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Abstract

Background: Studies of mammalian sexual dimorphism have traditionally involved the measurement of selected
dimensions of particular skeletal elements and use of single data-analysis procedures. Consequently, such studies
have been limited by a variety of both practical and conceptual constraints. To compare and contrast what might
be gained from a more exploratory, multifactorial approach to the quantitative assessment of form-variation,
images of a small sample of modern Israeli gray wolf (Canis lupus) crania were analyzed via elliptical Fourier analysis
of cranial outlines, a Naive Bayes machine-learning approach to the analysis of these same outline data, and a
deep-learning analysis of whole images in which all aspects of these cranial morphologies were represented. The
statistical significance and stability of each discriminant result were tested using bootstrap and jackknife procedures.

Results: Our results reveal no evidence for statistically significant sexual size dimorphism, but significant sex-
mediated shape dimorphism. These are consistent with the findings of prior wolf sexual dimorphism studies and
extend these studies by identifying new aspects of dimorphic variation. Additionally, our results suggest that shape-
based sexual dimorphism in the C. lupus cranial complex may be more widespread morphologically than had been
appreciated by previous researchers.

Conclusion: Our results suggest that size and shape dimorphism can be detected in small samples and may be
dissociated in mammalian morphologies. This result is particularly noteworthy in that it implies there may be a
need to refine allometric hypothesis tests that seek to account for phenotypic sexual dimorphism. The methods we
employed in this investigation are fully generalizable and can be applied to a wide range of biological materials
and could facilitate the rapid evaluation of a diverse array of morphological/phenomic hypotheses.
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Background

Among the more prominent and long-standing ques-
tions in evolutionary biology are whether sexual di-
morphism in the vertebrate skeleton is the product of
selection for specific features or general body size and
whether different aspects of sexual dimorphism are cor-
related with different aspects of a species’ ecology, be-
havior, phylogeny, life history, etc. An understanding of
sexually dimorphic patterns in vertebrate species also
has implications for understanding the evolutionary his-
tory of biodiversity. More practically, methods for ana-
lyzing patterns of morphological variation—such as
sexual dimorphism—in small samples have implications
for improving the value and research utility of museum
collections. In the case of humans, such analyses have an
additional forensic utility [1, 2].

Most biometric studies of mammalian carnivores have
concentrated on interspecific differences in the form of
skulls and teeth, along with the biomechanical and be-
havioral correlates that account for differences in hunt-
ing and Kkilling strategies [3-8]. Relatively few
investigations have focused on the biometric analysis of
intraspecific differences [9-19]. Gittleman and Van
Valkenburgh [13] found that, in contrast to most other
mammals, the predominant pattern of sexual dimorph-
ism in carnivore canine tooth size was correlated with
breeding system while a lesser dimorphism in carnassial
tooth size was associated most strongly with diet. These
authors also found greater dimorphism was exhibited by
large-prey pack hunters whose diets consisted of greater
than 70% meat (e.g., wolves) and suggested this pattern
of form differentiation was associated with breeding sys-
tem, including the degree of intramale competition for
access to females, possibly reinforced by adaptations that
promote solitary (as opposed to pack) hunting. The
lesser correlation with diet that was noted remains unex-
plained from mechanistic, ecological, or evolutionary
standpoints.

Alternatively, dimorphic differences in the morphology
of wolf post-cranial skeletons have been related to con-
specific aggression and competitive behavior trends in
males [18, 19]. Wild canids differ in the prominence of
sexually dimorphic maxillary and dental forms [11],
which may be associated with certain hunting strategies
[17, 20-22]. As male wolves typically outperform fe-
males in hunting, this difference would be expected to
be reflected in their dentition as well as in other post-
cranial skeletal elements and soft tissue composition [18,
19, 23].

Further, the tendency toward tooth dimorphism in ca-
nids may have broader behavioral origins. For example,
among wild wolves, there exists a clear division of labor,
with females predominantly engaging in pup care and
defense while males focus on foraging and food
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provision [17]. Kieser and Groeneveld [9] suggested that
larger post-canine tooth size in female carnivores
matches the higher masticatory demands associated with
lactation and pregnancy.

In the study of carnivores, it is, perhaps, understand-
able that the forms of the teeth and post-cranial skeletal
elements have often been the primary targets of analysis
(e.g., [13, 18, 19]) and that the geometries of these struc-
tures have been summarized typically by a very small
number of traditional linear measurements (e.g., medio-
lateral breadth, anteroposterior length), along with
lengths and breadths of various long bones. More re-
cently, investigations have employed landmark-based
sampling strategies to summarize patterns of skeletal
variation across larger and more complex skeletal struc-
tures [15-17].

The use of topologically homologous landmark loca-
tions in studies such as these has resulted in more geo-
metrically faithful representations of form than those
afforded by linear distance measurements because
aspects of these forms remained unsampled under that
approach, and so remained unanalyzed. This is especially
true for the geometric character of form outlines which
are used routinely by many taxonomists to distinguish
mammalian species. In addition, the avoidance of repre-
sentational bias, introduced as a result of the clumping
of landmarks together in particular regions of the forms
under consideration, can pose a considerable challenge
when designing landmark-based sampling strategies. In
several of the investigations cited above, bias may also
have been introduced inadvertently owing to landmarks
being placed on only one side of a bilaterally symmetric
skeletal element such as the cranium in ventral view
([15]; see also [24, 25]).

Despite these methodological issues, Schutz et al. [15],
for example, were able to demonstrate pelvic dimorph-
ism in both of the Urocyon species evaluated, presum-
ably related to offspring size at birth. However, no
significantly dimorphic trends were detected in their set
of cranial landmarks. Extrapolating from such results,
these investigators concluded that dimorphic trends
were focused in particular regions of the body in both
species, as opposed to being the result of whole-body
allomorphic effects associated with body-size dimorph-
ism. A second example is provided by Milenkovi¢ et al.
[16], who focused on differences between mixed-sex
Dinaric-Balkan and Carpathian wolf populations. These
authors concluded that both cranial and mandibular size
and shape differences were present and postulated that
they arose due to isolation in separate glacial refugia,
strengthened later by differences in environmental and
social behavior factors.

The skull and pelvis have long been recognized as as-
pects of the mammalian skeleton in which dimorphic
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differences might be expected to be expressed. But even
within the context of these elements, the manner in
which their morphology has been sampled has, in effect,
been controlled by a priori decisions reflecting either
systematic tradition [9, 10, 13, 16, 18, 19] or geometric
morphometric formalism [15, 16]. As a result, sexually
dimorphic patterns of shape variation in the canine
tooth were not assessed by Schutz et al. [15] because a
decision had been made to represent the position, but
not the form of this aspect of Urocyon morphology by a
single landmark. In the Milenkovi¢ et al. [16] investiga-
tion, over 50% of the cranial landmarks were confined to
the facial region with no landmarks constraining vari-
ation in the braincase and only a single landmark used
to quantify the position of the zygomatic arch. Similarly,
these authors used over 50% of their mandibular land-
marks to quantify aspects of the dental arcade with only
single landmarks constraining the positions, but not the
forms, of the coronoid, condyloid, and angular processes.
Gittleman and Van Valkenburgh [13] restricted their
quantification of dimorphic patterns to linear dimen-
sions of the vacuity—or socket—that contained the ca-
nine tooth. Yet, despite these representational
limitations, the authors cited above, along with many
others, discussed their results as if they constituted gen-
eralized proxies for overall morphological trends charac-
terizing the species in question.

Our purpose in calling attention to these issues is not
to criticize the authors of these investigations. Sampling
strategies identical to those they employed can be found
across the biological literature. Moreover, we regard
their results as perfectly correct and valid in the context
of the measurements they took and for the samples from
which those measurements were obtained. In all cases,
these researchers’ approaches to the analysis of their
data can be cited as examples of biometric best practice
within the multivariate morphometric and geometric
morphometric traditions they represent. Rather, we wish
to address the larger issue of whether the range of ap-
proaches most researchers use currently to characterize
patterns of morphological variation can, or should, be
regarded as sufficient to address the generalized mor-
phological questions we all seek to answer. Furthermore,
is the representation of morphology using small sets of
traditional linear distances, small sets of landmarks, or
relatively small sets of boundary outline semilandmarks
in two or three dimensions really “the best we can do”?
We also feel it is important to explore how the conclu-
sions reached by morphometric investigations are
shaped by the data investigators choose to collect and
the procedures they select to provide analytic summaries
of the patterns inherent in such data. Broadly then, we
seek to explore whether the morphometric data and
data-analysis approaches employed in these, and many
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other, morphometric investigations were truly adequate
to the task of finding and identifying generalized and
representative patterns of morphological variation.

Resolution of these larger questions demands the em-
ployment of truly generalized, descriptive approaches to
the characterization of morphological variation. What is
needed is a comprehensive strategy for assessing any as-
pect of hard or soft tissue anatomy quantitatively for the
geometric signature of similarity or difference. Simply
put, such a strategy should seek to extract as much in-
formation relevant to the hypothesis test(s) under con-
sideration, from the data available. Ideally, such a
strategy should allow for the post hoc discovery of spe-
cific anatomical region(s) where differences are mani-
fested as well as enabling both broad, and/or specific,
differences to be identified and evaluated, via objective
statistical hypothesis testing. A successful exploratory
morphometric research strategy of this nature should
also be able to accommodate minor imperfections in the
specimens under consideration, as well as being flexible
enough to evaluate a wide range of structural, textural,
color, and size and shape differences, any or all of which
may have played roles in developmental, morphological,
ecological, and/or behavioral evolution [26]. Finally, this
strategy should be able to obtain statistically robust re-
sults from either large, generalized, or small, localized
samples as the latter are often the only data to which re-
searchers have access.

Gray wolves (Canis lupus) are known to be dimorphic
in a large number of body dimensions and weights (body
length, contour length, tail length, body length, humerus
length, ulna-radius length, femur length, tibia-fibula
length, girth, neck, heart mass, liver mass, lung mass,
spleen mass, kidney mass; see [23] and references therein,
[27-29]). Nonetheless, it is unknown presently whether
this dimorphism is simply a reflection of generalized size
differences or reflects sex-specific developmental trajec-
tories. In this investigation, we conducted a search for
sexually dimorphic form differences using a small sample
of modern gray wolf crania collected from northern Israel
and the Golan Heights (henceforth “Israeli wolves”) for
the purpose of determining whether recent developments
in the field of geometric morphometrics and computer vi-
sion (e.g., [30-33]) could support more exploratory and
confirmatory approaches to the analysis of sexual di-
morphism in carnivore skeletons. Previous applications of
this approach have proved useful in social media [34] and
the scientific fields of entomology, where they have, in
part, been employed to discover an unexpectedly strong
set of sexually dimorphic differences in the morphology of
fly wings [35], in the study of Mullerian mimicry in butter-
flies [36], and in archeology where they have been used to
assess both temporal [32] and regional geographic differ-
ences [37] in the forms of lithic artifacts.
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Results

Size variation

Sex-based, cranial centroid size data were tabulated for
both dorso-ventral and lateral cranial outlines and tested
statistically for sexual dimorphism. The smoothed histo-
grams for both datasets were virtually identical (Fig. 1).
This strong similarity was expected, to some extent, by
the small sample size as well as by the large and con-
stant number of semilandmark coordinate points used
to quantify size variation. Nonetheless, congruence be-
tween these dorso-ventral and lateral cranial size distri-
butions provides confidence that comparable patterns of
spatial variation are being reflected in both views. This
similarity also extended to the statistical test results as
the null hypothesis of no sex-based outline size differ-
ence was accepted for both views (¢ test, p value = 0.737;
M-W test, p value = 0.741 for both dorso-ventral and lat-
eral views).

