Ethiopia in real-time
As resource-poor locations frequently bear the brunt of
plant disease epidemics, we developed a simplistic Mo-
bile And Real-time PLant disEase (MARPLE) diagnostics
pipeline so that the 242 polymorphic Pst genes could be
amplified and sequenced on the MinION sequencer for
phylogenetic analysis in situ (Fig. 6; Additional file 13).
To test our MARPLE diagnostics pipeline, we collected
four Pst-infected wheat samples in 2018 and carried out
analysis in situ in Ethiopia (Additional file 1: Table S1).
As Ethiopia may act as a gateway for new Pst isolates en-
tering Africa from sexually recombining populations in
Asia, this pipeline would enable rapid detection of any
new Pst strains entering East Africa.
First, DNA was extracted from each Pst-infected wheat

sample using a simplified method wherein Pst-infected
plant tissue was homogenised, cells lysed and DNA iso-
lated using magnetic-bead-based purification (Fig. 6).
Next, a panel of 242 oligonucleotide pairs was used in
PCR amplification to enrich for the previously defined
set of Pst gene sequences. This enrichment enabled dir-
ect analysis of each of the field-collected Pst-infected
wheat tissue samples. The 242 oligonucleotide pairs
were pooled into four groups, where concentrations
were optimised individually to amplify all genes in each
individual group (Additional file 1: Table S4). To ensure
ease of portability and avoid the need for continuous
electricity, PCR amplification was performed using
thermostable Taq polymerase and a battery-powered
mobile miniPCR machine (Fig. 6; Additional file 1: Table
S13). Finally, a simple analysis pipeline independent of
internet connectivity was utilised on a laptop computer
for phylogenetic analysis of Pst isolates (Fig. 6).
Overall, the entire pipeline from sample collection to

completion of the phylogenetic analysis was achieved
within 2 days, providing rapid real-time information on
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the population dynamics of Pst in Ethiopia. The result-
ing phylogenetic analysis of the four Pst-infected wheat
samples illustrated that the late 2018 Pst population in
Ethiopia was similar to that defined in the previous
2017/2018 growing season (Fig. 5).

Discussion
Utility of mobile gene sequencing for plant pathogen
surveillance
Effective disease management depends on timely and ac-
curate diagnosis that can be used to guide appropriate

disease control decisions. For many plant pathogens, in-
cluding Pst, visual inspection at the symptomatic stage
provides clearly recognisable indications of the causative
agent. However, the ability to go beyond visual species-
level diagnostics and rapidly define newly emergent
strains or identify those with specific properties such as
fungicide resistance, toxin production or specific viru-
lence profiles (races) helps tailor proportionate and ef-
fective disease control measures. For most fungal plant
pathogens, diagnostic methods providing strain-level
resolution remain highly dependent on time-consuming
and costly controlled bioassays carried out by specialised
laboratories. However, the genomic revolution has pro-
vided opportunities to explore rapid strain-level diagnos-
tics. The advent of mobile sequencing platforms allows
these systems to become geographically flexible and in-
dependent of highly specialised expertise and costly in-
frastructure investment.
Here, we used the mobile MinION sequencing plat-

form to develop a genomic-based method called MAR-
PLE diagnostics for near real-time PoC plant disease
diagnostics for fungal pathogens, which have proved less
tractable for such approaches. The size of fungal ge-
nomes makes full-genome or transcriptome sequencing
on portable devices prohibitively expensive. Further-
more, for at least the wheat rust pathogens the lengthy
processes associated with purification and multiplication
of isolates for high molecular weight DNA extraction
has prevented whole genome sequencing being used for
PoC strain-level diagnostics. By focusing on sequencing
242 highly variable genes that are informative for distin-
guishing individual Pst lineages, we were able to reduce
the volume of data required whilst maintaining the abil-
ity to define individual strains. Analysis of this highly
polymorphic gene set revealed it to be rich in genes with
functions in fungal metabolism, with a large number of
these genes encoding enzymes.
The approach we have taken herein is extremely flex-

ible, and the existing gene panel can be easily supple-
mented with additional genes as required. For instance,
as avirulence proteins that trigger host immune re-
sponses are identified in Pst, the corresponding genes
can be incorporated into the method and monitored for
mutations that could be linked to a gain of virulence.
Furthermore, including genes that encode proteins iden-
tified as conserved fungicide targets across fungal patho-
gens would be extremely valuable. This would enable
real-time monitoring of known mutations that have been
linked to decreases in sensitivity in other pathosystems.
For the wheat rust pathogens, the two main classes of
fungicides at risk of resistance developing are the tri-
azole demethylation inhibitors that target the cyp51 gene
and the succinate dehydrogenase (SDH) inhibitors that
target genes encoding the four subunits of the SDH

