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Inter-embryo gene expression variability
recapitulates the hourglass pattern of
evo-devo
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Abstract

Background: The evolution of embryological development has long been characterized by deep conservation. In
animal development, the phylotypic stage in mid-embryogenesis is more conserved than either early or late stages
among species within the same phylum. Hypotheses to explain this hourglass pattern have focused on purifying
the selection of gene regulation. Here, we propose an alternative—genes are regulated in different ways at
different stages and have different intrinsic capacities to respond to perturbations on gene expression.

Results: To eliminate the influence of natural selection, we quantified the expression variability of isogenetic single
embryo transcriptomes throughout fly Drosophila melanogaster embryogenesis. We found that the expression
variability is lower at the phylotypic stage, supporting that the underlying regulatory architecture in this stage is
more robust to stochastic variation on gene expression. We present evidence that the phylotypic stage is also
robust to genetic variations on gene expression. Moreover, chromatin regulation appears to play a key role in the
variation and evolution of gene expression.

Conclusions: We suggest that a phylum-level pattern of embryonic conservation can be explained by the intrinsic
difference of gene regulatory mechanisms in different stages.
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Background
Both morphological and transcriptomic surveys have
proposed an “hourglass” model of evo-devo [1, 2]. The
mid-development phylotypic stage is more conserved
than both early and late development [3–7]. Currently,
the proposed mechanisms for this pattern are mainly
based on how natural selection shapes the outcome of
regulatory variation on gene expression. The first
hypothesis interpreted high conservation as a result of
negative selection [1, 2, 8]. For example, Raff suggested a
high inter-dependence in signaling among developmen-
tal modules in middle development, so expression

changes underlying this stage will generally be deleteri-
ous and under negative selection. An alternative hypoth-
esis, however, argues that high conservation can also be
the result of variation being less visible to positive selec-
tion [9, 10]. In this scenario, embryonic development is
more likely to evolve when ecological niches demand it.
For example, variation in early development can result
from adaptation to diverse ecological circumstances [11].
To distinguish the two hypotheses, Zalts and Yanai [6]
compared the expression variation of 20 Caenorhabditis
elegans mutation accumulation strains across embryonic
development and found that the nematode phylotypic
stage has lower expression variation. Since mutation
accumulation experiments mostly remove the effect of
positive selection, this study indicates that positive
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selection is not necessary to obtain an hourglass pattern
of expression evolution.
The hourglass pattern may also result from the regula-

tory mechanisms of genes at different stages having a
different inherent tendency to respond to perturbations.
Under this hypothesis, the outcome of regulatory muta-
tions on gene expression would be biased, and this
might impact the patterns of expression divergence
between species, even in the absence of patterns of
natural selection. For example, genes regulated by re-
dundant enhancers are more robust to genetic variation
on gene expression [12, 13]. In addition, broad pro-
moters (which initiate transcription at dispersed regions)
are more robust to mutations than narrow ones (which
initiate transcription at precise positions) [14]. What is
more, chromatin regulators can act as capacitors to
buffer expression divergence between species [15]. Gene
expression can vary among isogenic individuals in
homogenous environments [16–20], suggesting wide-
spread stochastic perturbations during transcription. For
example, gene expression can be perturbed by the
random distribution of molecules at cell division or by
the inherent randomness of biochemical reactions with
low molecule numbers [18, 21]. It has been suggested
that mechanisms which confer robustness to environ-
mental or stochastic perturbations on gene expression
could also buffer the effects of genetic perturbations
[22–24]. Under this hypothesis, we can use these
stochastic perturbations of gene expression to estimate
how expression responds to random genetic perturbations
at different stages. If the phylotypic stage is more robust to
genetic perturbations on gene expression, we should ob-
serve low inter-embryo expression variability at this stage,
even among isogenic embryos in constant conditions.
In this study, we built a single embryo transcriptome

time series across fly embryonic development, with a
high number of isogenic replicates. Using this dataset,
we investigated the developmental patterns of expression
variability and found that the expression variability reca-
pitulates an hourglass pattern, with the minimum of
noise at extended germband, the phylotypic stage.