Shape variation

Distinctions between sex-based patterns of shape variation
were assessed using two different datasets and three differ-
ent data-analysis procedures: elliptical Fourier analysis
(EFA) of the cranial outlines in dorso-ventral and lateral
views, Naive Bayes (NB) machine-learning analysis of the
same set of EFA harmonic coefficients, and deep-learning
analysis (LeNet-5 CNN) of cranial images.

Elliptical Fourier analyses
Dorso-ventral view results
A preliminary principal component analysis (PCA)
transformation of the 177 elliptical Fourier variables
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indicated nine orthogonal axes (= eigenvectors) were
needed to represent 95% of the pooled shape-covariance
structure for these data. The quality of this decompos-
ition is indicated by calculating the correlation between
the original covariance matrix and the covariance matrix
estimated on the basis of the nine retained eigenvectors
in the manner of a cophenetic correlation coefficient.
For these data, that value is 1.000.

Because only two subgroups are involved, a single ca-
nonical eigenvector (CV-1) was extracted from the pro-
jected coordinate positions of the outline shape
descriptors in this nine-dimensional PC space. This dis-
criminant axis represents the linear, major axis regres-
sion joining the two group centroids within a
transformed space that represents the optimal between-
group separation relative to within-group dispersion in a
least-squares sense [38, 39]. The histogram of dorso-
ventral view cranial shape outlines projected onto this
discriminant axis is shown in Fig. 2.

While sex-based shape differences were recovered by
the analysis of these EFA data, the majority occupy the
region of overlap between the male and female cranial
outline shape distributions. Thus, clear distinctions
between characteristically male and characteristically fe-
male dorso-ventral outline shapes would only be pos-
sible for quite a small proportion of this sample.
Moreover, owing to the predominance of female cranial
outlines occurring within this region of overlap, there
would be a tendency to associate intermediate shapes
with the female category despite the fact that this would
be an incorrect assignment for a substantial proportion
of the sample.

Dorsal View
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Kernel Density
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0.000

8,833 9,200
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test) and non-parametric (Mann-Whitney test) results

C. lupus Size Variation

Kernel Density

Fig. 1 Smoothed histograms of size estimates of male (blue) and female (red) Israeli C. lupus crania obtained from 300 equally spaced semilandmark
dorso-ventral and lateral outlines. Despite expected differences in sex average and modal values, the distribution distinctions between both these
distributions are insufficient to support an interpretation of sex-based cranial size differences for this sample, based on both parametric (2-sample t

Lateral View
0.030

0.025

0.020

0.015

0.010

0.005

0.000
8,833

9,200

10,300
Centroid Size

11,033 11,400




MacLeod and Kolska Horwitz BMC Biology (2020) 18:113

Page 5 of 26

Frequency

-1.00

0.00
CV-1 (Var. = 100.0%)

Fig. 2 Stacked frequency histogram of shape similarity estimates of male (blue) and female (red) Israeli C. lupus crania obtained from elliptical
Fourier harmonic data that model dorso-ventral cranial outlines. Note that almost 70% of the data fall into the region of overlap between male
and female shape distributions. Despite expected differences in sex modal values, the distribution distinctions between these distributions are
insufficient to support an interpretation of sex-based cranial size differences for this sample
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The confusion matrix calculated for the canonical vari-
ate analysis (CVA) solution of these EFA dorso-ventral
outline data is provided in Table 1. Given the degree of
overlap between the sex classes shown in Fig. 2, the
CVA confusion matrix results for these data are surpris-
ingly good with over three quarters of the training set
being assigned to their correct categories. However, a
78% identification accuracy ratio would be considered
marginal by most taxonomists, especially if it could not
be reproduced for genuine unknowns (= specimens that
were not used to train the discriminant system).

The subtlety of the secondary sexual characteristics in-
herent in this CVA solution also deserves comment. If
morphological distinctions between sexes are not pro-
nounced, it may be questioned whether they actually
exist at all or, rather, simply reflect an incidental by-
product of the small sample size. Uncertainties in this
context might arise from, in the case of these Fourier
harmonic data, inclusion of non-representative individ-
uals in the sample, re-description error resulting from

the a priori selection of a subset of the available har-
monic series, etc. This aspect of the analysis is especially
problematic since only a limited aspect of the overall
morphology (in this case, the dorso-ventral cranial out-
line) is being subjected to analysis.

For landmark and semilandmark datasets, procedures
exist that enable models to be created for the geometric
shapes that lie at any coordinate location with CVA (or
PCA) eigenvector-defined spaces. Figure 3 illustrates
shape models for the EFA-described dorso-ventral view
cranial data at coordinate positions corresponding to the
extreme negative (female) and extreme positive (male)
termini of the projected CV-1 score distributions.

As can be seen in Fig. 3, the dorso-ventral view shape
distinctions inherent in this Israeli sample are quite
minor, involving the lateral extent of the zygomatic
arches predominantly. Given such a fine distinction, the
influence of even a single aberrant specimen—such as
the single male outlier in Fig. 2—can exert a substantial
and possibly confounding influence on the calculated

Table 1 Confusion matrix for CVA of C. Jupus elliptical Fourier harmonic data (dorso-ventral view). True identifications are shown in
the table rows, post hoc assigned identifications in the table columns

Group Female Male Total correct Class totals Percent correct
Female 15 6 15 21 7143
Male 4 21 21 25 84.00
Total correct 15 21 36 46 7826
Total estimated 19 27 46

Percent correct 7895 7778 78.26
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(-0.017)

Overlay Comparison

Fig. 3 Dorso-ventral view shape models reconstructed at the extreme ends of the distribution of EFA outline data projected onto the single
canonical variate eigenvector (CV-1, see Fig. 2). Note that even at these extremes, the shape distinctions between characteristic male and female
morphologies are quite small for this dataset and focus primarily on the lateral extent of the zygomatic arches. It is exceedingly doubtful that sex-
based discriminations of this nature could be made reliably by eye. Moreover, since these outlines were interpolated from a subset of the Fourier
harmonic data available for these outlines, there is also a question as to whether this putative difference is artifactual, arising as a result of the
interaction between the small sample size and the interpolations inherent in shape reconstruction from Fourier harmonic data

(0.021)

result. This is not to say this difference is necessarily er-
roneous, only that such group-distinction results cannot
necessarily be taken at face value with confidence.

This ambiguity is further reflected in the results of
standard statistical tests of the mean vector separations
relative to sample variances along the CV-1 axis. Para-
metric versions of Hotelling’s 7% and the log likelihood
ratio (¢) tests both reject the null hypothesis of no dif-
ference between mean vectors at the 95% confidence
level (T%=24.50, p value =0.043; ¢=17.49, p value =
0.042). However, both tests assume multivariate normal-
ity of the distribution of means, equal sample sizes, and
equal covariance matrices. A more conservative, non-
parametric, 1000-iteration, bootstrap evaluation of
Hotelling’s 7> and the log likelihood ratio tests for these
same data accepts the null hypothesis for the former,
but rejects it for that latter (7% =24.50, p value = 0.039;
¢=17.49, p value = 0.055). On the basis of these results,
the significance of the dorso-ventral cranial outline
shape difference, as assessed by the EFA-PCA-CVA
strategy, must be considered marginal, at best.

Lateral view results

Analysis of the lateral view EFA harmonic coefficients
proceeded in a manner identical to that of the dorso-
ventral view. Once again, 45 harmonic coefficients were
extracted from the training set of 46, 300 semilandmark-
constrained outlines, yielding a total of 177 EFA har-
monic variables. A preliminary PCA transformation indi-
cated that 16 eigenvectors were required to account for
95% of the pooled shape-covariance structure. The

quality of this decomposition was assessed in the man-
ner described above. For the 16 retained-eigenvector so-
lution, the value of the cophenetic correlation coefficient
was 1.000.

Subsequent to the PCA transform, a CVA was applied
to these data in order to achieve an optimized represen-
tation of sex-specific cranial shape differences. These dif-
ferences were assessed initially via inspection of the
histogram of male and female lateral view outline scores
on the single discriminant axis that resulted from this
analysis (Fig. 4).

As in the previous dorso-ventral-outline analysis, sex-
based shape differences are clearly evident in the lateral
views of these crania. Interestingly, the separation be-
tween sexes appears to be better for the lateral, than for
the dorso-ventral, views, with a distinct minority of lat-
eral outlines residing in the overlap interval. This might
be regarded as a remarkably good result when it is
recalled that no effort was made to improve the separ-
ation between sexes by eliminating the contribution of
the dental arcade which exhibited variation in presence,
preservation, damage, and tooth wear. Still, 39% of the
sample occupies the interval in which the sex assign-
ment could be regarded as ambiguous. Within this over-
lap interval, male and female outlines are subequally
represented (7 and 9 outlines, respectively). This (sub)e-
quality, if anything, renders qualitative interpretation of
outlines exhibiting shape variation modes projected into
the overlap zone even more problematic.

Table 2 summarizes the post hoc assignments of these
training-set outlines to sex-based classes on the basis of
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Fig. 4 Stacked frequency histograms of shape similarity estimates of male (blue) and female (red) C. lupus crania obtained from elliptical Fourier
harmonic data that model dorso-ventral cranial outlines. Note that almost 70% of the data fall into the region of overlap between male and
female shape distributions. Despite expected differences in sex modal values, the distribution distinctions between these distributions are
insufficient to support an interpretation of sex-based cranial size differences for this sample
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their CV-1 scores. As is suggested by a close comparison
of Figs. 4 and 6, the discriminant axis for the lateral out-
lines did a better job of allocating outlines to their cor-
rect sex classes. But given the small size of the sample,
this achievement must also be regarded as disappointing
as it involved only two outlines that were allocated in-
correctly in the dorso-ventral view analysis, but correctly
in the lateral view analysis. Moreover, an error ratio of
17% would still be regarded as of marginal quality since
this ratio refers to the same set of outlines that was used
to train the discriminant system.

Extreme position shape models for the lateral view dis-
criminant axis are illustrated and compared in Fig. 5.
While this comparison identifies several regions in
which lateral outline shape is markedly divergent be-
tween sexes, it also represents a complex mixture of dif-
ferences, some that are likely artifactual in the sense of
their not being part of any fundamental aspects of either
sex’s biology, together with the set of valid biological
differences.