Physical
tissue
disruption

Magnetic bead DNA
purification

Simple DNA extraction

Mobile PCR amplification

DNA added to
mixed pools of
oligonucleotides
for 242 genes

PCR amplification of
242 genes

Library preparation & sequencing

Amplicons are prepared for 
sequencing using a cold-
chain free barcoding kit

DNA libraries are sequenced
on the mobile MinION
sequencer

Automated data analysis

Data analysis is carried
out offline, independent
of internet access

The precise fungal strain is defined.

D
N

A
 P

re
pa

ra
tio

n
S

eq
ue

nc
in

g
D

at
a 

A
na

ly
si

s

snim 05snim 01

snim 54 srh 2snim 51

24 hours

sruoh 21sruoh 4

Total time: ~2 days

Fig. 6 Illustration of the MARPLE pipeline. A simplistic Mobile And
Real-time PLant disEase (MARPLE) diagnostics pipeline was developed
so that the 242 polymorphic Pst genes could be amplified and
sequenced on the MinION platform for population genetic analysis in
situ. This pipeline consists of three stages (DNA preparation,
Sequencing and Data analysis) and can be executed independently of
stable electricity or internet connectivity in less than 2 days from
sample collection to completion of the phylogenetic analysis
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complex [22]. Incorporation of cyp51 and the four SDH
complex genes in the gene panel for Pst is currently un-
derway and will provide real-time monitoring that can
rapidly detect any novel mutations as they emerge, en-
suring chemical control strategies are modified accord-
ingly. The incorporation of high-resolution genomic
data into clinical diagnostics and surveillance for human
health has demonstrated the utility of such approaches
in rapidly identifying drug-resistance mutations, accur-
ately typing strains and characterising virulence factors
[23]. The integration of such rapid genomic-based diag-
nostic data enables detection and appropriate action to
be taken in real-time to potentially circumvent pathogen
spread.

Ethiopia as a test case for real-time, gene-sequencing-
based Pst diagnostics and surveillance
Ethiopia is the largest wheat producer in sub-Saharan
Africa and is currently facing a major threat from wheat
rust diseases, including yellow rust caused by Pst. As a
potential gateway for new Pst strains entering Africa, it
is the highest priority country in the region for rapid
diagnostics [24]. In recent years, at least two novel viru-
lent rust races have migrated into Ethiopia from other
regions on prevailing winds [25]. For none of these re-
cent incursions was it possible to obtain early, in-season
detection and diagnosis of the new virulent races. Identi-
fication was possible only after disease establishment
and spread had already occurred. The reliance on specia-
lised laboratories outside of Africa for diagnosing indi-
vidual Pst strains slows disease management decisions, a
situation exacerbated by the lengthy nature of the assays,
which can take many months to complete.
Currently, no developing country has the capacity to

undertake real-time pathogen diagnostics on important
crop diseases such as wheat yellow rust. Yet, developing
countries bear the brunt of the epidemics. Therefore, we
focused the deployment of our nanopore-based Pst
genotyping system in Ethiopia. As infrastructure and lo-
gistics in developing countries can often limit the de-
ployment of advanced diagnostic tools, we developed a
mobile lab system contained in a single hard case to fa-
cilitate the movement of our MARPLE diagnostic plat-
form between locations. Although still dependent on
specialist expertise in the design phase, the resulting sys-
tem itself is simple, making it highly suitable for
resource-poor regions. For instance, an in-country trial
illustrated that the pipeline can be used directly in
Ethiopia in any lab irrespective of existing infrastructure
and without the need for continuous electricity or access
to additional laboratory equipment [26] (Add-
itional file 13; Additional file 1: Table S13).
Using this platform, we determined that the Ethiopian

Pst population structure has remained stable since 2016,

with all isolates analysed being genetically closely re-
lated. As genomic-based PoC diagnostics enters the
mainstream, such real-time genotyping techniques will
enable rapid detection of new Pst strains entering East
Africa. This high-resolution genetic data can then help
inform deployment of Yr disease resistance genes to
match the most prevalent races present in the region.
Furthermore, such data can also be incorporated in near
real-time into spatio-temporal population models for
Pst, linking epidemiological modelling and genomic data
to elucidate likely transmission events and enhance the
predictive power of disease forecasting [27].

