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Abstract

Background: Bacterial resistance to antibiotics is a growing health problem that is projected to cause more deaths
than cancer by 2050. Consequently, novel antibiotics are urgently needed. Since more than half of the available
antibiotics target the structurally conserved bacterial ribosomes, factors involved in protein synthesis are thus prime
targets for the development of novel antibiotics. However, experimental identification of these potential antibiotic
target proteins can be labor-intensive and challenging, as these proteins are likely to be poorly characterized and
specific to few bacteria. Here, we use a bioinformatics approach to identify novel components of protein synthesis.

Results: In order to identify these novel proteins, we established a Large-Scale Transcriptomic Analysis Pipeline in
Crowd (LSTrAP-Crowd), where 285 individuals processed 26 terabytes of RNA-sequencing data of the 17 most
notorious bacterial pathogens. In total, the crowd processed 26,269 RNA-seq experiments and used the data to
construct gene co-expression networks, which were used to identify more than a hundred uncharacterized genes
that were transcriptionally associated with protein synthesis. We provide the identity of these genes together with
the processed gene expression data.

Conclusions: We identified genes related to protein synthesis in common bacterial pathogens and thus provide a
resource of potential antibiotic development targets for experimental validation. The data can be used to explore
additional vulnerabilities of bacteria, while our approach demonstrates how the processing of gene expression data
can be easily crowd-sourced.
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Background

Bacterial resistance to antibiotics is a serious and grow-
ing concern in public health, taking ca. 99,000 lives and
costing 21-34 billion USD per year in the USA [1].
Methicillin-resistant Gram-positive Staphylococcus aur-
eus (MRSA) and Gram-negative Pseudomonas aerugi-
nosa are the leading causes of serious infections as they
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form biofilms. Biofilms are complex bacterial communi-
ties embedded in an extracellular matrix, and these com-
munities are able to resist antimicrobial agents [2]. For
instance, bacteria can be up to 1000x more tolerant to
antibiotics when they grow as a biofilm, compared to
single-cell suspension (planktonic cells). Consequently,
new antibiotics are urgently needed to combat these re-
sistance mechanisms, either alone or in combination
with existing drugs.
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More than half of the antibiotics currently in use tar-
get the bacterial ribosome, typically at the elongation
step of protein synthesis [3], through direct or proximal
binding of the peptidyl transferase center (PTC) which
catalyzes peptide bond formation [4]. PTC-targeting an-
tibiotics (e.g., lincosamides, pleuromutilins, chloram-
phenicol, and group A streptogramins), inhibit protein
synthesis by obstructing the proper positioning of the
tRNA substrates [5].

Bacteria can be intrinsically less sensitive to antibiotics
due to less efficient uptake of antibiotics or mutations in
ribosomal proteins that result in decreased drug-binding ef-
ficiency [3, 6]. The most frequently encountered acquired
resistance mechanism involves the methylation of the ribo-
somal RNA (e.g., by Erm family methyltransferases), which
results in decreased drug-binding efficiency and increased
viability in the presence of antibiotics [7, 8]. As modification
of the ribosomes can result in a decrease in fitness, these
methyltransferases genes tend to be induced by the relevant
antibiotics through translation attenuation [9, 10]. Alterna-
tively, the antibiotics can also be modified, pumped out, or
degraded, thus lowering the intracellular concentration to
non-toxic levels [3, 11]. Another mechanism is ribosome
protection, where the antibiotic is actively dislodged from
the ribosome by ATP-binding cassette F (ABC-F) protein,
as observed in many clinical isolates (e.g., Pseudomonas aer-
uginosa, Escherichia coli, Staphylococcus aureus, Entero-
coccus faecalis and Listeria monocytogenes) [12—14].

While the structure of the ribosomes is well conserved,
structural features of ribosomes may vary significantly
between different species, suggesting species-specific ad-
aptations of protein synthesis [15-23]. For example,
structural analysis of mycobacterial ribosome revealed
that the 30S ribosomal subunit lacks the protein bS21
that is found in Escherichia coli. Instead, the mycobac-
teria employ a unique protein bS22 near the decoding
center (DC), thereby keeping the overall number of ribo-
somal proteins in 30S subunit the same as in E. coli [19].
Thus, the identification of novel bacteria ribosomal com-
ponents has great potential for the development of
species-specific antibiotics. However, the identification
of these novel components using traditional molecular
or structural biology approaches is time-consuming.

Bioinformatic approaches are used to predict gene func-
tion and can be used to identify novel components of pro-
tein synthesis. Newly sequenced genomes of all organisms
are typically first annotated using sequence similarity ana-
lysis, where the genes are annotated based on the DNA/
protein sequence similarity to characterized genes/pro-
teins [24]. While sequence similarity analysis is well estab-
lished and gives a quick overview of gene functions in a
new genome, it has its caveats as genes can (i) have mul-
tiple functions, (ii) sub- or neo-functionalize, and/or (iii)
have no sequence similarity to characterized genes. Thus,
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while sequence similarity analysis is a powerful method, it
requires other methods to complement it [24, 25].

The wide availability of RNA sequencing (RNA-seq) data
makes it possible to study gene function from the perspective
of gene expression [24, 26-28]. Co-expression analysis is
based on the observation that genes that have similar expres-
sion profiles across experiments tend to be functionally re-
lated [24, 25, 29]. These co-expressed genes can be identified
by analyzing publicly available microarrays or RNA-seq data,
and the co-expression relationships can be represented as
networks. In a co-expression network, genes are represented
as nodes, where edges connect co-expressed nodes (links)
[30—40]. The networks can be mined for groups of highly
connected genes (called clusters or modules) that likely rep-
resent genes that are involved in the same biological process.
Due to the ubiquity of expression data, and the ability to
complement DNA/protein sequence-based gene function
prediction approaches, coexpression networks have become
a popular tool to elucidate the function of genes. The net-
works have predicted the function of genes involved in a
wide range of processes, such as various cellular processes
[38, 41-43], transcriptional regulation [44], physiological re-
sponses to the environment and stress [45, 46], and the bio-
synthesis of metabolites [34, 47—-49].