With regard to the former, five female specimens ex-
hibit absent canine teeth and three exhibit missing inci-
sor teeth, as opposed to one specimen in each of these
categories for males. Sex-based discrepancies in the
presence and character of the incisor and molar teeth
are also part of this sample’s composition. Accordingly,
this aspect of the discriminant system should be
regarded as an artifactual attribute of the particular
specimens analyzed rather than being a generalized dif-
ference between male and female Israeli C. lupus
phenotypes.

This issue could be addressed by selecting an outline
data-analysis procedure that does not require that
boundary outlines be closed (e.g., eigenshape analysis,
see [40-42]) or by doubling an incomplete boundary
outline back on itself in order to create an artificially
closed outline and calculating the EFA harmonics associ-
ated with this “force fit” complete outline [43]. The
former solution is viable and efficient; the latter has the
disadvantage of somewhat artificially inflating the

Table 2 Confusion matrix for CVA of C. lupus elliptical Fourier harmonic data (lateral view). Row and column counts as in Table 1

Group Female Male Total correct Class totals Percent correct
Female 18 3 18 21 85.71
Male 5 20 20 25 80.00
Total correct 18 20 38 46 8261
Total estimated 23 23 46

Percent correct 78.26 86.96 8261
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Overlay Comparison

Fig. 5 Lateral view shape models reconstructed at the extreme ends of the distribution of EFA outline data projected onto the single canonical
variate eigenvector (CV-1, see Fig. 4). Note that the shape distinctions between characteristic male and female morphologies are larger than they
were for the dorso-ventral view analytic result (see Fig. 3) and, to some extent, involve obviously artifactual aspects of the morphology (e.g, the
excessively worn canine and incisor teeth characteristic of females). It is exceedingly doubtful that sex-based discriminations of this nature could
be made reliably by eye. Nonetheless, these results also capture distinctions between male and female cranial shapes that may represent more

pterygoid flange lateral outlines)

biologically important aspects of sex-based cranial shape variation (e.g., structure of the nasal opening, aspects of the occipital condyle and

number of semilandmark coordinates required to repre-
sent for shape and so the number of Fourier harmonic
coefficients required to characterize each boundary
outline.

Leaving complications in the degree of dental arcade
preservation in this sample aside, the EFA-PCA-CVA
data-analysis strategy did reveal consistent, sex-based
differences in well-preserved regions of the lateral cra-
nium outline. These focus on the height of the snout
(higher in extreme males), prominence of the anterior
dorso-ventral part of the cranium formed by the zygo-
matic processes (placed higher and positioned more an-
teriorly in males), and relative size and position of the
occipital condyle (slightly smaller and placed more pos-
teriorly in males). Overall, these differences appear to be
associated with a slightly more rugged construction of
male crania relative to the condition seen in extreme fe-
males. Most importantly, these associations are consist-
ent with the different ecologic and behavioral roles of
male and female gray wolves (see the “Materials”
section).

Morphological distinctions between male and female
crania of this species are further reflected in the results
of statistical tests for sex-based mean vector differences
relative to sample variances along the CV-1 axis. For
these lateral outline data, parametric versions of Hotell-
ing’s T? and log likelihood ratio tests reject the null hy-
pothesis of no difference between mean vectors at the
95% confidence level in both cases (7 = 52.25, p value =
0.035; ¢p=28.18, p value = 0.030). The more conservative,
non-parametric, bootstrap-based evaluations of these
same statistics also rejected the null hypothesis in both

instances and improved the confidence of this rejection
(T* = 52.25, p value = 0.028; ¢ = 28.18, p value = 0.025).

Traditional machine-learning (Naive Bayes) analysis

In order to explore how alternative modes of outline
analyses might perform on these data, the NB algorithm
was used to analyze the PCA-transformed scores for the
EFA coefficients of the same Israeli C. lupus dataset in
both dorso-ventral and lateral views. This test examined
the effect of altering the procedure used to find the best
between-class discriminant decision axes within complex
geometric morphometric contexts.

Dorso-ventral view results

Table 3 summarizes results of the application of the
EFA-PCA-NB machine-learning procedure to the dorso-
ventral view, cranial data. Obviously, the improvement
in discriminant performance is due to resolution of fully
half the previous analysis’ sex-class allocation errors by
this alternative data-analysis algorithm.

Of the ten specimens misidentified by the EFA-PCA-
CVA (M07791 @, M07924 &, M07941 &, M08039 &7,
MO08266 @, M09181 @, M11684 @, M12130 &, M12476
Q, M12477 Q), only two (M07791 Q@ and M07924 &)
were also misidentified by the NB analysis. Moreover,
whereas the majority of CVA-misidentified specimens
were female, males formed the majority of misidentifica-
tions in the NB result. Among the specimens misidenti-
fied by the CVA algorithm, all differ from one another,
but a few exhibit unusual morphologies or obvious dam-
age. Specimen M07791 @ exhibits a markedly recurved
aspect to its squamosal, M08039 3% and M11684
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Table 3 Confusion matrices for analysis of C. Jupus dorso-ventral view, PC-transformed elliptical Fourier harmonic coefficient data
using the Naive Bayes machine-learning procedure. Row and column counts as in Table 1

Group Female Male Total correct Class totals Percent correct
Female 19 2 19 21 9048
Male 3 22 22 25 88.00
Total correct 19 22 41 46 89.13
Total estimated 22 24 46

Percent correct 86.36 91.67 89.13

possess very well-developed and robust frontals, and the
dorso-ventral view of M08039 4 seems narrower and
more gracile than other male specimens. Nonetheless, it
is difficult to infer exactly why these specimens were
misidentified whereas others, with apparently similar or
other equally idiosyncratic dorso-ventral cranial shapes,
were identified correctly. In part, this probably reflects
the subtlety of the sex-based morphological distinctions
recovered by EFA and over which the question of statis-
tical significance also hangs.

With regard to the specimens misidentified by the NB
analysis, the interpretation based on qualitative inspec-
tion of the outlines themselves seems much more
straightforward. The posterior inclination of the M07791
@ zygomatic arch has already been noted, and this struc-
ture identified as of potential importance in the identifi-
cation of Israeli C. [upus sex distinctions. Specimen
MO08207 Q is a powerfully built female with wide zygo-
matic arches whereas M07924 & is a male of decidedly
more gracile aspect. By far, the most obvious problem-
atic specimen in the entire sample, though, is M11108 &
which exhibits a distinctly deformed dorso-ventral
morphology with very narrow and upturned zygomatic
arches. This specimen also displays a distinct right-left
asymmetry. Indeed, the fact that this specimen was iden-
tified correctly by the CVA seems even more counterin-
tuitive in retrospect.

Despite the lack of sophisticated results-visualization
procedures for the NB discriminant solution, the results
of this analysis appear more readily understandable and
interpretable than those of the CVA. In addition, the fact
that such different sets of morphologies were misidenti-
fied by these two classifiers suggests they are either
assessing different aspects of the dorso-ventral outline

and using those to construct their discriminant axes or
giving more weight to the variables that represent
changes in zygomatic arch shape.

With regard to statistical significance, this also differs
between the CVA and NB analysis. Statistical tests of the
CVA results returned marginally significant values for
the parametric versions of Hotelling’s 7> and log likeli-
hood ratio tests and mixed results for their alternative,
1000-iteration bootstrapped versions. Hotelling’s T* test
is not available for the NB analysis, but both the para-
metric and bootstrapped versions of the log likelihood
ratio (¢) test were markedly significant with p values of
less than 0.001 (¢ = 15.581).

Lateral view results

Table 4 summarizes results of the application of the
EFA-PCA-NB machine-learning procedure to the cranial
lateral view data. As was the case for the dorso-ventral
view, changing the manner in which the EFA-PCA-
described lateral outline data were analyzed for between-
class differences resulted in a dramatic improvement in
the results, producing allocation accuracy values ap-
proaching those that would be considered compelling by
most practicing systematists (Table 4).

Comparison of Table 4 with Table 2 shows that, for
these lateral outline data, a greater than 50% improve-
ment in identification accuracy was achieved by relaxing
the constraint of strict geometric linearity in the formu-
lation of discriminant decision axes. This result confirms
that, despite the complications introduced by the vari-
able presence and preservation states of the teeth, more
sex-specific shape information appears to be present in
the lateral view of C. lupus crania than in the dorso-

ventral view. Since wolf crania are bilaterally

Table 4 Confusion matrices for analysis of C. lupus lateral view, PC-transformed elliptical Fourier harmonic coefficient data using the
Naive Bayes machine-learning procedure. Row and column counts as in Table 1

Group Female Male Total correct Class totals Percent correct
Female 19 2 19 21 9048
Male 1 24 24 25 96.00
Total correct 19 24 43 46 9348
Total estimated 20 26 46

Percent correct 95.00 9231 93.48
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symmetrical, this difference may reflect the fact that a
significant proportion of the information presented in
the dorso-ventral view was redundant for the purpose of
identifying sex differences. Departures from strict sym-
metry are, of course, present in each specimen. Since no
aspect of the cranial morphology in lateral view is char-
acterized by any symmetry, however, the effective infor-
mation content of the lateral, as opposed to the dorso-
ventral, representations of C. lupus cranial morphology
would appear to be greater on both theoretical and
(now) empirical grounds.

Once again, it is instructive to compare the misidenti-
fied training-set specimens in both analyses. Consistent
with the independence of patterns of morphological mis-
identifications between alternative discrimination proce-
dures seen in the dorso-ventral view analysis, there is no
overlap between the four outlines misidentified by the
lateral view CVA solution and the three outlines mis-
identified by this NB analysis. In contrast, two of the
three outlines misidentified by this NB analysis represent
the same specimens misidentified by the dorso-ventral
view NB analysis (M07924 & and M08207 ). This cor-
respondence suggests the NB analysis is focusing on as-
pects of morphological variation that are present in both
dorso-ventral and lateral views. In contrast, only a single
specimen (M12476 Q) was misidentified by both the
dorso-ventral and lateral view CVA solutions, a result
that suggests the CVA result was not influenced greatly
by morphological similarities and differences common
to both views. Similar to the dorso-ventral view results,
however, the same discrepancy exists between sex clas-
ses in terms of the number of misidentified specimens.
In the case of the lateral view CVA, the preponderance
of misidentified specimens were male (63%) whereas
misidentified female outlines (67%) dominated the NB
analysis result.

Comparing the morphologies of these two misidentified
specimen subsets, we were, again, confronted by confusing
inconsistencies. In terms of the CVA result, specimen
M08291 &' lacks a canine tooth and exhibits an unusually
forward placement of its lateral incisor. But the crania of
other specimens that also lack canine teeth and/or have
unusually placed incisors were identified correctly by the
CVA discriminant function. Incorrectly identified speci-
mens M08068 @, M10334 @, and M11108 & exhibit small
sagittal crests. But other specimens with equally reduced
sagittal crests (e.g., M07952 &, M07957 Q, M07987 &)
were identified correctly by the trained CV-1 axis. Incor-
rectly identified specimens M08291 & and M11417 & ex-
hibit robust orbits such that the curve of the frontal bone
becomes part of the lateral outline between the snout and
the braincase. Nonetheless, other specimens with equally
prominent frontal bones (e.g, M07941 &, M07987 &,
MO08026 Q) were identified correctly in the CVA result.
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Incorrectly identified specimen M11108 & exhibits a
distinctly rounded auditory bulla that imparts a
curved aspect to its basicranial outline. But again,
other specimens with equally robust auditory bullae
(e.g., M08288 3, M12418 Q) were identified correctly.
As in the dorso-ventral analysis, it appears constraints
imposed by requiring specification of a strict, geomet-
rically linear discriminant decision surface operated to
exclude a number of training-set specimens from
their correct placement classes.