The future of genomic-based plant pathogen diagnostics
and surveillance
The utility of genomic-based approaches for real-time dis-
ease diagnostics and surveillance has been illustrated time
and again during human health outbreaks. However,
transferring these approaches to track fungal threats to
plant health can be challenging, particularly considering
their frequent obligately biotrophic nature and large gen-
ome sizes. The approach we developed herein provides a
means to overcome these limitations and generate com-
prehensive genotypic data for pathogen strains within days
of collecting material from the field, making it highly
suited to disease emergencies. The mobility of our ap-
proach also obviates the movement of live samples and
transfers ownership back to sample collectors in-country.
In addition, such molecular-based approaches enhance
our testing capacity and provide the means for rapid pre-
selection of the most notable and representative isolates
for complementary virulence profiling, which remains an
essential but costly and time-consuming process.
One future challenge when designing similar ap-

proaches for other pathosystems will be the need for
existing genomic data to define polymorphic genes for
amplification. However, draft genome assemblies are
available for many important fungal plant pathogens and
the cost of re-sequencing diverse isolates is ever decreas-
ing. By focusing on generating data from a small subset
of genes, our approach is also relatively inexpensive and
generates small, unified datasets that can then be readily
explored using analytic and visualisation tools created
for smaller bacterial and viral genomic datasets such as
Nextstrain [28]. These tools have proved extremely in-
formative in tracking viral pathogen evolution and
spread for global human health threats [29]. Using our
approach, data for plant pathogens could be incorpo-
rated immediately into such a tool to understand how
disease outbreaks and novel variants spread.

Conclusions
In this study, we developed a rapid PoC method called
MARPLE diagnostics for genotyping individual Pst
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isolates directly from field-collected infected plant tissue
in situ. Our targeted sequencing approach unlocks new
opportunities for mobile, genomic-based, strain-level
diagnostics to be applied to complex fungal pathogens.
The ability to rapidly identify individual strains with spe-
cific properties such as fungicide resistance will be in-
valuable in guiding disease control measures and
represents a new paradigm for approaches to tracking
plant disease.

Methods
RNA extraction and RNA-seq of global Pst-infected plant
samples
A total of 100 Pst-infected wheat samples were collected
from 2015 to 2017 from nine countries and stored in the
nucleic acid stabilisation solution RNAlater® (Thermo
Fisher Scientific, Paisley, UK). RNA was extracted using
a Qiagen RNeasy Mini Kit following the manufacturer’s
instructions (Qiagen, Manchester, UK), with the quality
and quantity of RNA assessed using an Agilent 2100
Bioanalyzer (Agilent Technologies, CA, USA). cDNA li-
braries were prepared using an Illumina TruSeq RNA
Sample Preparation Kit (Illumina, CA, USA) and se-
quenced on the Illumina HiSeq 2500 platform at GENE-
WIZ (NJ, USA). Adaptor and barcode trimming and
quality filtering were performed using the FASTX-
Toolkit (version 0.0.13.2). Paired-end reads (101 bp)
were aligned to the PST-130 reference genome [13], and
single nucleotide polymorphism (SNP) calling was per-
formed as described previously [11].

Phylogenetic analysis
All phylogenetic analyses were carried out using a
maximum-likelihood approach with RAxML 8.0.20
using the GTRGAMMA model, with 100 replicates
using the rapid bootstrap algorithm [30]. For analysis of
the global Pst population, nucleotide residues were fil-
tered using a minimum of 20× depth of coverage for
sites that differed from the PST-130 reference genome
[13] and 2x coverage for sites that were identical. These
filtered positions were then used to independently gener-
ate consensus gene sets that incorporated separately the
SNPs identified within the gene space for each Pst iso-
late as described previously [31]. The third codon pos-
ition of these genes was used for phylogenetic analysis.
For samples sequenced on the MinION platform, the
242 polymorphic Pst genes were utilised for phylogenetic
analysis. All phylogenetic trees were visualised in Den-
droscope version 3.5.9 [32] or MEGA version 7 [33].