The amount of gene expression data has expanded
vastly over the last decade, resulting in > 1000-fold in-
crease in nucleotide bases on NCBI Sequence Read
Archive (SRA), from 11 TB (2010) to 12 PB (2020). Due
to limitations in software used to estimate gene expres-
sion from RNA-seq data, analyzing all this data would
have been unthinkable a decade ago. However, drastic
improvements to the speed and efficiency of software,
such as Kallisto [50] and salmon [51], allow the analysis
of gigabytes of data on even a Raspberry Pi-like mini-
ature computer [48]. Recently, combined the availability
of cloud computing and the user-friendliness of the
Jupyter notebooks to implement a large-scale transcrip-
tomic analysis pipeline, LSTrAP-Cloud [47]. Import-
antly, though Google Colab, the pipeline gives access to
a free cloud computer with 2 Xeon cores, with at least
15 GB of permanent storage (as provided by users Goo-
gle drive account) and 12 GB of RAM, giving biologists
both the software and hardware to perform large-scale
co-expression analysis.

In this study, we introduce Large-Scale Transcriptomic
Analysis Pipeline in Crowd (LSTrAP-Crowd). This sim-
ple pipeline was used by 285 undergraduate students to
process RNA-seq data of some of the 17 most notorious
bacterial pathogens. Within a week, the students proc-
essed 26,269 RNA-seq samples, comprising 263,757,103,
900 (~ 263 billion) reads and 26.38 terabytes of data.
The gene expression data was used to construct co-
expression networks, which were mined for the presence
of uncharacterized genes that were co-expressed with
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the bacterial ribosomes. In total, we have predicted more
than 100 putative proteins to be involved in protein syn-
thesis in the 17 bacterial pathogens.

Results

Obtaining and quality-controlling gene expression data
for 17 bacterial pathogens

In this study, we analyzed the gene expression data of 17 no-
torious bacterial pathogens that cause numerous diseases,
such as pharyngitis, tonsillitis, scarlet fever, cellulitis, erysip-
elas, rheumatic fever, post-streptococcal glomerulonephritis,
necrotizing fasciitis, and many others (Table 1). While more
bacterial pathogens were considered, we only analyzed bac-
teria that had at least 100 RNA-seq samples based on Illu-
mina technology found in the Sequence Read Archive [52].
In total, 26,269 RNA-seq samples were analyzed.

The RNA-seq data was streamed by using a modified
LSTRaP-Cloud pipeline (Fig. 1a), which gives each user
a free Google Colab notebook equipped with a 2 core
Xeon CPU and 12 Gb of RAM [47]. The modified pipe-
line, LSTrAP-Crowd, thus allows a large group of people
to download the gene expression data collaboratively.
Two hundred eighty-five first-year undergraduate stu-
dents were divided into 60 groups, with each group
tasked to download a maximum of 600 RNA-seq
samples (Additional file 1: Table S1). The size of each
RNA-seq sample was capped at ~ 1 Gb, allowing a per-
son running the modified LSTRaP-Crowd pipeline to
download ~300 RNA-seq samples per day [47].
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Theoretically, 85,500 (300 x 285) RNA-seq samples
equivalent to ~ 85 Tb could be processed per day by the
classroom.

For each species, all the processed RNA-seq experi-
ments were visualized as scatter plots that show the per-
centage (y-axis) against the number (x-label) of reads
pseudoaligned to the respective species’ CDS (Fig. 1b). For
each experiment, high pseudoalignment percentage indi-
cates high sequence similarity to the CDS, whereas a high
absolute number of reads indicates whether the experi-
ment has sufficient data for meaningful coexpression ana-
lysis. In this study, a minimum threshold of 1 million
reads pseudoaligned was required for the experiment to
be considered. We removed samples with n_pseudoa-
ligned < 1,000,000 and with p_pseudoaligned values that
were lower than the majority of the high p_pseudoaligned
samples (typically > 30%) (Fig. 2a, Additional file 2: Figure
S1). The scatterplot pattern was different for each bacteria,
most likely due to each bacteria having a different ratio of
coding to non-coding DNA (Additional file 2: Figure S1).
Samples that passed these thresholds (Fig. 2b) were used
to build expression matrices (Additional file 3: Table S2,
Additional file 4: Table S3, Additional file 5: Table S4,
Additional file 6: Table S5, Additional file 7: Table S6,
Additional file 8: Table S7, Additional file 9: Table S8,
Additional file 10: Table S9, Additional file 11: Table S10,
Additional file 12: Table S11, Additional file 13: Table
S12, Additional file 14: Table S13, Additional file 15: Table
S14, Additional file 16: Table S15, Additional file 17: Table
S16, Additional file 18: Table S17, Additional file 19: Table

Table 1 Genomic properties of the 17 bacteria and the RNA-seq sample statistics

Bacteria Number of genes Genome size (Mb) Student groups analyzing the data RNA-seq samples: passed QC/total
Campylobacter jejuni 1635 1.65 1 219/320
Clostridioides difficile 3769 4.27 1 182/381
Enterococcus faecalis 2579 3 1 81/195
Escherichia coli 4141 544 13 2494/7154
Haemophilus influenzae 2098 1.79 2 189/448
Helicobacter pylori 1720 1.62 1 84/167
Klebsiella pneumoniae 5141 5.78 2 536/639
Listeria monocytogenes 2817 2.78 2 370/572
Mycobacterium tuberculosis 4023 433 11 2414/6495
Mycoplasma pneumoniae 629 0.82 3 365/956
Neisseria gonorrhoeae 2159 2.15 1 102/371
Pseudomonas aeruginosa 6512 6.09 7 1372/2662
Salmonella enterica 4554 4.79 3 611/1284
Staphylococcus aureus 2638 290 5 1112/1963
Streptococcus pneumoniae 2043 213 2 422/647
Streptococcus pyogenes 1660 1.85 4 1340/1705
Vibrio cholerae 3648 4.00 1 167/311
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S18) and used for the co-expression analysis and identifi-
cation of novel genes involved in protein synthesis.