With regard to these lateral crania NB analysis results,
commonalities are far easier to identify. Both M08207 ¢
and M08286 @ possess abnormally short snouts; very ro-
bust, prominent canine and lateral incisor teeth; sharply
curved molar dental arcades; and highly arched premolar
dental arcades when compared to typical females. Simi-
larly, M07924 & exhibits reduced canine teeth, a lower
snout, more extended braincase, and more gently curved
molar dental arcade than typical males. As was the case
in the dorso-ventral crania NB result, it is difficult to es-
cape the impression that this algorithm found different,
and arguably more generalized, characteristics on which
to separate C. lupus crania into sex classes relative to
the CVA solution. The NB analytic result was also far
more statistically significant than the CVA result with
both the parametric and 1000-iteration bootstrapped
versions of the log likelihood ratio test returning mark-
edly significant p values of less than 0.001% (¢ = 8.65).

Image-based analyses

In order to explore how strictly image-based analyses
might operate in an advanced machine-learning context,
the LeNet-5 CNN architecture was used to analyze
medium-resolution images of the same Israeli C. lupus
dataset from which the foregoing boundary outlines had
been extracted in both dorso-ventral and lateral views.
This test examined the effect of altering the type of data
collected for morphological analysis as well as the per-
formance of this alternative, non-linear approach to
finding the best between sex-class decision surface.

Dorso-ventral view results

Figure 6 summarizes the raw structure of the Israeli C.
lupus images in dorso-ventral view using the t-distrib-
uted stochastic neighbor embedding (¢-SNE) algorithm
[44, 45] as the basis for ordination. This distance-based
index was developed to facilitate reduction of high-
dimensional data for the purpose of visualization in low
dimensions and has been shown to produce ordinations
that reveal structure at many different scales. Owing to
the t-SNE index’s sensitivity, care must be taken when
interpreting such results as it is well known that appar-
ent clustering can result, even in cases where there is no
structure (e.g., when applied to data derived artificially
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Fig. 6 Two-dimensional feature-space plot of the Israeli C. lupus crania in dorso-ventral view based on the t-distributed stochastic neighbor
embedding (t-SNE) algorithm. Note the lack of obvious groupings in the distribution of these coordinate-based representations of morphological
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from a single statistical distribution, [45]). However, for
these dorso-ventral view images, the 2D ¢-SNE ordin-
ation is noteworthy for its lack of obvious internal, sex-
based structure. Irrespective of these broadly overlapping
fields of morphological variation, there is an unantici-
pated amount of offset between the male and female
fields with fully 39% of the total sample lying outside the
region of overlap. This suggests more sex-based

variation is present in the images than the outline ana-
lysis results suggested even before processing designed
to maximize group differences.

Our embedded learning LeNet-5 CNN was initialized
prior to training with random weights and then trained
using 1692 pairs of images drawn randomly from the
complete set of 2116 pairwise combinations of Israeli
gray wolf, dorso-ventral view images. Each training

-

Loss
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Fig. 7 Embedded LeNet-5 training summary for the dorso-ventral crania dataset. Note the length of the training cycle, the steady improvement
in the loss ratio during the whole of the training interval, and the distinct reduction in loss improvement as the point of convergence is reached.
The entire training cycle took 21's of CPU time to complete
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round involved 702 randomly selected image pairs. Re-
sults of each training round were compared to the
training-set designations and network weights adjusted
via backpropagation to new values using a standard
gradient-descent algorithm. Loss-rate convergence was
achieved at a value of 1.72 x 107'? after 26 processing
rounds, by which time a total of 44,928 image pairs had
been evaluated (Fig. 7).

The result of embedded LeNet-5 CNN training for
these dorso-ventral view images is summarized in
Table 5. Unlike the previous EFA-PCA-CVA and EFA-
PCA-NB analyses of the outline morphometric data, the
image-based embedded LeNet-5 system returned perfect
sex-based discrimination results for the training set. The
distinctiveness of the male and female morphological
fields discovered by this analysis not only suggests sex-
based morphological differences exist in these dorso-
ventral view morphologies, but that these differences are
not confined to the shape of the boundary outline. Thus,
they could not be recognized by outline-based morpho-
metric methods.

While it might be argued that the degree of separation
indicated by Table 6 is biased from an evolutionary point-
of-view, owing to the fact that biologically corresponding
topological (not homologous, see [42, 46]) position match-
ings were not employed exclusively in this comparison,
the gross similarity between male and female members of
this species, in terms of their cranial anatomy, along with
the steps taken to standardize the sizes of images across
the dataset, minimized the effect of such differences. As
these same standardization procedures were applied to all
images (see Additional file 3), our image data contained
no artificial clues that could have been responsible for the
sex discrimination. More tellingly, the fact that the em-
bedded LeNet-5 CNN was so successful in finding very
prominent sex-specific differences in a view of cranial
anatomy for which no such differences had been recog-
nized previously—either qualitatively by taxonomists or
via morphometric analysis—illustrates both the power of
this approach and the wealth of relevant information
standard multivariate and geometric morphometric ap-
proaches to morphological analysis have been unable to
access.
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Drawing on an analogy with CVA (see [47]), it also
might be argued that this result is either artifactual and/
or insignificant statistically insofar as interactions be-
tween the dimensionality of these image data and sample
size were such that between-class differences would be
found for any class-level grouping. The fact that a per-
fect discrimination between sexes was achieved argues
against the significance of this result being tested using
the standard statistical procedures employed previously.
However, if this discrimination result was artifactual—
the result of overfitting of the trained model to this par-
ticular dataset—the trained network’s performance
should be poor when used to identify genuinely novel
morphologies that had not been used to train the
system.

Since the rarity of well-preserved Israeli gray wolf cra-
nia is the reason our sample size is small, splitting the
dataset into training and testing sets was inadvisable.
Nevertheless, a “leave-one-out” jackknife procedure was
feasible. Under this protocol, the number of pseudo-
analyses undertaken was equivalent to the number of
specimens in the sample. This strategy has often been
used to evaluate the stability of linear discriminant ana-
lysis results though, despite the fact that cross-validation
is considered a viable check on post-training ML per-
formance [48, 49], to date, the leave-one-out jackknifing
has been employed much less commonly in the context
of either ML analysis in general or CNN analyses in
particular.

When this jackknife evaluation strategy was used to test
the ability of the trained LeNet-5 CNN to identify the
sexes of Israeli gray wolf crania in dorso-ventral view, a set
of a posteriori identification results identical to those
shown in Table 6 were obtained. Based on this perform-
ance, there can be little doubt that (1) sex-specific patterns
of morphological variation are present in our sample of Is-
raeli gray wolf crania and (2) aspects of these differences
are visible in dorso-ventral view. Despite being trained on
a small dataset, the embedded LeNet-5 CNN system con-
verged on a set of interconnected-layer node weights that
allowed the sex-difference signal encoded in these cranial
morphologies to be identified and employed to make cor-
rect sex assignments for both the training-set morphology

Table 5 Confusion matrices for analysis of C. Jupus dorso-ventral view images using the LeNet-5 CNN architecture in an embedded

learning mode. Row and column counts as in Table 1

Group Female Male Total correct Class totals Percent correct
Female 21 - 21 21 100.00
Male - 25 25 25 100.00
Total correct 21 25 46 46 100.00
Total estimated 21 25 46

Percent correct 100.00 100.00 100.00
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Table 6 Confusion matrices for analysis of C. Jupus lateral view images using the LeNet-5 CNN architecture in an embedded

learning mode. Row and column counts as in Table 1

Group Female Male Total correct Class totals Percent correct
Female 21 - 21 21 100.00
Male - 25 25 25 100.00
Total correct 21 25 46 46 100.00
Total estimated 21 25 46

Percent correct 100.00 100.00 100.00

and novel morphologies that fall into the range of sex-
based variations represented in our sample.

Lateral view results

Figure 8 summarizes the raw structure of the Israeli C.
lupus images in lateral view using the £-SNE algorithm.
As was the case for the dorso-ventral view image dataset,
it is evident that no overt within-sex group clustering is
present in this 2D ¢-SNE ordination space. However, un-
like the previous dorso-ventral view analysis, only a
small proportion of the sample (c. 15%) lies outside the
common field of variation, and of these, it is the female
morphologies that exhibit the strongest shape depar-
tures. Of the five female specimens that comprise this
group (M07957 @, M08041 @, M08193 @, M09181 @,
M12477 Q), all exhibit prominent zygomatic processes
placed on very prominent frontal brows, either high
(M08041 @, M08193 Q, M12477 @) or long (M07957 @,
MO09181 Q) snouts, and prominent sagittal crests. Never-
theless, aspects of these characteristics are present across
the female component of the sample and some crania

that appear to exhibit all three (e.g., M11684 Q) plot well
within the region of sex overlap. This result suggests
that, if a consistent pattern of sex-based variation exists
in these data, it is probably quite subtle and possibly
confined to comparatively small cranial regions.

For the lateral view image set, the embedded learning
LeNet-5 CNN was trained using 1692 pairs of images
drawn randomly. After each training round, results were
compared to the training designations and network
weights adjusted via backpropagation to new values.
Loss-rate convergence was achieved at a value of 1.56 x
107'? after the 40 processing rounds (Fig. 9), by which
time a total of 69,120 image pairs had been evaluated.

Substantial differences were evident between the CNN
training histories of the dorso-ventral and lateral view
training sets. In the case of the latter, training continued
for more rounds, signaling the greater morphological
complexity—and information richness—of the lateral
view images. These differences cannot be accounted for
by the different sizes of the dorso-ventral and lateral
image frames because (1) the dorso-ventral image frames
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Fig. 8 Two-dimensional feature-space plot of the Israeli C. lupus crania in lateral view based on the t-SNE algorithm. Note the lack of obvious
groupings in the distribution of these coordinate-based representations of morphological variation and sample structure
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Fig. 9 Embedded LeNet-5 training summary for the lateral crania dataset. Note the greater length of the training cycle relative to the dorso-
ventral view analysis (see Fig. 7), the steady improvement in the loss ratio during the whole of the training interval, and the distinct reduction in
loss improvement as the point of convergence is reached at or around 36 training rounds. The entire training cycle took 35 s of CPU time
to complete

are actually 23% larger than the lateral image frames (see
the “Materials” section) though the lateral view image
takes up more of the frame than the dorso-ventral view
images (see Fig. 2) and (2) all images in both analyses
were interpolated down to the LeNet standard of a 28 x
28 pixel frame prior to training (see the “Methods” sec-
tion). Overall, these results give the impression that the
embedded LeNet-5 CNN architecture found the lateral
view images more challenging to separate into sex-
specific groups. This result is consistent with the prelim-
inary indications provided by the z-SNE subspace plot
(Fig. 8).