Results
Single embryo RNA-seq profile over embryogenesis
We generated 288 single embryo 3′ end transcriptomes
using bulk RNA barcoding and sequencing (BRB-seq) [25],
at eight developmental stages covering the whole fly embryo-
genesis, with 3 h intervals (Fig. 1a). After quality control, 239
samples were kept (Additional file 1: Figure S1, S2). On aver-
age, we obtained over 5 million uniquely mapped reads of
protein-coding genes per embryo. Based on multidimen-
sional scaling analysis (MDS), 150 embryos follow the devel-
opmental trajectory, while there is a small cluster of 89
embryos collected at different time points mixed together

(Fig. 1b). The samples in this cluster appear to be unfertilized
eggs (Additional file 1: Figure S3). All further analysis was
performed only on the 150 fertilized embryos.

The phylotypic stage is robust to stochastic perturbations
on gene expression
We measured expression variability as adjusted SD and
standard deviation (SD) of expression between replicates
corrected for expression level (the “Materials and
methods” section; Additional file 1: Figure S4-6). This
expression variability follows an hourglass pattern over-
all, with a global minimum at E3 (Fig. 2), corresponding
to the phylotypic stage of flies [7]. There is also a local
minimum at E6. This is consistent with the pattern of
transcriptome divergence between fly and mosquito
Anopheles gambiae, with the global minimum at E3 and
a local minimum at E6 [26]. We did not find any signifi-
cant functional enrichment for genes which follow the
hourglass variability pattern. Essential genes, and highly
connected genes, have lower variability (Additional file 1:
Figure S7), as observed in yeasts [27, 28], which indicates
that variability is generally detrimental. Overall, expres-
sion variability is not equally distributed throughout em-
bryogenesis, and the variability is lower at the phylotypic
stage, supporting the hypothesis that the regulatory
mechanisms at the phylotypic stage are more robust to
stochastic perturbations on gene expression.

Testing potential confounding factors of hourglass
variability pattern
Our observations are robust to the use of different vari-
ability metrics (Additional file 1: Figure S8). Based on
bootstrap analysis (“Materials and methods” section), we
confirmed that all the stages, excepting E4, are robust to
the choice of samples used to calculate noise (Add-
itional file 1: Figure S9). Bootstrap results also suggest that
the minimum variability extends over E3 to E4. To check
whether high variability at E1 is related with a low number
of embryos at this stage, we sampled the same number of
embryos for each stage (8 embryos, without replacement)
and re-calculated the median variability across genes. We
repeated this process 500 times and compared the median
of variability over development. The pattern is similar,
with a minimum at E3 (Additional file 1: Figure S10). An-
other potential source of bias is maternal transcripts. The
embryo transcriptome is dominated by zygotic transcripts
as soon as 2.5 h after egg laying [29], so the high variability
in E1 and E2 is not directly caused by maternal tran-
scripts; we confirmed this by removing all maternally
expressed genes (Additional file 1: Figure S11). Finally, the
variation in the expression variability could either be due
to changes in the set of active genes, with genes differing
in their intrinsic variability levels, or to genome-wide
changes in the regulation of variability. To test this, we
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Fig. 2. The phylotypic stage (E3) has lower expression variability. The number of individual samples in each development stage is indicated
below each box. The lower and upper intervals indicated by the dashed lines (“whiskers”) represent 1.5 times the interquartile range (IQR), and
the box shows the lower and upper intervals of IQR together with the median. The black dot in each box indicates the mean. We performed
pairwise Wilcoxon tests between any two stages to test the significance. The multiple test corrected p values (Benjamini-Hochberg method) are
shown in Additional file 2: Table S1; they are all < 10−7

Fig. 1. Studying the expression variability throughout embryogenesis. a Methods outline. We performed single embryo BRB-seq [25] at eight
developmental stages, indicated by different colored dots. The number of samples collected at each stage is indicated in the colored triangles.
Embryo images are adapted from Levin et al. [30]. b Multidimensional scaling analysis (MDS) of 239 high-quality samples. Different colors indicate
different stages. The samples can be split into two groups: a small cluster in the top-left delimited by two red lines, and the remaining samples,
which are organized according to the embryonic stage
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reproduced our results restricted to the subset of genes
which are expressed at all stages. Under the first explan-
ation, we would expect to lose the hourglass variability
pattern, but the pattern is maintained (Additional file 1:
Figure S12), suggesting that the lower variability at E3 is
due to genome-wide regulation mechanisms more than to
changes in the gene set.