Construction and evaluation of co-expression networks
for the 17 bacteria

A small portion of real-world networks is scale-free [53],
including co-expression networks (Mutwil et al., 2010).
In scale-free networks, only a few genes are connected
(correlated) to many genes, while the majority of genes
show only a few connections [54]. Scale-free topology is
hypothesized to ensure that the network remains mostly
unaltered in case of mutations, and is an evolved prop-
erty that ensures robustness against perturbations [55].
To demonstrate that the expression data of the 17 bac-
teria can generate biologically meaningful co-expression
networks, we investigated whether the data can produce
a typical scale-free network. All of the co-expression net-
works of the 17 bacteria showed a pattern indicative of
scale-free topology, as plotting the number of connec-
tions a gene has (node degree) against the frequency of

this association produced a negative slope (Fig. 3a). This
confirms the scale-free topology of the co-expression
networks and suggests that the networks are biologically
relevant.

Interestingly, we observed that the power-law plots of
some bacteria contain more nodes with a higher degree
than expected from a network following power law
(Fig. 3a, indicated by red squares). While the basis of this
phenomenon is outside of the scope of this publication,
we speculate that this is caused by the operon structure of
the bacterial genes. Interestingly, certain bacteria, such as
Vibrio cholerae (Fig. 3a) did not show this pattern (see
Additional file 20: Fig. S2 for power law plots for all bac-
teria). Finally, Mycoplasma pneumoniae power-law plot
showed a small number of points, indicating that few
genes show PCC> 0.7 in this bacteria. This could be at-
tributed to most samples in this bacterium showing worse
mapping statistics than the other 16 bacteria (Fig. 2a, Add-
itional file 1: Fig. S1), indicating that perhaps the available
CDS for Mycoplasma are of poor quality.
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To demonstrate that our co-expression networks can
be used to predict novel components of ribosomes, we
investigated the co-expression neighborhood of
AEA92696, a 30S ribosomal protein S18 from Entero-
coccus faecalis. The neighborhood was constructed by
retrieving the top 50 genes with the highest PCC values
to AEA92696 (Additional file 21: Table S19), where gene
pairs with PCC > 0.7 are connected (Fig. 3b). Out of 50
genes, 22 (n=44%) were annotated as a component of
the 30S (e.g., S15, S4, S3) or 50S (e.g., L15, L3, L14) ribo-
somal subunit, indicating that genes in this neighbor-
hood are involved in protein synthesis. Interestingly, 7
genes in the neighborhood are annotated as “hypothet-
ical proteins” (Fig. 3b). Since these genes are found in
the neighborhood that is likely to be involved in protein

synthesis, we propose that these hypothetical proteins
are also involved in protein synthesis in Enterococcus
faecalis. We observed that ribosomal proteins (RP) show
distinctively higher PCC values to other RPs in nearly all
bacteria (Fig. 3c, RP-RP), when compared to PCC values
between ribosomal proteins and non-ribosomal genes
(Fig. 3c, RP-Other). Thus, ribosomal proteins tend to be
neighbors to other ribosomal proteins in the co-
expression networks.

To identify novel components of protein synthesis
with high confidence, we set to identify cutoffs that re-
sult in most accurate predictions of ribosomal proteins.
The two parameters we investigated are (i) PCC cutoff
required to identify co-expressed genes and (ii) the mini-
mum percentage of ribosomal protein neighbors (n)
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required to assign a gene to protein synthesis. To bench-
mark the performance of the networks at these different
cutoffs, each known ribosomal protein was treated as a
gene with unknown function, and the ability of the net-
works to correctly predict the involvement of the riboso-
mal proteins in protein synthesis was scored. To score
the performance, we used F1 score, which is a harmonic
mean between precision (true positives/(true positives +
false positives)) and recall (true positives/(true positives
+ false negatives)), where higher F1 score indicates high
classification accuracy.

The analysis revealed the PCC cutoff and # cutoff com-
binations that produce the highest F1 score for the 17 bac-
teria (Fig. 4a). The PCC cutoffs range from > 0.4 (E. coli)
to >0.8 (e.g., S. pyogenes), while n values range from 20%
(i.e, >20% of co-expressed genes should be ribosomal
proteins to assign a gene to protein synthesis) to 50%. The
F1 score was typically poor at low (0.1) and high (1) PCC
cutoffs, as the networks likely connected too many irrele-
vant (for PCC>0.1) and no relevant (PCC=1) genes.
Similarly, the # value typically resulted in poor F1 score at
low (10%) and high (100%) cutoffs, as too many irrelevant
genes (10%) or too few relevant genes (100%) were pre-
dicted to be involved in protein synthesis. Overall, the
maximum F1 scores ranged from ~ 0.4 (Neisseria gonor-
rhoeae) to ~ 0.7 (Salmonella enterica).

We compared the performance of our co-expression net-
works to STRING network database (https://string-db.org/)
[56], which integrates genomic neighborhood, gene fusion,
genomic co-occurrence, co-expression, experimentally veri-
fied function, article text mining, and homology transfer.
The comparison revealed that STRING performs similarly to
our E. coli co-expression networks (Additional file 22: Figure
S3, Fig. 4b), while for other bacteria, STRING showed higher
F1 scores. This is not surprising, as methods that integrate
multiple functional evidences tend to perform better than
predictions based on only one evidence, such as co-
expression [24, 27]. However, we note that only 4 (C. jejuni,
E. coli, P. aeruginosa, and S. aureus) out of the 17 bacteria
that we used in our analysis contained co-expression net-
works in STRING, which precludes STRING from using co-
expression to identify genes involved in protein synthesis.

Prediction of novel components of ribosomes by a meta-

analysis of the co-expression networks

To predict which genes with unknown function are in-
volved in protein synthesis in the 17 bacteria, we first
identified genes that are involved in protein synthesis
(search term “ribosom”) or shared no similarity to any
characterized gene (search term “hypothetical,” “DUF,”
“conserved”). The analysis revealed that typically, the
ribosomal genes constitute < 5% of all genes in a bacter-
ial genome (Fig. 5a). In comparison, the number of
genes that are without functional annotation varies from
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< 1% (Salmonella enterica) to 43% (Helicobacter pylori)
(Fig. 5b). Furthermore, between 7% (Escherichia coli)
and 23% (Mycobacterium tuberculosis) of genes are or-
phans that do not belong to a gene family (Fig. 5c). Typ-
ically, genes with unknown function (orange bars)
contain less Pfam domains than characterized genes
(Fig. 5d, blue bars), but are frequently found in gene
families (Fig. 5e, typically > 50% of genes, orange bars).