In some ways, this result is also expected on trad-
itional taxonomic grounds insofar as human taxonomists
would naturally focus on the morphological information
recorded in the lateral view because a greater number of
taxonomic characters are visible. However, this greater
information content also represents a greater challenge
as the complexity of the morphological patterns on dis-
play can easily overwhelm the processing capabilities of
human visual systems, even those trained to an expert
level. This is why taxonomists constantly search for sim-
ple morphological indicators that express, or serve as a
proxy for, differences whose overall signatures may be
distributed far more broadly across the morphologies in
question.

Given this level of complexity and apparent morpho-
logical intergradation, what was unexpected is that the
embedded LeNet-5 CNN system was also able to achieve
perfect sex-separation results for these lateral view

images (Table 6). Indeed, judging from the number of
processing rounds necessary to achieve convergence, the
dorso-ventral view dataset contained more obvious sex-
specific information. This seems counterintuitive from a
qualitative morphological analysis point-of-view. How-
ever, human and computer vision systems exhibit sub-
stantially different sensitivities (see [50—53]). It may well
be the case that sex-specific aspects of the dorso-ventral
view dataset are present and obvious, but simply difficult
for human visual systems to perceive.

As with the dorso-ventral view analysis result, any sus-
picion that perfect sex discrimination for the lateral view
training set based on the embedded LeNet-5 CNN might
be a consequence of overfitting was evaluated objectively
using the leave-one-out jackknife identification strategy.
This analysis resulted in an error-free set of post hoc sex
identifications for all specimens after their removal from
the training set sequentially, prior to retraining and sub-
sequent identification of the sequestered specimen. As a
consequence of this test result, there can, once again, be
little doubt that substantial, consistent, and recognizable
sex-specific differences exist in the lateral views of our
Israeli C. lupus specimens.

Discussion

For the collection of C. lupus specimens analyzed here,
clear and consistent evidence of sex-specific morpho-
logical shape differences has been demonstrated using
two different morphological datasets, two different
means of sampling morphological data, and three
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different data-analysis procedures. Extension of these re-
sults to an interpretation of sex-based morphological dif-
ferences that may exist within larger populations of
northern Israeli gray wolves—which we do not advocate
at this juncture—would require acceptance of the as-
sumption that the present sample contains a statistically
adequate representation of this larger population. Such
may, or may not, be the case. Only the collection of cra-
nia from additional individuals will provide an answer to
this larger question. What our results do demonstrate—
without question—is that compelling and statistically
significant sex-specific differences exist in the morpholo-
gies exposed in the dorso-ventral and lateral views of the
specimens included in our sample, which is the largest
sample of Israeli gray wolf specimens assembled to date.
Our results also document the superior performance
of both the NB and embedded CNN machine-
learning procedures over those of the linear ordin-
ation and discriminant data-analysis procedures
employed routinely by geometric morphometricians,
at least in terms of recovering group-level patterns of
morphological distinction. There is no reason to sus-
pect similar results would not be obtained if these
procedures were applied in other situations in which
group-level morphological distinctions were of inter-
est, irrespective of taxonomic group.

In terms of size variation, our findings agree with re-
sults obtained by Mendelssohn and Yom-Tov ([54]:
Table 86) using linear measurements taken on a small
sample of wolf crania from the Golan Heights and
northern Israel. Though the expected differences be-
tween sexes are apparent in the sex-specific measure-
ment averages and distribution modes, there is obviously
great overlap in cranial size ranges between the sexes in
our sample.

Our results may seem at odds with some other find-
ings. For example, Milenkovi¢ et al. [16] reported sex-
based size variation in cranial assessments of a small
gray wolf sample. However, their test was applied to a
pooled sample of Carpathian and Dinaric-Balkan wolves,
and so cannot be used to infer the states of individual
populations. In addition, these authors’ use of a pooled
sample increased the sample size used for the body-size
differentiation test and so would be expected to return a
significant difference for a smaller size differential. In an-
other example, Hillis and Mallory [23] reported sex-
based dimorphism in the mass of various gray wolf body
organs (e.g., heart, liver, kidney), some long-bone lengths
(e.g., ulna radius, tibia-fibula, femur, but not humerus),
and total body mass. As our investigation is focused only
on the cranium, our results do not disagree with theirs
[23], especially since that investigation found non-
significant sex-based differences in total body length and
contour length.
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Sex-mediated dimorphism can occur either in the con-
text of size or shape variation. Rensch’s rule [55-58]
states that, in groups of related species, sexual size di-
morphism is more pronounced in species where males
are the larger size. Since the gray wolf is the largest ex-
tant member of the Canidae [27], it is reasonable to ex-
pect this species to exhibit pronounced patterns of size
dimorphism. Moreover, the fact that gray wolves exhibit
polygyny and have sexually differentiated behavioral
roles that reward male size differentials when defending
territory or competing for mates makes this species a
classic mammalian example of Rensch’s rule [55, 56].

The standard allometric model [59—-64] assumes that
differences in shape arise as a result of selection on gen-
eralized body size. In one of the most widely cited text-
book applications of this model, Gould [65] argued that
the antlers of the Irish Elk (Megaloceros giganteus)
attained their outstanding size not as a result of direct
adaptive selection on antler size itself for some specific
utility (e.g., sexual display), but as a result of indirect se-
lection for body size through allometric linkage (see [66]
for an alternative physiological model that still involves
allometric scaling relations). Under this model, sexual
dimorphism among adults might arise as a result of the
differential expression of allometric scaling relations that
arise from one sex attaining a greater size than the other.
Countless allometric investigations have applied this
model to morphometric data collected from various spe-
cies. However, a lesser-discussed alternative also exists
in which each sex exhibits ontogenetic differences, such
that observed morphological distinctions represent the
unfolding of inherently different sex-specific trajectories
through the size-shape-time space (see [67, 68] for alter-
native discussions of this space).

These two models make different predictions with re-
gard to the modes of shape variation that should be
found in individuals of different sexes. Owing to our fail-
ure to find sex-based size differences in our Israeli C.
lupus sample despite the existence of clear and consist-
ent shape differences between male and female crania,
our results are more consistent—at least superficially—
with this latter allometric model. We acknowledge that,
owing to our small sample size and lack of direct onto-
genetic data, confirmation of this working hypothesis
must await focused ontogenetic investigation and the
collection of additional specimens. Nevertheless, the re-
sults we have documented are plainly inconsistent with
the standard allometric model. If our suspicions are cor-
rect, gray wolves might supply an important cautionary
tale with regard to the classic mistake of interpreting
patterns of static allometry as if they were patterns of
ontogenetic allometry.

In their study of sexual dimorphism in Urocyon,
Schutz et al. [15] failed to find pronounced patterns of



MacLeod and Kolska Horwitz BMC Biology (2020) 18:113

size or shape cranial dimorphism. Instead, these authors
were able to demonstrate sexually dimorphic pelvic
shape differentiation in the extant species they investi-
gated, results that are, again, plainly at odds with the
prediction of Rensch’s rule. These authors proposed that
sexually mediated differences in factors such as offspring
size and locomotor mode may play a greater role in de-
veloping and maintaining intraspecific patterns of sexual
dimorphism than “whole-body” allometric affects associ-
ated with dimorphism in body size. Alternatively, in a
comprehensive study of 5300 bird species, Dale et al.
[58] found that Rensch’s rule was driven primarily by
correlated evolutionary change in females to generalized
directional selection on males even after normalization
for a variety of potential generating factors (e.g., pol-
ygyny/polyandry, plumage dichromatism, fecundity,
intersexual resource competition).

While logic would suggest statements made by Dale
et al. [58] and Schutz et al. [15] regarding the factors re-
sponsible for Rensch’s rule, as well as the implications of
differential shape dimorphism, cannot both be correct,
this assumes that the results produced by these (and
other) investigations are comparable and document both
fair and representative summaries of generalized sexually
dimorphic patterns, not only in terms of the specific
morphological structures investigated, but across the en-
tire phenotype. Indeed, this discrepancy raises the more
fundamental issue of whether results obtained from any
set of investigations of specific morphological structures
can be taken as valid proxy representations of the mor-
phological states of whole populations or species.

The results obtained by Dale et al. [58] were due en-
tirely to comparisons of male and female avian wing
lengths which were demonstrated to have a reasonably
high coefficients of determination with body mass (r* =
0.89) and, as a consequence, assumed to be valid proxies
for body size. Owing to the employment of a single lo-
calized variable to represent whole-body size, these in-
vestigators were unable to address the question of the
spatial variability in the expression of sex-based shape
differences or to assess the ontogenetic, evolutionary,
ecological, or behavioral implications thereof. In effect,
their research design equated sexual dimorphism with
sex-specific size differences. While it may be true that a
single linear distance variable might provide an adequate
proxy for generalized size variation across a taxon’s
body, the empirical findings of most morphometricians
over the last 50 years suggest this is rarely, if ever, the
case. Consequently, it has long been considered best
practice in allometric studies to employ measurements
taken from different regions of the body to construct
synthetic, whole-body estimates of both size and shape.

In the case of the Schutz et al. [15] investigation, body
size was estimated using centroid size, which is the
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multidimensional estimator that, by definition, is uncor-
related with all measures of shape [69]. Here, shape vari-
ation was tied to determination of the partial Procrustes
distances between paired landmark configurations in
which the extraneous variables pertaining to (centroid)
size, position, and rotation relative to a reference config-
uration (= the mean landmark configuration for the
sample) had been removed from consideration [69-72].
This clear separation of size variation from shape vari-
ation allowed Schutz et al. [15] to consider both the
size-based and shape-based aspects of sexual dimorph-
ism as distinct phenomena. However, both these aspects
of cranial and pelvic variation were tied ultimately to the
cranial and pelvic landmark locations used to represent
these structures which were targeted a priori, before any
empirical results had been generated.

In both these cases, representation of the complex
three-dimensional morphologies of bodies and/or body
structures via sparse sets of linear distances or two-
dimensional landmark locations (=in effect, two linear
distances) inevitably excluded much information rele-
vant to the documentation of sexual dimorphism—or
any relevant morphological contrast. By itself, this does
not represent an insurmountable problem so long as the
goals of the analysis are tied to the specific structures,
and positions on these structures, that have been sam-
pled. But the stated goals of both these investigations
were to discover whether sex-specific dimorphic patterns
of morphological variation were present in bodies and
body structure of the taxa in question as a whole.