Mutational robustness shapes the hourglass expression
divergence pattern
Several studies have suggested that mechanisms which
confer robustness to stochastic variations can also buffer
the effects of genetic variations [22–24]. This raises the
possibility that the regulatory mechanisms at the phylo-
typic stage might also be characterized by stronger ro-
bustness to genetic perturbations on gene expression. In
this scenario, we should expect relatively low regulatory
sequence conservation for the stage with high gene ex-
pression conservation [7]. Indeed, mutations that are
buffered would behave nearly neutrally. To test this hy-
pothesis, we identified genes specifically expressed in
each stage and compared sequence conservation of their
core promoter regions between species (49 bp upstream
transcription start site (TSS) to 10 bp downstream of the
TSS as defined by Dreos et al. [31]; phastCons score
[32]). We found that genes specific of E3 have a rela-
tively weak promoter sequence conservation (Fig. 3a).
This pattern remains using 200-bp or 400-bp regions
around TSS but disappears using 1-kb regions (Add-
itional file 1: Figure S13). Using transcriptome indexes
of conservation (mean promoter sequence conservation
weighted by expression), we can extend this observation
to the full transcriptome (Fig. 3b). E3 has a relatively low
index, again showing that genes expressed at this stage
tend to have low promoter sequence conservation.
These results support a role of buffering effects on regu-
latory mutations in the hourglass pattern of expression
divergence in fly embryogenesis.

Histone modifications and expression variability
To investigate the mechanisms which minimize expres-
sion variability, we focused on histone modifications. It
has been suggested that histone modifications play a
prominent role in regulating expression variability be-
tween cells (cell-to-cell expression variability) [33, 34,
35–37], between individuals (individual-to-individual ex-
pression variability) [19], and between environments (ex-
pression plasticity) [38]. To systematically study the role
histone modifications play in relation to expression vari-
ability between embryos, we analyzed three active his-
tone modifications (H3K4Me3, H3K9Ac, and H3K27Ac)
at six developmental stages from modENCODE [39]. For
each gene, we calculated the mean modification signal
(background-subtracted tag density) of its proximal

promoter region (2 kb upstream to 2 kb downstream for
TSS). We found that higher modification signal genes
tend to have lower variability for all histone modifica-
tions (Fig. 4), supporting a role in minimizing expression
variability.
It has been found that, relative to narrow promoters,

broad promoters were highly enriched with H3K9Ac
[40], and Additional file 1: Figure S14). In addition,
genes with broader promoters tend to have lower expres-
sion variability [41], and Additional file 1: Figure S15).
These observations indicate that the negative correlation
between histone modification signal and expression vari-
ability could be explained by promoter shape. After con-
trolling the effects of promoter shape, however, we still
found a strong negative correlation (Spearman’s rho − 0.34,
− 0.32, − 0.32 for H3K4Me3, H3K9Ac, and H3K27Ac, re-
spectively). Interestingly, the correlation between promoter
shape index and expression variability is much weaker
(Spearman’s rho 0.08), after controlling for histone modifi-
cation signal.

Histone modifications and promoter sequence
conservation
To study the relationship between histone modifications
and promoter sequence evolution, we analyzed the cor-
relation between histone modification signal and pro-
moter sequence conservation. We found that genes with
higher histone modification signal tend to have less con-
served core promoter regions between species (Fig. 4).
Since histone modifications are enriched in highly
expressed genes [42], and selective pressure against mu-
tations changing gene expression level is stronger in
highly expressed genes [43], genes with higher histone
modification signal might be expected to have more
conserved promoter sequence conservation. Our obser-
vation of the inverse pattern suggests that genes with
higher histone modification signal are under stronger
buffering effect, thus less sensitive to mutations in their
regulatory regions, and are thus less conserved.