To predict uncharacterized genes that are involved in
protein synthesis, we applied the same approach that we
used to calculate the performance of the networks at dif-
ferent PCC and n thresholds. More specifically, for each
uncharacterized gene, we calculated the percentage of
ribosomal gene neighbors (1) at a given PCC cutoff
(Additional file 23: Table S20). Since we have calculated
the F1 score at the different PCC and # thresholds, we
could predict which genes are involved in protein syn-
thesis at different (> 0.4, > 0.5, > 0.6) F1 score thresholds.
By increasing the F1 score threshold, the prediction can
be made more stringent, at the cost of the number of
genes with the unknown function assigned to protein
synthesis (Fig. 5f, Additional file 24: Table S21).

We observed a varying number of predictions between
the different bacteria, ranging from 0 uncharacterized
genes assigned to protein synthesis (Salmonella enterica)
to 77 (Mycobacterium tuberculosis, Fig. 5f). As expected,
the number of predictions dropped when the F1 score
threshold was increased, with few genes assigned to pro-
tein synthesis at F1 > 0.6 threshold. Interestingly, we ob-
served a good agreement between the numbers of
predictions made by different student groups. For ex-
ample, Mycobacterium tuberculosis expression data
(6495 samples, Table 1) was divided among 11 student
groups and used to perform 11 independent predictions
(group 1-11), which we compared to a prediction based
on the combined data (all). The prediction based on all
data (10 uncharacterized genes assigned to protein syn-
thesis at F1 > 0.5 threshold) did not contain more pre-
dicted genes than a subset of the data (e.g., 20 genes at
F1>0.5, for group 11, 600 samples), indicating that
more expression data does not result in more predic-
tions. Furthermore, while each group predicted some
unique genes, the majority of the predictions identified
the same set of genes (Additional file 24: Table S21), in-
dicating that more data is not necessarily better.

The 17 bacteria showed contrasting protein domain
(Additional file 25: Figure S4A) and gene family (Add-
itional file 25: Figure S4B) patterns for the predicted
genes. For example, while 100% of the genes belonged to
gene families or contained Pfam domains in E. coli, this
was true for less than 40% of genes in C. jejuni (Add-
itional file 25: Figure S4A). Furthermore, STRING ana-
lysis of the 11 E. coli genes predicted to be involved in
protein synthesis (Fig. 5f, all data, F > 0.6), revealing that
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Fig. 4 Analysis of thresholds used to predict proteins involved in protein synthesis. a The heatmaps indicate the F1
precision and recall) as a function of the percentage of ribosomal protein neighbors (n value, x-axis) and PCC value (y-axis), for the 17 bacteria.
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Distribution of the F1 scores for the 17 bacteria. Each dot in the swarmplot indicates an F1 score obtained at PCC values ranging from 0.1 to 1,

score (harmonic mean of

4 of the 11 genes could be associated with protein syn-
thesis by STRING (Additional file 26: Figure S5). Con-
versely, the other 7 could not be associated with any
function by STRING, suggesting that our approach is a
valuable addition in gene function prediction in bacteria.

Discussion
Protein sequence similarity is commonly used to transfer
molecular function annotation from one protein to

another [57]. Molecular function annotation by sequence
comparison is commonly performed using programs such
as BLAST [58] and InterProScan [59]. However, a sub-
stantial proportion of coding sequences lack sequence
similarity to any characterized genes (Fig. 4) [24, 36], mak-
ing sequence similarity-based inference of gene function
unsuitable. An excellent example of this limitation are
genes that we have analyzed in this study. Since these
genes are annotated as “hypothetical protein,” “domain of
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Fig. 5 Predicting novel components of ribosomes in the 17 bacteria. a The percentage of ribosomal genes in the genomes of the 17 bacteria. b
The percentage of genes with unknown function. ¢ The percentage of genes that do not belong to gene families. d The percentage of all genes
(blue bars), and genes with unknown function (orange bars) that contain Pfam domains. e The percentage of all genes (blue bars) and genes
with unknown function (orange bars) that belong to gene families. f Number of genes with unknown function that are predicted to be involved
in protein synthesis in the 17 bacteria. The predictions made by the 60 groups are shown in rows, and the groups are numbered (e.g,, E. coli data
is divided into 13 groups). Predictions made on all available data are indicated by “All” in the group column. The three columns indicate the F1
score cutoff that was used to assign a gene with unknown function to protein synthesis

unknown function,” or “conserved protein,” they are likely
not to share sequence similarity to characterized proteins.

Transcriptomic data is a rapidly growing resource that
captures gene expression levels of all genes in an organ-
ism. Co-expression analysis is based on the observation
that functionally related genes tend to have similar ex-
pression profiles across different experiments, and has
become a powerful tool for predicting gene function
[60]. We applied this approach to identify novel compo-
nents of protein synthesis machinery in the 17 most no-
torious bacteria pathogens, for which sufficient (defined

as >100 RNA-seq samples) expression data exists
(Table 1). In this study, we achieved two aims.

Firstly, we show co-expression analysis can be used to
predict novel candidates of bacterial ribosomes. We ob-
served that ribosomal proteins tend to be strongly co-
expressed (Fig. 3b, c), suggesting that uncharacterized
genes co-expressed with the ribosomal proteins are likely
involved in some aspect (ribosome assembly, protein syn-
thesis, termination) of protein synthesis. We predicted a
substantial number of novel genes involved in protein syn-
thesis for 16 out of 17 bacteria (Fig. 5f, Additional file 24:
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Table S21) that can serve as good targets to develop
species-specific antibiotics. The available expression data
for the 17 bacteria can be further mined to study other
biological functions and vulnerabilities (e.g., cell wall,
RNA, and DNA biosynthesis) of these bacteria.