“The objective of this study is thus to test two crit-
ical predictions of the sexual selection hypothesis
using a close to complete representation of taxa
(subfamilies) within an entire class (Aves). First,
prediction 1: groups of related species in which sex-
ual selection on size is stronger in males should
demonstrate positive allometry, independently of
confounding factors such as the overall degree and
range of size dimorphism. Second, prediction 2:
groups of related species in which sexual selection
on size is stronger in females should demonstrate
negative allometry” ([58], p. 2972)

“We examined sexual size and shape dimorphism in
the cranium and os coxae (one of two paired bones
comprising the pelvis) because dimorphism in these
body regions is potentially affected by differences in
sexual selection.” ([15], p. 340).

Clearly, the a priori selection of particular aspects of
the bodies or body structures becomes problematic in
such cases insofar as patterns of variation inherent in a
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small number of particular features may not constitute
an adequate representation of the body, or the structure,
as a whole. This danger is particularly obvious and per-
tinent if negative results are generated as they were in
aspects of both these investigations.

At this point, it must again be stressed that no chal-
lenge is being offered to the results obtained by Dale
et al. [58] or Schutz et al. [15], only to the extended in-
terpretations offered by these authors which could be
taken to imply their results can, or should, be considered
generalized assessments of the species morphologies
under investigation and/or to cover aspects of avian and
mammal morphology that were, in fact, not sampled. In
other words, there is an important difference between
stating that a species is (or is not) sexually dimorphic be-
cause a few characteristics have been assessed and found
to have (or not) sex-specific expressions at comparable
life-history stages, and stating such dimorphism extends
to all aspects of the morphology whose expression
thereof might be either obvious or subtle owing to allo-
metric scaling relations or sex-specific developmental
pathways. At the very least, it is incumbent upon investi-
gators to specify the level of phenotypic generality to
which their interpretations apply.

The reason why generations of biologists, morpholo-
gists, and morphometricians (including the senior author
of this article) have been trapped into this pattern of in-
appropriately generalizing from results obtained as a
consequence of highly specific analyses of aspects of or-
ganismal morphology is that, for (literally) centuries,
there has been no alternative. The quantitative analysis
of morphology and morphological variation required the
quantification of particular sets of observations, first as
sets of linear distances between corresponding landmark
locations and later as configurations of landmark or
semilandmark locations themselves (see [31] for a re-
view). This requirement forced investigators to assume
that the small sets of quantifiable distances or coordinate
points which could be located on all specimens within a
sample were sufficient to represent the general geom-
etries of the forms and/or structures in question. More-
over, the ability to quantify patterns of morphological
variation, even in minor and somewhat idiosyncratic as-
pects of the morphology, was generally held to be super-
jor to more holistic qualitative “analyses” that relied on
the visual inspection of aspects of the morphologies in
question, performed by highly trained and experienced
morphologists, but which were not susceptible to prob-
abilistic hypothesis testing. With the advent of wide-
spread image digitization, the increase in the power of
even modestly priced computer platforms, and most im-
portantly the development of more generalized com-
puter vision-based morphological analysis algorithms, an
effective synthesis between the qualitative Gestalt and
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quantitative morphometric approaches to morphological
analysis has now been achieved [30-37, 73]. Our results,
along with others published recently (e.g., [32, 34-37]),
illustrate how new and generalized approaches to mor-
phological analyses make it possible to assess patterns of
variation in any aspect of an organism’s morphology, in
any sample for which images can be obtained, irrespect-
ive of complexity and without forcing the analyst to
make a priori decisions regarding which aspects of the
morphologies in question to measure, compare, model,
or interpret. As our analysis of Israeli C. lupus crania
has demonstrated, investigations of both size and shape
variation that support quantitative comparisons, the or-
dination of specimens in mathematical spaces, and stat-
istical hypothesis testing can be conducted directly from
2D digital images on a pixel-by-basis. By direct exten-
sion, they can also be performed on 3D digital scans on
a voxel-by-voxel basis. These assessments can be under-
taken in a manner fully compatible with most geometric
morphometric data-analysis conventions [30, 32] or by
using newer, more mathematically sophisticated ap-
proaches to the analysis of patterns in morphological
variation [32, 34-37]. The former approach is especially
convenient for conducting exploratory analyses whose
primary purpose is to identify regions of particularly
prominent patterns of morphological variation, either
within groups or between groups, whereas the power of
the latter resides in the use of non-linear methods to
achieve detailed and robust evaluations of generalized
group differences.

One common assumption often made about machine-
learning algorithms is that they recognize the same
between-group differences as linear discriminant algo-
rithms but, in some way, do so more accurately or more
efficiently. This perception is understandable because it
is difficult to imagine how classes might differ in ways
other than those that can be seen or otherwise assessed
visually (e.g., as class-demarcated distributions of points
in a variable space, as models of morphological differ-
ences based on discriminant spaces). In this sense, the
operation of machine-learning algorithms are genuinely
difficult to comprehend since, owing to their complex
mathematical nature, it has been difficult to devise pro-
cedures that enable researchers to identify which specific
aspects of morphology these algorithms are recognizing
as class-defining differences in the manner (say) of Figs. 3
and 5. Nonetheless, the close comparison of our CVA,
NB, and by extension CNN results suggests they are key-
ing on very different aspects of the morphologies under
consideration.

Despite the small number of specimens comprising
our sample, our results also offer substantial evidence
that northern Israeli C. lupus populations may be char-
acterized by spatially varied amounts of sex-based shape
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dimorphism that are likely related to the different behav-
joral and social roles males and females perform in their
packs. The shape differences recorded by our results are
subtle, and it is not surprising that they have been
missed by previous investigators. However, they are con-
sistent, interpretable, statistically significant, and subject
to further testing with larger samples.

Specifically, our results extend the findings of Gittle-
man and Van Valkenburgh [13] insofar as they point to
additional features of the cranium which suggest that
jaw-muscle size, and the consequences of jaw-muscle ac-
tivity, may play a large role in determining the patterns
of sex-based dimorphism in C. [upus populations. Our
results are also consistent with their hypothesis that
breeding system can serve to enhance the patterns of
cranial dimorphism in this species (though this
consistency needs to be explored further) as well as
demonstrating that aspects of the cranium other than
the length of the canine teeth may be involved in sexu-
ally dimorphic shape variation.

Additionally, our findings are consistent with those of
Schutz et al. [15] insofar as they confirm these authors’
suspicions that sexually dimorphic patterns of variation,
mediated by alternative social roles, appear to be present
in the cranium of large carnivore species as well as in as-
pects of the pelves (though we have been unable to find
any published reports of quantitative, C. lupus pelvic-
shape investigations). In a recent study using morpho-
logical indices of robusticity, Morris and Brandt [18] re-
ported significant sexual dimorphic differences in wolf
post-cranial forelimb and hindlimb elements as well as
crania. These authors attributed the marked variation
they observed in these characters to selection in males
for improved prey-capture performance, a result that re-
iterates the findings of Hillis and Mallory [23] based on
visceral and adipose parameters in gray wolves. We sus-
pect this explanation probably accounts for the cranial
shape differences we report here for Israeli wolves as
well. Our findings also agree with those of Milenkovi¢
et al. [16] insofar as they underscore the importance of
the zygomatic arch as a locus of sex-specific shape dif-
ferentiation in C. [upus crania while offering consider-
ably more detail about the geometric character and
distinctiveness of these differences than any linear dis-
tance or landmark-based assessment has to date.

As we have noted above, one potential criticism of the
image-based methods we have employed is that pixel ar-
rays lack a simple and straightforward procedure for
tracking the migration of corresponding biological struc-
tures that many geometric morphometricians find at-
tractive in landmark-based studies. This criticism is both
true and false. In the case of simple diagrams such as tri-
angles, there is no difference between the representation
of size and/or shape differences as sets of Cartesian
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coordinates or as pixel locations. The Cartesian repre-
sentation of the form is explicit in its landmark location
values whereas, in the latter, it is implicit in the config-
uration of landmarks within a pixel frame, but in no way
is it less realized or informative. Leaving aside the theor-
etically possible, but practically rare, case in which
unique pixel-landmark vertices migrate to positions that
correspond to the precise locations of alternative pixel-
landmark vertices (e.g., an equilateral triangle rotated
through 120° of arc about its centroid), these two repre-
sentational conventions yield very similar results irre-
spective of the methods chosen to analyze them.
Nonetheless, in complex images, the “distance” between
images may be thought of as the sum of differences be-
tween the pixel brightness/color values across all loca-
tions in the pixel frame. These distances correspond in
principle to the distances representing the displacement
of corresponding pixel locations, but will tend to depart
from one another as images increase in complexity or
whenever images of forms that differ radically in their
morphological structures are included in the same ana-
lysis. But these same representational constraints also
apply to the landmark-based analysis where they can
conspire to reduce the spatial resolution of landmark-
based analyses owing to difficulties in finding a sufficient
number of comparable landmark locations across all
specimens in the sample. The ability of CNN systems to
identify similar patterns of morphological variation irre-
spective of where they occur in an image frame and/or
specimen orientation circumvents the entire issue of
simplistic, point-by-point, image correspondences in the
context of group-discrimination problems.

Landmark datasets, by their very nature, will always be
restricted to the characterization of only a small subset
of the morphological features present in complex or-
ganic structures, whereas image-pixel datasets are, by
their very nature, sensitive to differences among all fea-
tures present in the image frame that can be represented
by pixel brightness/color values. The comprehensiveness
of this representation is the primary point of using
image-pixel data to quantify patterns of morphological
variation. In terms of achieving class characterizations,
and so facilitating reliable identifications (automated or
otherwise), fine distinctions between what is being char-
acterized and how these characterizations relate to the
underlying biology are, in many senses, beside-the-point
so long as the resulting identifications are correct, con-
sistent, generalizable, and able to be achieved rapidly
with little time taken up collecting the data on which
the identifications are based. In such instances, the dir-
ect analysis of digital images presents many clear, com-
pelling, and unambiguous advantages.

Irrespective of such considerations, these alternative
approaches to the analysis of morphological data should
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not be seen as competitors. Both can be employed in a
reciprocal manner (e.g., regions of high shape variation
identified using image-pixel analysis can be probed in
greater detail subsequently using a landmark, boundary
outline semilandmark, or combined analysis) or used in
isolation—whichever is most appropriate for the investi-
gation at hand. In the same sense, machine-learning
data-analysis techniques should not be seen as competi-
tors to more traditional eigenvector-based approaches to
multivariate data analysis. Either may be applied to the
same data, as we have shown in our comparative ana-
lyses of the C. lupus outline data using the CVA and the
NB algorithms. In our case, the machine-learning ap-
proach did a better job in finding consistent sex-
mediated differences in our C. lupus data. But there was
a (provisional) cost involved in terms of the manner in
which the NB results could be visualized and inter-
preted. Nevertheless, it is the potential that such com-
bined image/landmark-semilandmark strategies have for
supporting morphological investigations, in addition to
their “stand-alone” power, that we are most interested in
highlighting here.