Higher histone modification signal at the phylotypic
stage
The relation between histone modifications and expres-
sion variability raises the possibility that the pattern of
expression variability across development could be par-
tially driven by changes in histone modification signal.
To compare histone modification signal between stages,
we normalized the promoter signal by that on intergenic
regions (the “Materials and methods” section), which are
not expected to change histone modification signal be-
tween stages. All normalized histone marks present an
hourglass-like pattern, with the highest signal at 8–12 h,
corresponding to E3 and E4, i.e., the lowest expression
variability (Fig. 5). Generally, these results show that
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histone modification signal changes over development,
with a correspondence between stronger histone modifi-
cation signal and lower expression variability, consistent
with our hypothesis.

Discussion
In this work, we found an uneven distribution of iso-
genic inter-individual expression variability, and thus of
robustness of the process of gene expression, across de-
velopment. This mirrors the hourglass evo-devo pattern
[1, 2]. Stage E3 is the most robust to a stochastic

variation on gene expression, with lower expression vari-
ability, and is the phylotypic stage of fly, with a conser-
vation between species [7].
The hourglass pattern has been mainly interpreted as a

signal of increased negative selection on gene regulation at
mid-development, the phylotypic stage [1, 2, 4, 6, 8],
although it may also result from an increased positive selec-
tion at both early and late development [6, 9, 10, 44]. How-
ever, our finding that genes expressed at distinct stages
show distinct patterns of variability suggests an alternative,
although not exclusive, model: genes expressed at the

a

b

Fig. 3. Promoter sequence conservation across embryogenesis. a Variation of promoter sequence conservation for stage-specific genes. Higher
phastCons score means higher conservation. The lower and upper intervals indicated by the dashed lines (“whiskers”) represent 1.5 times the
interquartile range (IQR), and the box shows the lower and upper intervals of IQR together with the median. The number of genes in each
development stage is indicated below each box. The multiple test corrected p values (Benjamini-Hochberg method) between any two stages are
shown in Additional file 2: Table S2. b Transcriptome index of promoter phastCons score across development. The gray area indicates 95%
confidence interval
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phylotypic stage utilize different regulatory strategies, which
respond differently to perturbations. Thus, we should not
expect divergence in gene expression to be equally likely at
all stages even without natural selection on this divergence.
The natural selection, instead, could be in part in the con-
trol of expression variability in individuals.
Consistent with previous observations in Arabidopsis

thaliana [19], we found that histone modification is an im-
portant determinant of expression variability between
multicellular individuals. Interestingly, histone modification
also plays a role in regulating expression variability between
single cells [33, 34, 35–37]. For example, a gene’s expres-
sion variability can be changed by modulating histone
acetylation level of its promoter [35]. In addition, histone
modifications are also associated with expression variability
between environments [38]. In line with these results, we
found that higher histone modification genes have less con-
served promoter sequences, suggesting that histone modifi-
cation might also buffer genetic variations on gene
expression. Although there is no direct experimental valid-
ation, it has been found that deleting chromatin regulators
tends to increase the expression divergence between species
[15]. Since the sources of expression variability discussed
above are quite different, the chromatin structure appears
to be an important regulator of the robustness of gene ex-
pression under different types of perturbations.
While we found that genes specific of embryonic

stages with lower expression divergence (E3, E4, E5, E6)

Fig. 4. Histone modification signal, expression variability, and
promoter sequence conservation. Red represents Spearman’s
correlation coefficient between histone modification signal and
expression variability; blue represents spearman’s correlation
coefficient between histone modification signal and promoter
sequence conservation. Here, for each gene, both its variability and
its histone modification signal are the mean value across stages.
***p value < 10−16

Fig. 5. Histone modification signal (Z score relative to intergenic signal) across embryogenesis. Corresponding stages of our expression variability
data are indicated below. The lower and upper intervals indicated by the dashed lines (“whiskers”) represent 1.5 times the interquartile range
(IQR), and the box shows the lower and upper intervals of IQR together with the median. The multiple test corrected p values (Benjamini-
Hochberg method) between any two stages are shown in Additional file 2: Table S3-S5
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generally have higher sequence conservation of pro-
moters, the phylotypic stage (E3) does not have the high-
est promoter sequence conservation, suggesting that the
lowest expression divergence at this stage is driven at
least in part by mutational robustness. Our analyses have
two potential caveats. First, our results were based solely
on promoter analysis, and it remains to be seen how
much these observations extend to other regulatory
elements. Second, we only considered nucleotide sub-
stitution changes, but not promoter turnover. For
large effect mutations, such as insertion, deletion, and
turnover, purifying selection may be more efficient
than mutational robustness to keep conserved expres-
sion level. For example, Piasecka et al. [45] found the
neighborhood of genes specifically expressed in the
phylotypic stage of zebrafish to be enriched with
transposon free regions and long conserved non-
coding elements, indicating stronger purifying selec-
tion for large effect mutations in the phylotypic stage.
So, it is possible that both purifying selection and
mutational robustness together shape the lower ex-
pression divergence in the fly phylotypic stage.
Although mutational robustness can evolve under