Secondly, we show that such analysis can be outsourced to
a large group of individuals. Here, the gene expression data
was streamed and pseudo-aligned by 285 first-year under-
graduate students, as part of the Computational Thinking
class project. To this end, we used a modified LSTrAP-
Cloud pipeline [47], where the students were divided into 60
groups, and each group was tasked to download and perform
quality-control of ~ 600 samples over a week (Fig. 1 and 2,
Additional file 1: Table S1). Theoretically, 85,500 (300 x 285)
RNA-seq samples equivalent to ~ 85 Tb could be processed
per day by the class, providing a computing power rivaling a
high-end computer cluster. While each student had access
to only two Xeon cores, one of the major bottlenecks in pro-
cessing the voluminous RNA-seq data, data download, was
circumvented by fast Internet connection of each Google
Colab virtual machine. Since each student uses a different
virtual machine with an independent Internet connection,
our approach demonstrates how a large quantity of data can
be analyzed for free.

While similar approaches are used by, e.g., foldin-
g@home, it is to our knowledge the first attempt to process
gene expression data in such a manner. We envision that
similar approaches will soon allow us to study gene expres-
sion data within and across whole kingdoms of life.

Conclusions

To help identify novel components of bacterial ribo-
somes, we have used co-expression analysis to associate
genes with unknown function to ribosomal proteins in
17 pathogenic bacteria. Our analysis identified more
than 200 candidates for further functional studies, while
our approach exemplified how such analysis can be out-
sourced to, e.g., a group of undergraduate students.

Methods

Streaming RNA sequencing data

The LSTrAP-Crowd pipeline was implemented on Google
Colaboratory and is based on the LSTrAP-Cloud pipeline
with standard parameters [47]. The pipeline streams the
RNA-seq fastq files to a virtual machine in the cloud and de-
posits the processed gene expression data on the user’s Goo-
gle Drive. The CDSs were obtained from EnsembleGenomes
and used to generate an index file by Kallisto [50], for subse-
quent estimation of gene expression. The RNA sequencing
data of the 17 bacteria was obtained from European Nucleo-
tide Archive (ENA) and mapped against the kallisto index of
coding sequences (CDS) of the 17 bacteria. The used CDSs
are Campylobacter jejuni (Campylobacter_jejuni_subsp_
jejuni_cg8421.ASM17179v2.cds.allfa), Clostridioides difficile
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(Clostridioides_difficile_e25.E25.cds.all.fa), Enterococcus fae-
calis  (Enterococcus_faecalis_oglrf ASM17257v2.cds.all.fa),
Escherichia coli (Escherichia_coli_str_k_12_substr_
mgl655.ASM584v2.cds.all.fa), Haemophilus influenzae (Hae-
mophilus_influenzae_r3021.ASM16975v1.cds.all.fa), Helico-
bacter pylori (Helicobacter_pylori_b8. ASM19675v1.cds.all.fa),
Klebsiella preumoniae (Klebsiella_pneumoniae_
jm45.ASM44540v].cds.all.fa), Listeria monocytogenes (Lis-
teria_monocytogenes_gca_001027125.ASM102712v1.cd-
sallfa), Mycobacterium  tuberculosis (Mycobacterium_
tuberculosis_h37rv.ASM19595v2.cds.all.fa), Mycoplasma
pneumoniae (Mycoplasma_pneumoniae_th. ASM14394v1.cd-
sallfa), Neisseria gonorrhoeae (Neisseria_gonorrhoeae_gca_
001047275.ASM104727v1.cds.allfa), Pseudomonas aerugi-
nosa (Pseudomonas_aeruginosa_gca_001181725.E11_
London_26 VIM_2 06_13.cds.allfa), Salmonella enterica
(Salmonella_enterica_subsp_enterica_serovar_typhimurium_
str_It2.ASM694v2.cds.all.fa), Staphylococcus aureus
(Staphylococcus_aureus_gca_001212685.7738_4.
69.cds.all.fa), Streptococcus pneumoniae (Streptococcus_
pneumoniae_r6.ASM704v1.cds.all.fa), Streptococcus pyogenes
(Streptococcus_pyogenes_ns88_2.SPNS88.2.cds.all.fa),  and
Vibrio cholerae (Vibrio_cholerae_v51.ASM15246v2.cds.allfa).
All available RNA-sequencing data for the 17 bacteria,
comprising different growth conditions, media composi-
tions and mutant strains, were downloaded and subjected
to quality control. A total of 26,269 experiments were
streamed (Additional file 1: Table S1), where each student
used their own Gmail account to connect to their own
cloud virtual machine (VM) provided by Google. To co-
ordinate the download effort among the 285 students, the
students mounted a Google Drive provided by the in-
structor. The drive was used to store all of the down-
loaded data. The main disadvantage of Google Colab VM
is that each VM is stopped and erased by Google after 12
h. However, since the processed data is stored in a persist-
ent manner on the shared Google Drive, the interrupted
downloads can be easily resumed.

Generating gene expression matrices for the 17 bacteria

To remove RNA-seq samples that are of lower quality,
we identified outlier samples that show a lower number
(n_pseudoaligned) and percentage (p_pseudoaligned) of
reads aligned to the coding sequences than the majority
of the samples. This analysis assumes that the majority
of samples are of good quality. The expression matrices
containing the gene expression data that passed these
thresholds are available in Additional file 3: Table S2,
Additional file 4: Table S3, Additional file 5: Table S4,
Additional file 6: Table S5, Additional file 7: Table S6,
Additional file 8: Table S7, Additional file 9: Table S8,
Additional file 10: Table S9, Additional file 11: Table
S$10, Additional file 12: Table S11, Additional file 13:
Table S12, Additional file 14: Table S13, Additional file
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15: Table S14, Additional file 16: Table S15, Additional
file 17: Table S16, Additional file 18: Table S17, and
Additional file 19: Table S18. Additional file 1: Table S1
contains the n_pseudoaligned and p_pseudoaligned num-
bers and indicates which samples passed the thresholds.