Population structure analysis of global Pst isolates
The genetic subdivision of the 301 global Pst isolates
was assessed using nonparametric multivariate clustering
without any predetermined genetic model. This method

was selected to avoid bias associated with providing lo-
cation information of Pst isolates from different lineages
to the model. First, biallelic SNP sites introducing a syn-
onymous change in at least one isolate were selected
and extracted for all 301 Pst isolates. These data were
used for multivariate analysis using DAPC implemented
in the Adegenet package version 2.1.1 in the R environ-
ment [14]. The number of population clusters (Kmax)
was identified using the Bayesian Information Criterion
(BIC). After initially selecting five genetic groups, DAPC
was repeated for isolates within each of these population
clusters to define subdivisions within each group.

Selection of highly polymorphic Pst genes
To select a polymorphic Pst gene set that could be used to
accurately reconstruct the Pst global phylogeny, alignments
of sequences from the 301 Pst global isolates against the
PST-130 reference genome [13] were filtered for sites repre-
sented in at least 60% of the isolates. Next, Pst isolates
which had at least 60% of the sites represented at 20×
coverage were selected. For each position in the alignment,
the degree of polymorphism was determined by calculating
the number of unique bases found in a given position in
each of the 301 Pst global isolates. This number was then
divided by the length of the gene to calculate the number
of SNPs per kilobase for each gene (SNPs/kb). All genes
within a range of 1–3 kb that met a minimum SNPs/kb
value threshold were then aggregated to select 1690, 1006,
748, 500, 402, 301, 204, 151 and 100 of the most poly-
morphic genes using progressively increasing SNPs/kb cut-
off values (0.001, 0.006, 0.0105, 0.018, 0.023, 0.0285, 0.036,
0.042 and 0.051, respectively) and used to carry out phylo-
genetic analysis as described previously. To calculate the
number of SNPs present in each of the five global groups
defined by DAPC analysis, concatenated alignments of the
242 polymorphic Pst genes for each of the 301 global Pst
isolates were used to calculate the total number of SNPs
present in each sample using SNP-sites [34] and plotted
using the ggplot2 package [35] in R.

Annotation of the polymorphic Pst gene set
The genomic location of each of the 242 polymorphic
Pst genes was identified by mapping these gene se-
quences to the Pst-104 genome [16] using minimap2
version 2.15 [17] with parameters recommended in the
manual for pairwise genome alignment (minimap -ax
asm10). Locations were processed into BED format
using bedtools version 2.27.0 [36] and analysed and plot-
ted using R. GO term analysis of the 242 genes was con-
ducted using BLAST2GO version 5.2 [37].

DNA extraction and amplification of Pst genes
Pst-infected wheat leaf samples were collected from the
field and stored in RNAlater®. These samples consisted
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of a single lesion or rust pustule. Excess RNAlater® was
removed, and ~ 10–20mg of tissue was used for each
DNA extraction. DNA was extracted using a DNeasy 96
Plant Kit (Qiagen, Manchester, UK) following the manu-
facturer’s instructions and eluted twice through the col-
umn in a total of 30 μl elution buffer. The DNA
extracted was used for amplifying the 242 variable Pst
genes via PCR with four pools containing oligonucleo-
tides (primers) with different concentrations optimised
for multiplex PCR (Additional file 1: Table S4) using Q5®
Hot Start High-Fidelity 2X Master Mix (New England
Biolabs, MA, USA). PCR conditions used were 98 °C for
30 s, 40 cycles of 98 °C for 10 s, 63 °C for 30 s and 72 °C
for 2 min 30 s, and a final extension of 72 °C for 2 min.
PCR products were purified using a QIAquick PCR Puri-
fication Kit (Qiagen, Manchester, UK) following the
manufacturer’s instructions and eluted twice through the
column in a total of 30 μl elution buffer. The concentra-
tion of purified PCR products from each primer pool
was measured using a Qubit dsDNA HS Assay Kit (Invi-
trogen, MA, USA) following the manufacturer’s
instructions.