natural selection theoretically [46], the conditions are
too restrictive to be relevant in practice. In contrast,
selection for robustness to environmental or stochas-
tic variations can have a clear fitness advantage (indi-
vidual-based and immediate). Thus, we propose that
mutational buffering is a by-product of selection for
minimizing such expression variability. The exact
roles of natural selection and of histone modifications
in the patterns that we observe remain to be tested,
as does the generality of our observations beyond D.
melanogaster. Our results support an important role
for the control of expression variability in embryonic
gene expression and in the evolution of development.
We propose that selection for robustness to stochastic
and to environmental perturbations in a key embry-
onic stage has led to the evolutionary conservation
over large time scales which characterizes the phylo-
typic stage.

Conclusions
Overall, we suggest that the phylotypic stage is characterized
by selection for robustness to stochastic and environmental
perturbations. This could lead to mutational robustness, thus
evolutionary conservation of expression and the hourglass
pattern.

Materials and methods
Embryo collection and RNA extraction
Fly lines (w1118) were obtained from the Bloomington
Stock Center and reared at room temperature on a
standard fly medium with a 12-h light-dark cycle.

The fly medium we used is composed of 6.2 g agar
powder (ACROS N. 400400050), 58.8 g Farigel wheat
(Westhove N. FMZH1), 58.8 g yeast (Springaline
BA10), 100 mL grape juice; 4.9 mL propionic acid
(Sigma N. P1386), 26.5 mL of methyl 4-
hydroxybenzoate (VWR N. ALFAA14289.0) solution
(400 g/L) in 95% ethanol, and 1 L water. One hundred
to 150 flies were transferred to cages, which were
sealed to a grape agar plate (1:1 mixture of 6% agar
and grape juice). We used 4 separate cages to collect
the embryos. The adults were kept overnight on this
plate before being transferred to a new plate supple-
mented with yeast paste. Synchronization of eggs on
this plate lasted for 2 h before being swapped with a
new plate supplemented with yeast paste. We let the
adults lay eggs for 30 min before removing the plate
and letting the eggs incubate for the desired time.
Eggs were harvested using the following protocol.

First a 1:1 bleach (Reactolab 99412) 1× PBS mix was
poured on the plate and incubated for 2 min. During
this incubation, we used a brush to lightly scrape the
surface to mobilize the embryos. We then poured the
PBS-bleach mixture through a sieve, washed the plate
with 1× PBS, and poured the wash on the same sieve.
We washed the sieve several times with 1× PBS until
the smell of bleach disappeared. Single embryos were
then manually transferred to Eppendorf containing
50 μL beads and 350 μL TRIzol (Life Technologies
AM9738). The tubes were homogenized in a Precellys
24 Tissue Homogenizer at 6000 rpm for 30 s. Samples
were then transferred to liquid nitrogen for flash
freezing and stored at − 80 °C. For RNA extraction,
tubes were thawed on ice, supplemented with 350 μL
of 100% ethanol before homogenizing again with the
same parameters. We then used the Direct-zol™ RNA
Miniprep R2056 Kit, with the following modifications:
we did not perform DNAse I treatment, we added an-
other 2 min centrifugation into an empty column after
the RNA Wash step, finally elution was performed by
adding 8 μL of RNAse-free water to the column, incu-
bation at room temperature for 2 min, and then cen-
trifugation for 2 min. RNA was transferred to a low-
binding 96-well plate and stored at − 80 °C.