Identification of genes involved in ribosome biogenesis
with co-expression networks

To identify genes that are involved in protein synthesis
in the 17 bacteria, we have first retrieved all genes con-
taining “DUF” (domain of unknown function), “hypo-
thetical,” or “conserved” in their description. Next, we
calculated the Pearson correlation coefficient (PCC) be-
tween the uncharacterized genes and all genes in the
genome, where PCC thresholds ranging from 0.1 to 1
were used to indicate co-expressed genes. Finally, the
uncharacterized genes were predicted to be involved in
protein synthesis if >10%, >20%, >30%, >40%, >50%,
>60%, >70%, >80% or>90% of the genes were co-
expressed with contained annotations such as “ribo-
some” or “ribosomal.”

Identification of protein domains and gene families

The protein sequences were obtained from Ensemble-
Genomes. We used Interproscan-5.44-79 [61] to obtain
the Pfam domains. Groups of orthologous genes (gene
families) were obtained using Orthofinder v2.3.12 [62]
with Diamond [63], with default settings.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512915-020-00846-9.

Additional file 1 : Table S1. Quality control of the RNA-seq samples.
The table indicates the species (first column), sample ID (second column),
group ID processing the sample (third column), number of pseudoa-
ligned reads (fourth column), percentage of pseudoaligned reads (fifth
column) and an indication whether the sample passed the set quality
thresholds (sixth column).

Additional file 2 : Figure S1. Scatter plot showing the number (x-axis)
and percentage (y-axis) of pseudoaligned reads for the 17 bacteria.
Additional file 3 : Table S2. Campylobacter jejuni expression matrix.
Genes are found in rows, while samples are found in columns.

Additional file 4 : Table S3. Clostridioides difficile expression matrix.
Genes are found in rows, while samples are found in columns.

Additional file 5 : Table S4. Enterococcus faecalis expression matrix.
Genes are found in rows, while samples are found in columns.

Additional file 6 : Table S5. Escherichia coli expression matrix. Genes
are found in rows, while samples are found in columns.

Additional file 7 : Table S6. Haemophilus influenzae expression matrix.
Genes are found in rows, while samples are found in columns.

Additional file 8 : Table S7. Helicobacter pylori expression matrix.
Genes are found in rows, while samples are found in columns.

Additional file 9 : Table S8. Klebsiella pneumoniae expression matrix.
Genes are found in rows, while samples are found in columns.

Additional file 10 : Table S9. Listeria monocytogenes expression
matrix. Genes are found in rows, while samples are found in columns.
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Additional file 11 : Table $S10. Mycobacterium tuberculosis expression
matrix. Genes are found in rows, while samples are found in columns.

Additional file 12 : Table S11. Mycoplasma pneumoniae expression
matrix. Genes are found in rows, while samples are found in columns.

Additional file 13 : Table $12. Neisseria gonorrhoeae expression
matrix. Genes are found in rows, while samples are found in columns.

Additional file 14 : Table S13. Pseudomonas aeruginosa expression
matrix. Genes are found in rows, while samples are found in columns.

Additional file 15 : Table S14. Salmonella enterica expression matrix.
Genes are found in rows, while samples are found in columns.

Additional file 16 : Table S15. Staphylococcus aureus expression
matrix. Genes are found in rows, while samples are found in columns.

Additional file 17 : Table S$16. Streptococcus pneumoniae expression
matrix. Genes are found in rows, while samples are found in columns.

Additional file 18 : Table S17. Streptococcus pyogenes expression
matrix. Genes are found in rows, while samples are found in columns.

Additional file 19 : Table S18. Vibrio cholerae expression matrix. Genes
are found in rows, while samples are found in columns.

Additional file 20 : Figure S2. Power-law plot of the 17 bacteria. The
x-axis shows the node degree (number of coexpression connections of a
gene, PCC > 0.7), while the y-axis indicates the frequency of a degree.
The two axes are log10-transformed.

Additional file 21 : Table $19. Co-expression neighborhood of
AEA92696 from Enterococcus faecalis. The genes are sorted according to
the Pearson Correlation Coefficient (r, first column). The gene IDs (second
column), type (third column, 1 = ribosomal protein, 2 = gene with un-
known function, 0 =not 1 or 2) and annotation (fourth column) are
indicated.

Additional file 22 : Figure S3. F1 score values for co-function networks
obtained from STRING. Distribution of the F1 scores for 4 bacteria. Each
dot in the swarmplot indicates an F1 score obtained at PCC values ran-
ging from 0.1 to 1, and n values ranging from 10% to 100%. Only the
bacteria for which we could identify common gene identifiers in STRING
and our analysis are included.

Additional file 23 : Table $20. Gene identifiers of uncharacterized
genes predicted to be involved in protein synthesis. The columns
indicate the gene ID (first), bacterial species and student group (second),
PCC cutoff (third), number of ribosomal protein neighbors at a PCC cutoff
(fourth) and number of all gene neighbors at PCC cutoff (fifth).

Additional file 24 : Table S21. Uncharacterized genes predicted to be
involved in protein synthesis. Each row contains genes with unknown
functions predicted to be involved in protein synthesis. The rows contain
predictions made by each group (indicated by numbers) or by all
available data (All data). The columns indicate the (i) bacteria, (i) group
ID, (iii-vii) predicted genes at the different F1 score thresholds.

Additional file 25 : Figure S4. Protein domain and gene family analysis
of the genes predicted to be involved in protein synthesis. A) Percentage
of genes with Pfam domains. B) Percentage of genes belonging to an
orthogroup. The color bars indicate the F1 score threshold used to
identify the genes.

Additional file 26 : Figure S5. STRING analysis of the 11 genes
predicted to be involved in protein synthesis in E.coli by our analysis. The
11 genes are indicated with a red node. Below each network, functional
enrichments that are detected by STRING are indicated. AAC75719,
AAC74172, AAC75326 and AAC76626 are the four genes significantly
associated with genes involved in protein synthesis.