Illumina library preparation for amplicon sequencing
Four Pst-infected wheat samples (17.0504, 17.0505,
17.0506 and 17.0507) were utilised for amplicon sequen-
cing using the MiSeq platform (Illumina, CA, USA). Fol-
lowing DNA extraction and PCR amplification of the
242 selected Pst genes, an equal mass of purified PCR
products from each of the four primer pools was com-
bined prior to library preparation, giving a total of 1 μg
DNA (250 ng per primer pool; Additional file 1: Table
S14). Samples were prepared for sequencing using a
KAPA HyperPlus Library Preparation Kit (Roche, Basel,
Switzerland) following the manufacturer’s instructions.
PCR products were fragmented enzymatically into sizes
of approximately 600 bp using a reaction time of 10 min.
Each sample was tagged with a unique barcode to enable
sample identification. The resulting libraries had insert
sizes of 790–911 bp and were made into an equimolar
pool of 40 μl prior to sequencing (Additional file 1: Table
S14). Libraries were sequenced using an Illumina MiSeq
platform and MiSeq Reagent Kit v3 150 cycles (Illumina,
CA, USA) following the manufacturer’s instructions.

MinION sequencing of Ethiopian Pst-infected wheat
samples
For each of the 51 Pst-infected wheat samples collected
in Ethiopia in 2016 (one sample) and 2017 (50 samples),
an equal mass of PCR products from each of the four
primer pools was combined prior to library preparation
with a total of between 16 and 400 ng amplicon DNA
(4–100 ng per primer pool; Additional file 1: Table S15).
Samples were then processed into multiplexed libraries

containing eight samples each using a PCR Barcoding
Kit, SQK-PBK004 (Oxford Nanopore Technologies, Ox-
ford, UK) following the manufacturer’s instructions.
Equimolar pools were made using eight samples having
different barcode tags with a total mass of DNA between
10 and 1000 ng (1.3–100 ng per sample; Additional file 1:
Table S15). Pooled samples were sequenced on a Min-
ION sequencer using Flow Cells FLO-MIN106D R9 ver-
sion or FLO-MIN107 R9 version (Oxford Nanopore
Technologies, Oxford, UK) following the manufacturer’s
instructions until 2 million reads were generated (250,
000 per sample; Additional file 1: Table S15).

In-field sequencing of Pst-infected wheat samples in
Ethiopia
Four Pst-infected wheat leaf samples (Et-0001, Et-0002,
Et-0003, Et-0004) were collected from different locations
in Ethiopia in 2018 (Additional file 1: Table S1) and
stored in RNAlater®; approximately 10–20mg of tissue
was used for DNA extraction. Samples were disrupted in
200 μl lysis buffer [0.1 M Tris-HCl pH 7.5, 0.05M ethyl-
enediaminetetraacetic acid (EDTA) pH 8 and 1.25% so-
dium dodecyl sulphate (SDS)] using a micropestle for
approximately 30 s. The ground tissue was allowed to
settle and the supernatant removed. DNA was purified
from the supernatant by adding 200 μl AMPure XP
beads (Beckman Coulter, CA, USA) to each sample,
mixing briefly and incubating at room temperature for
15 min. Tubes were placed on a magnetic rack to allow
the supernatant to clear. The supernatant was removed
and discarded before beads were washed twice with 80%
ethanol and the supernatant removed. The beads were
left on the magnetic rack to dry, and 30 μl nuclease-free
water was added to resuspend the pellet. Tubes were re-
moved from the magnet and mixed before incubation at
room temperature for 2 min. The tubes were incubated
briefly on the magnetic rack, and the clear supernatant
containing DNA was transferred into a new tube. The
extracted DNA was used for amplifying the 242 variable
Pst genes via PCR with four pools containing primers
with different concentrations optimised for multiplex
PCR (Additional file 1: Table S4) using AmpliTaq Gold™
360 Master Mix (Applied Biosystems, CA, USA) in a
50 μl reaction volume. The PCR conditions used were
95 °C for 10 min, 40 cycles of 95 °C for 15 s, 51 °C for 30
s and 72 °C for 4 min, and a final extension of 72 °C for
7 min. DNA was purified from the PCR product using
50 μl AMPure XP beads (Beckman Coulter, CA, USA).
For each sample, an equal volume of each purified PCR
pool was combined for each library preparation. The
final volume per sample entered into each library prep-
aration was 7.5 μl (1.88 μl per purified PCR pool). Sam-
ples were prepared for sequencing using a Rapid
Barcoding Kit, SQK-RBK004 (Oxford Nanopore
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Technologies, Oxford, UK). Libraries were sequenced on
the MinION platform using Flow Cells FLO-MIN106D
R9 version (Oxford Nanopore Technologies, Oxford,
UK) following the manufacturer’s instructions until 250,
000 reads were generated (Additional file 1: Table S15).