Although our investigation was conceived originally as
an extension of geometric morphometrics that addresses
some of the issues that arise routinely in the context of
morphological research, the methods we have described
also have clear implications for the emerging field of
phenomics [36, 74—78]. Gene expression studies are be-
ginning to unravel the complex interactions between
genetic variation, environmental variation, and pheno-
typic variation [79, 80]. However, owing to the existence
of complex pleiotropic effects, a wide range of morph-
ologies across organismal bodies must be scanned in
order to confirm causative correlations with patterns of
genetic variation. Image pixel-based methods of mor-
phological analysis are well-suited for phenomic studies,
far more so than the selection of a few measurements or
landmark locations in terms of achieving the compre-
hensive coverage necessary to facilitate such investiga-
tions. Similarly, the ease and rapidity with which data
pertaining to the characterization of complex morpholo-
gies can be collected facilitate the assembly of large phe-
nomic datasets. In this way, an image pixel-based
approach to phenomic analysis can operationalize both
the extensive and intensive phenotyping described by
Houlé et al. [74]. The analysis of image-pixel data can
also benefit directly from the machine-learning and
automated-identification technologies that many believe
are set to revolutionize much of biological research [81—
83] as well as everyday life in the coming decades.

Finally, at their most general level, the results we have
achieved, along with those of other recent image-based
investigations (e.g., [36, 83]), suggest that morphometrics
now has the ability to transcend its roots in biological

Page 19 of 26

morphology and address important questions in fields
that have not been regarded traditionally as posing
morphology-based problems. These include research
programs in other areas of the biological sciences (e.g.,
[84]), the medical sciences (e.g., [85], the physical sci-
ences (e.g., [86]), and possibly even in the social sciences
and humanities (e.g., [87]).

Geometry is a fundamental aspect of the world in
which we live. Owing to our own evolutionary history,
we have an affinity for conceptualizing the patterns we
observe in geometric terms. The tools of shape theory—
which resulted in the development of geometric mor-
phometrics—have provided the scientific community
with a set of data-analysis procedures of truly unlimited
potential. In order to push the morphometrics revolu-
tion forward in the twenty-first century, however, mor-
phometricians need to understand the generalized
nature of the tools they possess; incorporate new, non-
linear data-analysis tools into their kit; and appreciate
the geometric dimensions of interesting questions that
exist in research fields far removed from morphometrics’
traditional “home turf’ in systematic and evolutionary
biology. By expanding the range of data that can be con-
sidered “morphometric,” the data-analysis tools available
for the investigation of these data, and the scope of sci-
entific problems that can be addressed by morphometric
methods, morphometricians can not only make import-
ant contributions in areas far removed from their field’s
local neighborhood, but provide important assistance in
reconceptualizing both the problems of, and solutions
to, issues across the broad scope of scientific research.

Conclusions

This investigation has demonstrated the existence of sta-
tistically significant sex-specific cranial-shape dimorph-
ism in a small sample drawn from the C. lupus
populations of northern Israel and the Golan Heights.
The fact that independent analyses involving alternative
representations of cranial morphology and three differ-
ent data-analysis procedures all resulted in the identifi-
cation of sexually dimorphic differences provides the
consistency expected from biologically significant as-
pects of variation as opposed to random statistical arti-
facts. In addition, the fact that all analytical indices
demonstrated that male morphologies tended to be
more rugged in terms of their typical shapes relative to
females is consistent with the results of previous quanti-
tative analyses of this species [13, 16, 23].

Although these contrasts are unquestionably present in
the data derived from our relatively small wolf sample
housed in Israeli museum collections, use of a non-
parametric bootstrap approach to statistical hypothesis
testing clarified their significance. Additionally, use of a
relatively new machine-learning image-analysis strategy—
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the embedded CNN—resulted in a vast improvement in
the focus and sensitivity of our analysis thereby providing
a viable strategy through which the data that reside in
small samples might be accessed for scientific study.

The extension of results obtained from this sample to its
parent population is uncertain at present, especially since our
sample, like most museum collections, was obtained in a
manner that cannot be considered random. Nonetheless, the
fact that differences as subtle as the ones we have docu-
mented would be judged significant if they were maintained
in a larger sample is an important finding that, at the very
least, suggests similar modes of cranial dimorphism may be
present, not only in the northern Israeli gray wolf (C. lupus)
populations, but perhaps in other populations of this species
as well. It is often the case that regional samples of ecologic-
ally important species are small. This investigation provides
an important illustration of how much can be done with
such small samples, both in terms of the exploration of pat-
terns of morphological variation and the statistical testing of
morphological hypotheses. Methodologically, it also provides
an outstanding example of how newer, more mathematically
sophisticated, approaches to the analysis of morphological
data can be used to extend, augment, refine, and in some in-
stances replace those that are considered “state-of-the-art”
currently. The results of our investigation also demonstrate
how much useful information resides in morphological data
that is not being accessed by geometric morphometric
methods—much less Gestalt approaches to morphological
analyses—and how much the continuing development of
new, computation-intensive methods of data analysis will ex-
tend and improve our ability to access and understand this
information in biological research contexts.

Generalized and multifaceted approaches to morpho-
logical data analysis offer a wide range of advantages of
interest to morphologists in general and vertebrate
biologists/paleontologists in particular, including the
provision of baseline dataset for comparing size and
shape variation in both wild and domestic populations
and provision of a generalized framework for the identi-
fication and testing of correlates between specific mor-
phological modifications and a variety of putative
biological, ecological, and environmental drivers. Owing
to the need for patterns to be identified and used in vir-
tually all aspects of scientific research, in commercial de-
velopment, and indeed in human life, we predict the role
of morphometric analysis will continue to grow and di-
versify via the collection of new types of data and use of
new data-analysis approaches.

Methods
Materials
The sample under consideration was composed of a set of
gray wolf (C. lupus) crania held in the comparative zoological
collections of the Hebrew University of Jerusalem and the
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Zoological Museum of Tel Aviv University (Additional file
1). Forty-six crania, 25 males and 21 females, were included.
While this represents quite a small sample, it accurately re-
flects a common “real world” situation with regard to the
number of specimens representing local populations that
often reside in museum collections (see also [16]). All speci-
mens exhibited full sets of permanent maxillary and
mandibular teeth or tooth sockets, tooth wear that ranged
from slight on the tooth tips to extensive on all cusps, and/or
closed  basioccipital-basisphenoid ~ and  basisphenoid-
presphenoid joins. Accordingly, all specimens were consid-
ered sexually mature adults. In the absence of precise age
data, the minimum age of our sample was estimated at ca.
4 years based on comparison with a Minnesota gray wolf
population that included known-age wolves and others
whose ages were known to within 1 year [88].

These specimens were collected between 1992 and
2010 from different regions of the Mediterranean phyto-
geographic zone: the Upper Jordan Valley, the Upper
Galilee, and the Golan Heights. Israeli wolf populations
follow a clinal north-south size gradient (incl. a pelage
color gradient) with the heaviest and largest individuals
occurring in the Golan Heights compared to those in
the southern desert region. Mendelssohn and Yom-Tov
[54] noted that specimens from the Galilee fell between
the Golan and southern wolves in terms of size and pel-
age attributes. Skull length has been reported to range
from 8.7 to 13.4% larger in Golan male and female
wolves, respectively, relative to their southern Israeli
counterparts [88]. Male Golan wolves have also been re-
ported to be slightly heavier than females (with average
weights of 29.6 kg and 25.4 kg, respectively) and larger in
all body size measurements (see [54]: Table 1). These
differences reflect these populations’ mtDNA structure
insofar as Gray et al. [89], Wayne et al. [90], and
Kahila et al. [91] all found Golan wolves to be more
closely related to European gray wolves than to
southern Israeli wolves.

According to Reichman and Salz [92], the size of the Golan
gray wolf population was ca. 80-100 adults in 2005, but is in-
creasing despite high pup mortality. Golan wolf packs are
composed of a dominant pair (a-male, a-female) with other
members typically ranging from two to seven individuals, ex-
cluding pups. The average Golan wolf home range is 46 km®
with an average foraging area of 9.1 km” Golan wolf pack
sizes change when foraging changes by season. Individuals
commonly forage alone in summer and in pack groups dur-
ing the winter. Emigration from the Golan to neighboring
areas is low (ca. 9%), and dispersal distances are relatively
short (15.6 km on average). In 1999, Mendelssohn and Yom-
Tov [54] noted that the Galilee wolf population was extinct.
However, since the 1990s, a wolf population has become
established in the Upper Galilee which, by 2012, had grown
to ca. 70—100 individuals [93].
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The Upper Jordan Valley sample is composed of indi-
viduals from the Hula region. It is possible some individ-
uals may have originated in the Golan or Upper Galilee,
but no specific information is available as to their origin.
Prior to the draining of the Lake Hula in the 1950s,
wolves were counted as one of the wild species inhabit-
ing this region [94].

Based on all the factors that have acted to restrict the
population sizes of wolves from this region, it is clear
that studies of its morphological variation patterns will
likely always be restricted to small sample sizes. Regard-
less, our sample is representative of all the documented
skeletal material available from this region.

All images used in this investigation were created
from oriented 3D scans of C. lupus crania that were
manipulated via software into standardized dorso-
ventral and right lateral (=buccal) orientations, re-
spectively. Orthographic projections of these 3D scans
were then captured as 2D digital images using screen-
capture software. Use of 3D scans was optimal for
our purpose because many 3D reconstruction applica-
tions allow a high degree of control over specimen
orientation, perspective adjustment, and illumination
(see the “Methods” section). In addition, representa-
tion of the scanned morphology via a series of filled,
semilandmark-defined polygons captures a high de-
gree of surface detail while ensuring the morpho-
logical signal is not complicated by extraneous factors
such as staining and/or variations in overall specimen
color due to age, collection locality, preparation, stor-
age history, etc.
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Methods

The mammalian cranium’s lateral aspect is illustrated
most commonly in taxonomic publications as this ex-
poses many features of the snout, braincase, and dental
arcade simultaneously (Fig. 10). However, in this view,
the zygomatic arch obscures all characteristics of the
cranial morphology that lie behind this structure. In
addition, the lateral vault, relative thickness and curva-
ture of the zygomatic arch, degree of inflation and form
of the braincase, width of the snout, and upper surface
of the zygomatic arch are all difficult or impossible to
assess accurately in lateral view (see [16] for an add-
itional example). In order for these aspects of cranial
morphology to be included in our analysis, both right
lateral and dorso-ventral views of the same set of C.
lupus crania were subjected to morphometric analysis.
The cranium’s ventral (= bottom) view was not used as,
in many museum specimens, teeth are frequently miss-
ing or broken as are the thin bones of the palate and
basicranium.

While the data-collection methods we have applied are
tolerant of a substantial amount of specimen damage, se-
verely compromised specimens will, inevitably, be repre-
sented as form/shape outliers due solely to the amount
of non-biological variation they record. Five crania in
our sample had sustained substantial damage, exhibiting
incomplete zygomatic arches (M07940 @, M07953 J,
MO07987 &, M08039 &) or braincase walls (M08200 &,
see Supplementary File 1). After a preliminary assess-
ment of left-right asymmetry in complete and well-
preserved specimens failed to find significant shape
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differences between sides, whole-crania forms for the
dorso-ventral views of these specimens were estimated
by bisecting their images along the cranial mid-line and
reflecting the undamaged half-crania across the axis of
symmetry to create pseudo-complete forms.