Acknowledgements

We would like to thank Google for providing Google Colab and all members
of the class of BS1009 (Introduction to Computational Thinking) that ran
during the 2019/20 academic year. The students are Aaminatul Khalishah
Binte Roslan, Adam Lee Xin Hong, Alena Tay Qi Ye, Ana Ho Sze Qi, Anastasia
Griswold Thean Xue Ting, Andrea Tan Wenqji, Andrew Liew Yong Zhou, Ang
Qian Qian, Ang Wei Ying, Ang Wen Hui, Anoushka Sameer, Agidah Nafeesa
Binte Mohamed Rafi, Ashlyn Ng Xuanqi, Aslam Firras Bin Azhar, Audrey


https://doi.org/10.1186/s12915-020-00846-9
https://doi.org/10.1186/s12915-020-00846-9

Hew et al. BMC Biology (2020) 18:114

Michelle Luminary, Beh Mei Zhen, Bernice Chan Hui Shan, Bertrand Wong
Jern Han, Boon Kai Lun, Bridget Tang Jing Xing, Bryden Koh Yang Wei,
Carissa Yuwono Kwantalalu, Celest Phang Lixuan, Chai Ruo Qi, Chan Mu En,
Chan Tong Ling, Chan Yi Hue, Chang Jit Yee, Charlene Pek Jia Ning,
Charmaine Chang Tze Hwee, Chee Mhin Chin, Chee Suhui Samantha, Chee
Wei Heng Marcus, Chen Hui Xin, Cherie Hong Yi Xin, Cheryl Ann Ruthrayson,
Cheryl Lim Jiayi, Cheryl Quek Chai Hui, Chia Rui Wen, Chim Ler Ting, Chiu
Shun Xin Michelle, Chiu Wei Yeow, Chong Jia Shin, Chong Ming Jun, Chong
Yu Hong, Chong Zia Yee, Choo Jialei Clement, Choo Jing Wen Germaine,
Christie Tan Pei Ning, Chu Thi Sau, Chua Xin'er Cherlyn, Chua Yi Lin, Chua Yi
Xuan, Clara Lie Kai Kee, Clare Yong Pei Yii, Clarice Keng Jing Ting, Clarice Lee
Pei Xuan, Clarice Lee Zi Qi, Clarice Pohan, Daniella Bianca Cadayona Lim,
David Wong Meng Kit, Devika Menon, Dhira Anindya Putri, Dian Atikah Bte
Sharul Hisham, Dynn Sim, Edbert Edric Rodrigues, Edmund Tan Kok Hong, Er
Kian Ching Gabbie, Esteban Ira Patricia Colendrino, Fan Chongyue, Fikri Bin
Mohamed, Fong Tuck Choy, Foo Yan Xi, Foo Yong He Herman, Foong Wai
Teng Melissa, Gabay Karen Dianne Aventurado, Genevieve Ling Tek Ting,
Goh Wei Xuan, Grace Deng Zheyun, Hee Ker Min, Ho Abigail, Ho Jun Sheng,
Ho Li Sheng, Ho Yan Ying, Ho Yu Hui, Ho Yun Ye, Hoh Ching Kwee, Hong
Davin, Hoon Su Teng Megan, Hui Wai Hann, Ifa Syafigah Binte Sulaiman, Jace
Koh, Jaslyn Muk Cui Jin, Jazz Er, Jeraldine Poh Jie Min, Jes Kwek Hui Min,
Jessica Lee Ru Xuan, Joe Ng Ren Guang, Jolene Lim Jiajin, Joseph Ng Jun
Quan, Jovi Tan Siying, Joyce Wang, Ketti Boo Wenting, Khoo Jia Hui Olivia,
Kirthana D/o Subramaniam, Koh Bi Qi, Koh Hui Fen, Koh Jing Han, Koh Shao
Ning, Koh Ting Sween Kenny, Kong Jian Hua, Koo Wei Ling, Kuah Xuan Ye
Chanel, Kwok Zi Rou, Lai Si Jia, Lai Yi Ni, Lam Zhi Sheng, Lee Heng Gei, Lee
Ming Jern Adrian, Lee Thong Shuen, Lee Wan Xuan Trena, Lee Wei Jin
Amanda Crystal, Lee Xin Yi, Leo Zhenn Yi, Leow Chen Yen, Lian Ying, Liauw
Yong Tong, Liew Jia Hui, Lim Chuan Yu, Lim Dao Liang, Lim Jia Hui, Lim Jia
Jia, Lim Jiagi Alyssa, Lim Kai Peng, Lim Pei Xuan, Lim Qin Rui, Lim Shan
Chun, Lim Shi Min, Lim Shing Yee, Lim Shu Hua Samantha, Lim Ting Yu, Lim
Ye Joon, Lim Ying Xuan, Lim Yu Xian, Lim Yuen Shan, Lim Zi Jian, Lin Ming,
Ling Zixun, Loh Dan Hong, Low Ann Don, Lui Ke Xin, M K Abdul Rahim,
Mahathir Bin Mohamad Malaysia, Manessa Nah Shue Ern, Mathana Raj S/o
Thayalan, Matthew Chua Yong En, May Ho Si Min, Mohammad Alfiean Bin
Mohd Afdzanawar, Mohammad Dannial Bin Masrun, Moo Jia Rong, Mulupuri
Sriya, Natasha Cassandra Chee, Neo Qi Ying, Ng Chuan Yi, Ng Jun Hao, Ng
Peiran, Ng Ping Hui, Ng Rui Xue, Ng Thut Seng, Ng Wan Zhen Janice, Ngiaw
Jia Xin, Nguyen Le Uyen Nhi, Nguyen Ngoc Minh Truc, Nguyen Thanh Son,
Ni Ying, Nicholas Lee Bo Wen, Nur Afigah Binte Mohammad Rizal, Nur
Fareena Binte Sulaiman, Ong Si Yi Shirley, Ong Sze Yan, Ong Wei Wen, Ong
Xuan Xuan, Ong Zhen Ying, Ow Yeong Yook Kit, Park Jiwon, Paula-teresa
Chua Hui Yee, Phua Tian Xin, Poh Jia"en, Poh Jing Wen, Poh Zheng Yan,
Poon Tze Yong, Pravenah Ravi Chandran, Quek Fu Cheng, R Vishalini Val, Ravi
Keerthana, Reanne Lim Xi, Rebecca Liew Hui Ting, Rena Ho Si Hui, Rinta Pull-
amkottu Reji, Rohan Shawn Sunil, Rugdee Ryan Chieh Feng, Ryanijit Singh
Kairon, See Jing Yi Julia, See Qi Rui, Seetoh Wei Song, Selia Yang Si Hua, Seo
Min Li Gilia, Seow Jia Xuan, Shaun Ang Qiao Rou, Shellia Oktavina, Sherianne
Tan Yen Tze, Sho Yu Wei, Shum Kai Xin Samantha, Siobhan Khoo Zi Yee, Siti
Namirah Binte Roslan, Siti Nordiana Bte Sukry, Soh Jin Chun, Soh Kai Xuan
Webster, Soh Shao Min, Su Peixuan Natalie, Subramanian Arthi, T Niraj, T Pra-
vin, Tan Jia Wei, Tan Jia Ying, Tan Jia Yu, Tan Jun Xiong, Tan Nikita, Tan Qi
Lun, Tan Qing Rong, Tan Wei Heng, Tan Xin Yee, Tan Xin Yi, Tan Yong Kang,
Tan You Sheng Justin, Tan Zhe Jun, Tan Zi Ting Corrina, Tay Jian Hua, Tay Yi
Ting, Tee Chu Yi Evangeline, Teffarina Tay Hui Wen, Teng Zheng Kai, Teo Jing
Lin, Teo Yong Ren Johanan, Teoh Shook Wei, Teresa Tan Mien, Tey Siew
Choo, Thein Mwei Aung, Thng Yu Xuan, Toh Hong Wei, Tok Zhi Ning,
Tommy Lee Lam, Tracy Lee Si Hui, Trena Chan Yun Ting, Tristy Abigayle
Marta, Tsou Han, Valerie Tang Yan Tong, Valerie Teo Fang Wei, Vanessa
Lorraine Chea Yuen Leng, Vanessa Lunardi, Victoria Toh Le Yi, Victoria Tricia
Tang Jing Yi, Villanueva Erielle Marie Fajardo, Wang Jue Lynn, Wee Shi Yong
Denise, Wong Mee Yin, Wong Min Jia, Wong Pei Wen, Wong Shi Ying, Wong
Xanaz, Wong Zhi Cheng, Wynnifred Lorraine Lee Jia Hui, Xylon Lee Wei Rui,
Yee You Xian, Yee Yue Ry, Yei Xi, Yieo Jean Yi, Yip Weigin Rayna, Yusuf
Chouthury Shaik Farid, Zachariah Seet Zhong En, Zachary Jude D'rozario,
Zhang Shurui, Zhao Margaret Xuan, and Zubaidah Binte Dadlani.