Bulk RNA barcoding and sequencing
The BRB-seq is a technique for multiplexed RNA-seq
[25] which is able to provide high-quality 3′ tran-
scriptomic data at a low cost (e.g., 10-fold lower than
Illumina Truseq Stranded mRNA-seq). The data (fastq
files) generated from BRB-seq are multiplexed and
asymmetrical paired reads. Read R1 contains a 6-bp
sample barcode, while read R2 contains the fragment
sequence to align to the reference genome.
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Library preparation
RNA quantity was assessed using picogreen (Invitrogen
P11496). Samples were then grouped according to their
concentration in 96-well plates and diluted to a final
concentration determined by the lowest sample concen-
tration on the plate. RNA was then used for gene ex-
pression profiling using BRB-seq. In short, the BRB-seq
protocol starts with oligo-dT barcoding, without TSO
for the first-strand synthesis (reverse transcription), per-
formed on each sample separately. Then, all samples are
pooled together, after which the second strand is synthe-
sized using DNA PolII Nick translation. The sequencing
library is then prepared using cDNA augmented by an
in-house-produced Tn5 transposase preloaded with the
same adapters (Tn5-B/B), and further enriched by lim-
ited-cycle PCR with Illumina compatible adapters.
Libraries are then size-selected (200–1000 bp), profiled
using High Sensitivity NGS Fragment Analysis Kit
(Advanced Analytical, #DNF-474), and measured using
Qubit dsDNA HS Assay Kit (Invitrogen, #Q32851). In
total, we generated four libraries. For details of the library
information, please check Additional file 2: Table S13.

Sequencing
Libraries were mixed in equimolar quantities and were
then sequenced on an Illumina Hi-Seq 2500 with pair-
end protocol (read R2 with 101 bp) at the Lausanne
Genomic Technologies Facility.

RNA-seq analysis
Generating expression matrix
The fastq files were first demultiplexed by using the
“Demultiplex” tool from BRB-seqTools suite (available at
https://github.com/DeplanckeLab/BRB-seqTools). Then,
we trimmed the polyA sequences of the demultiplexed
files by using the “Trim” tool. Next, the STAR aligner
[47] was used to map the trimmed reads to the reference
genome of fly Drosophila melanogaster (BDGP6,
Ensembl release 91 [48]). Finally, the read count of each
gene was obtained with HTSeq [49].

Filtering samples and genes
Low-quality samples need to be filtered out, since they
might bias the results of downstream analyses. In order
to assess sample quality, we calculated the number of
uniquely mapped reads and of expressed genes for each
sample [50]. We removed samples with < 0.3 million
uniquely mapped reads or with < 4500 expressed genes
(Additional file 1: Figure S1). We confirmed that these
filtered samples are indeed outliers in a multidimen-
sional scaling analysis (MDS) (Additional file 1: Figure
S16). Since lowly expressed genes have a larger technical
error, to minimize the technical noise, we need to re-
move lowly expressed genes as well. We first calculated

counts per million (cpm) with the edgeR package [51]
for each gene. Then, we removed genes with mean cpm
across samples ≤ 1, as suggested by Lun et al. [50]. Fi-
nally, for the remaining genes, we re-transformed their
cpm values to the original count values for the down-
stream normalization analysis. After filtering, we ob-
tained an expression count matrix with 239 samples
(Additional file 1: Figure S2) and 8004 protein-coding genes.

Normalization and batch effect correction
Because BRB-seq retains only the 3′ end of the tran-
script, we performed sample normalization by using
quantile normalization with log transformation in the
voom package [52], but without transcript length
normalization. To remove potential batch effects across
the four libraries, we applied the ComBat function in the
sva package [53] to the normalized and log2 transformed
expression data. For genes with expression values less
than 0 after Combat, or with original expression values
equal to 0, we change its values to 0 after Combat cor-
rection as suggested by Kolodziejczyk et al. [54].

Multidimensional scaling analysis
A number of factors could be invoked to explain the two
groups observed in our multidimensional scaling analysis
(MDS) (Fig. 1b), but they should also explain that only
one group is structured according to the developmental
time. The obvious hypothesis that they correspond to
male and female embryos does not explain that structure
and is also not supported by examining X/autosome
gene expression ratios (Additional file 1: Figure S17). An
alternative hypothesis is that samples in the small cluster
are unfertilized eggs. If an egg is not fertilized, after
completion of meiosis, the development will be arrested
[55], but they are visually indistinguishable. This hypoth-
esis is confirmed by at least two lines of evidence, in
addition to the lack of developmental time structure.
First, for expression correlation, all samples in the small
cluster are highly correlated with unfertilized egg, while
the correlations in the other samples gradually decrease
with development (Additional file 1: Figure S3A). Sec-
ond, all the samples from the small cluster are enriched
with meiosis-related genes (Additional file 1: Figure
S3B). Thus, we excluded the small cluster for down-
stream analyses, i.e., we used 150 embryos with an aver-
age of 18 individuals per developmental stage.