Data analysis of samples sequenced using the MinION
platform
Following base calling and demultiplexing using Alba-
core version 2.3.3 (Oxford Nanopore Technologies, Ox-
ford, UK), reads from each sample generated on the
MinION platform were trimmed using porechop version
0.2.3 (https://github.com/rrwick/Porechop) and aligned
to the 242-gene set from PST-130 using BWA-MEM
version 0.7.17 [38] with default settings and processed
using SAMTOOLS version 1.8 [39]. Oxford nanopore is
known to be error prone and hence BWA-MEM was se-
lected as it is particularly suited to such datasets. Con-
sensus sequences based on these alignments were
generated for each sample by calling bases with a mini-
mum of 20× coverage. Heterokaryotic positions were
deemed as such when the minor allele had a minimum
allele frequency of at least 0.25. For phylogenetic ana-
lysis, concatenated alignments of the 242-gene set from
each of the Pst samples were used.

Comparative analysis of the Illumina MiSeq and MinION
sequencing platforms
Four samples (17.0504, 17.0505, 17.0506 and 17.0507)
were sequenced on the MinION and the Illumina MiSeq
platforms as described above. Data generated on the
MinION platform were analysed as described. The
MiSeq data were aligned to the 242 Pst gene set using
BWA-MEM version 0.7.17 [38] with default settings and
processed using SAMTOOLS version 1.8 [39]. Consen-
sus sequences based on these alignments were generated
for each sample by calling bases with a minimum of 20x
coverage. Heterozygous positions were deemed as such
when the minor allele had a minimum allele frequency
of at least 0.25. To compare the MinION and MiSeq
platforms, the above procedure of generating MinION
consensus sequences was repeated using different cover-
age cut-off values and the sequences for each of the 242
Pst genes at each of the different coverage cut-off values
were compared against the Illumina consensus sequence
(called using a 20× coverage cut-off ). Positions that were
deemed ambiguous (< 20× coverage) in the MiSeq con-
sensus sequences were excluded from the analysis. Per-
centage identity between the MinION and MiSeq
consensus sequences was calculated using the ggplot2
package in R [35]. The coverage values for each gene as
a percentage of the total coverage for each of the four
samples sequenced using the MiniON and MiSeq plat-
forms was calculated using SAMTOOLS version 1.8 [39]

and R. A heatmap of the number of SNPs found in each
of the 242 genes for each of the four samples compared
with the PST-130 reference genome using Illumina
MiSeq and MinION sequencing technologies was gener-
ated using the pheatmap package in R [40].

Additional files

Additional file 1 Tables S1-S15. Microsoft Excel Workbook containing 15
worksheets. Table S1: Description of Pst isolates. Table S2: Number of
reads aligned to the PST-130 reference genome for the 100 RNA-seq
datasets. Table S3: Number of reads aligned to the PST-130 reference
genome for the 25 genomic datasets utilised herein. Table S4: Oligo-
nucleotide (primer) sequences and pooling strategy for the 242 Pst genes
selected. Table S5: Genomic location and functional annotation of the
242 Pst genes selected. Table S6: Number of reads aligned to the PST-130
reference genome for the 4 MiSeq amplicon datasets. Table S7: Number
of reads generated on the MinION platform that aligned to the 242 Pst
genes selected. Table S8: Time taken to generate a given number of Min-
ION reads for the four Ethiopian Pst-infected wheat samples. Table S9: De-
tails of SNP positions per gene detected in MinION and Illumina datasets
generated from four Pst isolates. Table S10: Details of homokaryotic and
heterokaryotic positions in consensus sequences obtained from Illumina
MiSeq and MinION platforms. Table S11: Number of reads aligned to the
PST-130 reference genome for the Ethiopian Pst RNA-seq datasets. Table
S12: Additional Pst reference isolates representing diverse virulence phe-
notypes and key genetic groups of a worldwide phylogeny of Pst. Table
S13: Components used in the MARPLE pipeline. Table S14: Details of Illu-
mina library preparation of 4 Pst-infected samples. Table S15: Details of li-
braries made for MinION sequencing of Pst-infected wheat leaf samples.
(XLSX 4138 kb)