This decision was not made lightly as we are aware of
the many complications it induces and the advice against
this procedure’s use (e.g., [24, 25]). Nevertheless, our pre-
liminary analysis indicated these pseudo-complete speci-
mens occupy positions in various multivariate ordination
spaces consistent with the positions that would be ex-
pected if only half-cranial images were used. More import-
antly, exclusion of these damaged crania would further
reduce the sample’s size while use of half-crania would in-
evitably have necessitated the reflection of some of the
half-crania to opposite orientations as well as complicating
image registration [24, 25]. Since the damage-correction
procedure adopted here involved only a small number of
individuals, preserved all of the valid information content
of the entire sample, and since the preliminary results ob-
tained failed to provide any indication that the gross
morphologies of these “reconstructed” specimens pro-
jected to unusual positions within the various mathemat-
ical ordination spaces, we believe our decision was
prudent and justified in the context of this particular ana-
lysis. However, we hasten to add that we do not advocate
use of this procedure as a routine data-processing step.
Readers may track these specimens in the discussion
below as their registration numbers will be marked with a
“+” symbol.

Prior to further processing, all images were standard-
ized for illumination direction and intensity. The 2D
image datasets so produced were processed by placing
the images on a uniform black background, standardiz-
ing the size and the aspect ratios of their digital image
frames, reducing the size of this frame to 500 x 279
(dorso-ventral analysis) or 500 x 214 (lateral analysis)
pixel matrices, standardizing the areal size of the images
contained within the frame (to eliminate size variation),
converting the color (RGB) pixel values to an 8-bit gray-
scale format, standardizing each image’s exposure so
that each conformed to a consistent average pixel bright-
ness value, and aligning each specimen’s image to the
mean outline for each image set in a two-step procedure:
(1) alignment of all images to a reference image and (2)
a second re-aligned of all images (including the first) to
the mean image of the first alignment set. Together,
these image-based operations corrected for the trad-
itional Procrustes parameters of translation, rotation,
and scaling [71, 72].

Boundary outline semilandmark data were collected
from the original (non-size standardized) images. A
common resolution of 300 semilandmark points was
used to represent the forms of the cranial outlines in
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both lateral and dorso-ventral views. In order to ensure
comparability with the image dataset, the cranial forms
in both dorso-ventral and lateral views were represented
as complete outlines despite the fact that, in a number
of cases, teeth were either missing or had been subject
to extensive (presumably age-related) wear (see Supple-
mentary File 1). This might be regarded as an obvious
and somewhat artificial source of variation that could be
eliminated prior to analysis either through image editing
or via removal of these specimens. However, since a pri-
mary purpose of our investigation is to compare results
that might be achieved via the application of different
data-collection and data-analysis strategies, the retention
of such “real-world” complications was deemed both ne-
cessary and instructive.

Centroid sizes were obtained for both lateral and
dorso-ventral outline datasets and tested for structured
male-female differences using the parametric two-
sample ¢ test and the non-parametric Mann-Whitney
(M-W) test. Semilandmark data were then prepared for
shape analysis by submitting them to EFA [95]. For both
dorso-ventral and lateral datasets, cranial outline shapes
were transformed into 45 sets of the four elliptical Fou-
rier harmonic coefficients, the number of harmonics re-
quired to reconstruct each cranial outline to a minimum
of 95% of its original shape. These data were combined
into a 177-variable data matrix since, for each outline,
three terms of the first elliptical Fourier harmonic are
constants. Numerical data matrices representing lateral
and dorso-ventral cranial variation were processed via a
covariance-based PCA to repackage the observed shape
variation into the smallest number of independent vari-
ables consistent with preservation of 95% of the shape
structure present in the original sample.

While a PCA transform is useful for repackaging the
content of a covariance matrix, PCA is not able to repre-
sent distinctions between a priori-determined groups of
specimens accurately unless those distinctions happen to
coincide with the major aspects of pooled-sample vari-
ation [30, 32]. In order to ensure accuracy in the
characterization of sex-based differences, a secondary
CVA was performed on a dataset composed of the pro-
jected scores of each set of outline EFA coefficients on
each of the retained PC eigenvectors to create a linear
discriminant space that maximized between-group sep-
aration relative to within-group dispersion (see [49, 50]).
A mathematically equivalent procedure has been
employed recently by ecologists where it has been re-
ferred to as “canonical analysis of principal coordinates”
[96, 97].

Traditionally, the performance of discriminant func-
tion(s) is tested by using them to place members of a
known validation set into classes via applications of the
discriminant functions. Class affinity estimates are
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usually made based on proximity of the projected pos-
ition of each observation set—in this case outline
shape—to the position of the class centroids along the
discriminant axes, and the results of this exercise sum-
marized in a “confusion matrix.” Since our sample size
was limited, an alternative test of discriminant axis per-
formance was implemented via the leave-one-out jack-
knifed or cross-validation strategy [98]. Both standard
and bootstrap variants of Hotelling’s 7% [99] and log
likelihood ratio [100] tests were also used to obtain para-
metric and non-parametric estimates of the statistical
significance of the training-set group separations. Image
models for the CVA axes were calculated using the
method described by MacLeod [101].

While results generated by an EFA-based analysis of
outlines can be considered valid for the data that were
analyzed, these data, like any conceivable set of land-
marks or combinations of landmarks and semiland-
marks, represent only a small subset of the
morphological data available for analysis. Indeed, far
more data, in the form of qualitative observations, are
employed routinely by systematists to address a wide
variety of biologically relevant issues. Moreover, even
after designating cranial outlines as shapes of particular
interest, the application of biometric procedures to such
data can still result in substantial degrees of ambiguity
regarding whether the differences identified by linear
discriminant analysis are truly representative of the
morphology as a whole, irrespective of their statistical
significance [32, 36]. Alternative approaches to the ana-
lysis of morphological data, especially those derived from
the fields of computer vision and machine learning, may
represent more refined tools for use in such contexts.

In order to determine whether the EFA-PCA-CVA-
based group-separation results and statistical signifi-
cance values could be improved through utilization of a
machine-learning approach to group characterization,
the well-known Naive Bayes (NB) identification proced-
ure [102, 103] was also applied to the scores of the har-
monic coefficient values on the retained PCA axes. The
NB classifier is well-suited to analyzing PCA-score data
insofar as it assumes intervariable independence [103]
and is known to work well when the dimensionality of
the identification problem is high, but the number of
samples available for group characterization is relatively
low [102, 103], as was the case with the sample investi-
gated here.

A “deep learning” convolution neural network (CNN)
analysis was also employed to analyze the image pixel
sets directly in the form of the LeNet-5 architecture
[104, 105]. Arguably, LeNet was the CNN that sparked
initial interest in “deep learning” using convolution-
based, multilayer artificial neural networks. The LeNet-5
architecture achieved 98.5% accuracy when tested on the
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10,000 test images included in the 70,000-image Modi-
fied Nation Institute of Standards and Technology
(MNIST) image database (see http://yann.lecun.com/
exdb/mnist/) after being trained on the remaining 60,
000 28 x 28 pixel digital images.

All CNNs consist of an input layer that receives the in-
formation to be processed (in our case images) and an
output layer that makes the final allocation of the proc-
essed data into one of a number of categories or classes.
Between these, a variable number of connected or “hid-
den” layers exist that process the data by (1) accepting
the information from the input or previous layers, (2)
evaluating this information for patterns that are consist-
ent with those established by a previously identified
training set that have been allocated to their appropriate
categories (in our investigation, sex), and (3) passing this
processed data on to the next layer. This layered design
is used to overcome the problem of full connectivity
which is impractical to apply to large images, but can be
applied successfully to small images [30, 106, 107]. For
our analysis, we adopted the standard LeNet default of
autoencoding, or “stepping down” the input image reso-
lutions to 28 x 28 8-bit grayscale pixel values as an initial
processing step. Although LeNet-5 is but one of several
advanced, gradient-descent CNN architectures for
image-based automated identification applications (see
https://resources.wolframcloud.com/NeuralNetReposi-
tory), it remains one of the most efficient, best under-
stood, and most flexible of the CNN architectures
available currently. The overall structure of the LeNet-5
architecture employed in this investigation is listed in
Table 7.

One of the limitations of CNN training is sample size.
Owing to the number of interlayer weights whose values
must be calculated recursively, CNNs are typically
trained on datasets whose sizes are vast by

Table 7 Layer structure of the LeNet-5 “deep learning” CNN
employed in this investigation. Sizes refer to pixels for layers 1-
7, variables for layers 8-10

Layers Type Parameters

Image
1 Input 3-tensor (size 1x 28 x 28)
2 Convolution 3-tensor (size 10 x 25 x 25)
3 Ramp 3-tensor (size 10 x 25 X 25)
4 Pooling 3-tensor (size 10x 12x 12)
5 Convolution 3-tensor (size 20X 9 x 9)
6 Ramp 3-tensor (size 20 X 9 x 9)
7 Pooling 3-tensor (size 20 x 4 x 4)
8 Flatten Vector (size 320)
9 Linear Vector (size 2)
10 Output Vector (size 2)
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Male Female

Fig. 11 Example of embedded, paired comparison within the Israeli gray wolf (C. lupus) cranial skeletal anatomy data, including within-sex group
(vertical arrows) and between-sex group (horizontal and diagonal arrows) orientations. The existence of a multitude of paired comparisons such
as these, if they are used as the basis for a morphological assessment of within-group similarity and between-group difference, can, in many
instances, counteract the effect of inherently small sample sizes. However, in order to be a valid model of population differences, care must be
taken either to obtain a representative sample of morphological variation or to be circumspect in interpreting the results of data analyses

Male Female

morphological-research standards. A training set, such
as ours, consisting of 46 individuals would be considered
far too small by most data scientists. Such analyses typ-
ically result in overtrained systems that are unreliable
when asked to identify genuine unknown specimens.

Potentially, this problem can be circumvented by opt-
ing for training as an embedded learning system, in
which the object is not to learn the characteristics of a
priori-defined groups themselves but, rather, patterns of
explicit similarities and differences between pairs of im-
ages that either do or do not belong to the same training
group (Fig. 11). Recent published applications of this
strategy have focused on systems for describing differ-
ences between image pairs drawn from large datasets
using text-based descriptors [108, 109] as well as image-
based analyses [34, 36]. In terms of the analysis of small
to modestly sized samples, there are many advantages to
this approach, including relaxation of the use of single
assessments of individual forms insofar as all, or most,
pairwise comparisons between images in a dataset can
be employed for CNN training. Despite the fact that our
sample contains only 46 individuals, a total of 2116 pair-
wise comparisons can be drawn from it: 625 within-
group male pairs, 441 within-group female pairs, and
1050 cross-group pairs. By focusing CNN training on
differences among images of the same group, and be-
tween images of different groups, training can proceed
more efficiently than would otherwise be possible.
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