Metrics of expression variability
Expression variability is generally measured by the coef-
ficient of variation (CV) [56]. However, a gene’s CV is
strongly dependent on its RNA abundance (Add-
itional file 1: Figure S4). While this is an inherent prop-
erty of time-interval counting processes (such as a
Poisson process), it makes the comparison of variability
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between different conditions difficult [54, 57]. Distance
to median (DM, the distance between the squared CV of
a gene and its running median) has been proposed as a
variability metric that is independent of expression level
[28, 54, 57]. However, the DM is still strongly negatively
correlated with the mean expression level in our data
(Additional file 1: Figure S5). To avoid this dependency,
we developed another variability measure, the adjusted
standard deviation (adjusted SD), by calculating the ratio
between observed SD and expected SD. Following the
same approach as Barroso et al. [58], we performed poly-
nomial regressions to predict the expected SD from
mean expression. Since the adjusted SD metric works
much better than DM in terms of accounting for the
confounding effects of mean expression (Additional file 1:
Figure S6), we adopted it as a measure of expression
variability in our study. As observed in yeasts [27, 28],
we found that essential genes and hubs (proteins in the
center of protein-protein interaction network) have
lower expression variability than other genes (Add-
itional file 1: Figure S7), indicating selection to reduce it.
This observation provides a control that we are indeed
measuring biologically relevant expression variability.
Detailed calculation of expression variability is as

follows:

Adjusted SD
For each gene, we computed the standard deviation (SD)
in each stage and over all stages. Then, we fitted a poly-
nomial model to predict the global (across all stages) SD
from the global mean expression. We increased the de-
grees of the model until there was no more significant
improvement (tested with ANOVA, p < 0.05 as a signifi-
cant improvement). Then, based on this best-fitting
model, for each gene, we computed its predicted global
SD based on its global mean expression. Finally, the ad-
justed SD of a gene in one stage is this gene’s SD in its
corresponding stage divided by its predicted global SD.
This method is derived from Barroso et al. [58], but
computing adjusted SD rather than adjusted variance.

Distance to median: the distance between the squared
coefficient of variation of a gene and its running median
For each gene, we computed its squared CV in each
stage and over all stages. Then, we ordered genes based
on their global (across all stages) mean expression. Next,
we defined a series of sliding windows of 50 genes with
25 genes overlap, starting from the lowest global mean
expression. Finally, the distance to median of a gene in
one stage is the stage-specific log10 squared CV minus
the median of global log10 squared CV in this gene’s
corresponding window. R code was modified from the
DM function of the scran package [50].

Bootstrap analysis
For each stage, we randomly sampled the same number
of samples. Then, we computed the adjusted SD based
on these random samples. We repeated the first two
steps 500 times. Each time, we only kept the median of
the adjusted SD for each stage. Thus, in each stage, we
obtained 500 medians. Finally, we performed a Wilcoxon
test to test the significance of the difference between the
bootstrapped values of different stages.

ChIP-seq data analysis
Histone modification signal datasets
The signal data files of four euchromatin histone modifi-
cation marks (H3K4me3, H3K9ac, and H3K27ac) at six
developmental stages (0–4 h, 4–8 h, 8–12 h, 12–16 h, 16–
20 h, 20–24 h) were downloaded from modENCODE [39]
(NCBI GEO: GSE16013) (March 2018). The signal is
smoothed, background-subtracted tag density. The signal
was precomputed along the genome in 35-bp windows.

Histone modification signal for promoter
For each gene, we calculated the mean signal of its prox-
imal promoter (2 kb upstream to 2 kb downstream for
transcription start site (TSS)) by using the bedtools
“map” command [59]. The TSS and transcription end
site (TES) information was retrieved from Ensembl re-
lease 91 [48]. For a gene with several TSS and TES, we
use its mean coordinates.