Additional file 2 Phylogenetic analysis of the 301 global Pst isolates.
Newick format. (NEWICK 16 kb)

Additional file 3 Phylogenetic analysis of the 301 global Pst isolates
with bootstrap values. Newick format. (NEWICK 16 kb)

Additional file 4 Multivariate discriminant analysis of principal
components (DAPC) performed on the 301 global Pst isolates. (a) The
Bayesian information criterion (BIC) was calculated for combined DAPC
analysis of all 301 global Pst isolates, which indicated an optimal
clustering solution of K = 5. (b-f) Further DAPC analysis was carried on
each of the initial five population clusters, and assessment of the BIC was
used to determine the optimal clustering solution (red circle). The Y-axis
corresponds to the BIC, a goodness-of-fit measurement calculated for
each K value. (EPS 994 kb)

Additional file 5 A minimum of 100 Pst genes is sufficient to accurately
reconstruct the global phylogeny. Phylogenetic trees were generated
with 1690, 1006, 748, 500, 402, 301, 204, 151 and 100 of the most
polymorphic genes using a maximum-likelihood approach. Colours repre-
sent Pst isolates from similar geographical locations and/or genetic back-
grounds. (EPS 2671 kb)

Additional file 6 Phylogenetic analysis of the 301 global Pst isolates
using sequences for the 242 selected genes. Newick format. (NEWICK 16
kb)

Additional file 7 Phylogenetic analysis of the 301 global Pst isolates
using sequences for the 242 selected genes, with bootstrap values.
Newick format. (NEWICK 17 kb)

Additional file 8 RNA-seq analysis of the 51 Ethiopian Pst isolates using
the 242 genes defined herein shows they are genetically closely related.
Phylogenetic analysis was carried out using the 51 Pst isolates collected
in Ethiopia in the 2017/2018 growing season and the 301 global Pst
isolates, using a maximum-likelihood model and 100 bootstraps. The 51
Ethiopian Pst isolates grouped in two closely related clades. One of the
two clades also grouped closely with Pst isolates from genetic group 2,
however, this was supported by a low bootstrap value that may be indi-
cative of uncertainty in the grouping of these isolates (Additional file 12).
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Scale indicates the mean number of nucleotide substitutions per site.
(EPS 1459 kb)

Additional file 9 Phylogenetic analysis for the 301 global Pst isolates, 55
Ethiopian Pst-infected field samples and Pst isolates representative of
several major genetic groups. Data for the Ethiopian Pst isolates and
representative genetic group isolates were generated on the MinION
platform. Newick format. (NEWICK 20 kb)

Additional file 10 Phylogenetic analysis for the 301 global Pst isolates,
55 Ethiopian Pst-infected field samples and Pst isolates representative of
several major genetic groups, with bootstrap values. Data for the
Ethiopian Pst isolates and representative genetic group isolates were
generated on the MinION platform. Newick format. (NEWICK 21 kb)

Additional file 11 Phylogenetic analysis of the 301 global Pst isolates
using sequences for the 242 genes selected and data for these genes
generated on the HiSeq platform for the 51 Ethiopian Pst isolates. Newick
format. (NEWICK 19 kb)

Additional file 12 Phylogenetic analysis of the 301 global Pst isolates
using sequences for the 242 genes selected and data for these genes
generated on the HiSeq platform for the 51 Ethiopian Pst isolates with
bootstrap values. Newick format. (NEWICK 20 kb)

Additional file 13 Detailed illustration of the full MARPLE pipeline. The
complete list of steps in the Mobile And Real-time PLant disEase (MAR-
PLE) diagnostics pipeline (A-Q). (EPS 1525 kb)
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