Histone modification signal Z score transformation
For each modification mark in each stage, the signal value
was transformed into a Z score by subtracting the mean
signal across intergenic regions and dividing by the stand-
ard deviation signal of the intergenic regions. The inter-
genic region was defined by removing all proximal
promoter regions and gene body regions (TSS to TES)
with the bedtools “subtract” command [59]. Since the
three histone modification marks are largely enriched at
promoter over intergenic regions in Drosophila [39], this
allows to normalize between libraries. Then, for each gene,
we re-calculated the mean signal (Z score) of its proximal
promoter (2 kb upstream to 2 kb downstream for TSS) by
using the bedtools “map” command [59].

Identification of stage specifically expressed genes
Following the same approach as previously [10], we first
defined 8 stage-specific expressed artificial expression pro-
file (Additional file 1: Figure S18A). Then, for each gene,
we performed Pearson’s correlation between its real ex-
pression and this artificial expression. Finally, for each
artificial expression profile, we kept genes with top 10%
correlation coefficient as the corresponding stage specific-
ally expressed genes (Additional file 1: Figure S18B).
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Identification of hourglass expression variability genes
Similar to the stage specifically expressed gene identifi-
cation approach, we correlated each gene’s variability
profile with the median across all genes. Then, we kept
genes with the top 10% correlation coefficient as the
ones following the global hourglass variability profile.

Gene Ontology enrichment analysis
We performed Gene Ontology (GO) enrichment analysis
for hourglass expression variability genes by using the
topGO [60] R package with the “elim” algorithm.

Partial correlation
The R package “ppcor” [61] was used to compute Spear-
man’s partial correlation coefficient between histone
modification signal and expression variability after con-
trolling for the effect of promoter shape.

Transcriptome index analysis
A “transcriptome index” [62, 63] is a weighted mean of a
feature over all genes, where the weights are the expres-
sion levels of the genes at each condition (e.g., develop-
mental stage). The transcriptome index of phastCons
was calculated as:

TPIs ¼

Xn

i¼l

phastConsi � eis

Xn

i

eis

where s is the developmental stage, phastConsi is the
promoter sequence conservation score of gene i, n is the
total number of genes, and eis is the expression level
(log-transformed) of gene i in developmental stage s.

Confidence interval analysis for transcriptome index
Firstly, we randomly sampled gene IDs from each ori-
ginal data set 10,000 times with replacement. Then, we
computed transcriptome indexes for the 10,000 samples.
Finally, the 95% confidence interval is defined as the
range from quantile 2.5% to quantile 97.5% of the 10,000
transcriptome indexes.

Meiosis-related genes and transcription factors
The meiosis-related genes and transcription factors were
downloaded from AmiGO [64] (May 2018).

Individual unfertilized eggs RNA-seq data
The normalized and log-transformed expression matrix
of individual unfertilized eggs was downloaded from
NCBI GEO: GSE68062 [65] (May 2018).

Promoter shape index
The promoter shape index was downloaded from [66].
(June 2019). Lower value means broader promoter.

Essential gene annotation and protein connectivity
datasets
The gene essentiality and protein connectivity datasets
were downloaded from OGEE v2 [67] (March 2018).

PhastCons score
The pre-computed sequence conservation score phast-
Cons [32] of fly genome was downloaded from http://
hgdownload.soe.ucsc.edu/goldenPath/dm3/phastCons
15way/ (February 2018). Higher value means higher
conservation.

Experimentally validated core promoter regions
Experimentally validated transcription start sites
(TSSs) were downloaded from the Eukaryotic Pro-
moter Database (EPD) [31] (May 2018). For a gene
with several TSSs, we selected the most representative
one (the TSS that has been validated by the largest
number of samples). The core promoter region was
defined as 49 bp upstream TSS to 10 bp downstream
of the TSS [31]. We used EPD-defined TSSs here be-
cause they are more accurate for defining core pro-
moters, whose function is expected to be related to
sequence conservation. Whereas for histone modifica-
tion signal for promoter, we used Ensembl-defined
TSSs to be consistent with the source of transcription
end site (TES) information, and precision was less im-
portant in defining broader proximal promoters.
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