Declarations

The datasets supporting the conclusions of this article are included within
the article (and its additional files). The authors declare that they have no
competing interests.

Page 12 of 13

Authors’ contributions

MM conceived the project, BH and MM performed the analysis, QWT and
WG developed the data download pipeline, and JWXN coordinated the data
download. All authors read and approved the final manuscript.

Funding
We would like to thank Nanyang Technological University, Start Up Grant
(SUG), for funding.

Availability of data and materials

All data generated or analyzed during this study are included in this published
article, its supplementary information files, and publicly available repositories.
The RNA-seq data was downloaded from European Nucleotide Archive. The
sample identifiers used in this study are found in Additional file 1: Table S1.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
None.

Received: 21 April 2020 Accepted: 12 August 2020
Published online: 03 September 2020

References

1. Spellberg B, Blaser M, Guidos RJ, Boucher HW, Bradley JS, Eisenstein BI, et al.
Combating antimicrobial resistance: policy recommendations to save lives.
Clin Infect Dis. 2011;52(SUPPL. 5):5397-428.

2. Mah TFC, OToole GA. Mechanisms of biofilm resistance to antimicrobial
agents. Trends Microbiol. 2001,9:34-9.

3. Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial
resistance. Nat Rev Microbiol. 2014;12:35-48.

4. Arenz S, Wilson DN. Bacterial protein synthesis as a target for antibiotic
inhibition. Cold Spring Harb Perspect Med. 2016.

5. Dunkle JA, Xiong L, Mankin AS, Cate JHD. Structures of the Escherichia coli
ribosome with antibiotics bound near the peptidyl transferase center
explain spectra of drug action. Proc Natl Acad Sci U S A. 2010,6(9):a025361.

6. Dinos GP. The macrolide antibiotic renaissance. Br J Pharmacol. 2017;
174(18):2967-83.

7. Wilson DN. The A-Z of bacterial translation inhibitors. Crit Rev Biochem Mol
Biol. 2009;44(6):393-433.

8. Liu M, Douthwaite S. Activity of the ketolide telithromycin is refractory to
Erm monomethylation of bacterial rRNA. Antimicrob Agents Chemother.
2002,46(6):1629-33.

9. LinJ, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Ribosome-targeting
antibiotics: modes of action, mechanisms of resistance, and implications for
drug design. Annu Rev Biochem. 2018,87:451-78.

10.  Vazquez-Laslop N, Thum C, Mankin AS. Molecular mechanism of drug-
dependent ribosome stalling. Mol Cell. 2008;30(2):190-202.

11. Golkar T, Zielinski M, Berghuis AM. Look and outlook on enzyme-mediated
macrolide resistance. Front Microbiol. 2018;9:1942.

12. Sharkey LKR, O'Neill AJ. Antibiotic resistance ABC-F proteins: bringing target
protection into the limelight. ACS Infect Dis. 2018;4(3):239-46.

13. Murina V, Kasari M, Takada H, Hinnu M, Saha CK, Grimshaw JW, et al. ABCF
ATPases involved in protein synthesis, Ribosome assembly and antibiotic
resistance: structural and functional diversification across the tree of life. J
Mol Biol. 2019;431(18):3568-90.

14.  Kerr ID, Reynolds ED, Cove JH. ABC proteins and antibiotic drug resistance:
is it all about transport? Biochem Soc Trans. 2005;33(Pt 5):1000-2.

15. Ahmed T, Yin Z, Bhushan S. Cryo-EM structure of the large subunit of the
spinach chloroplast ribosome. Sci Rep. 2016;6:35793.

16. Ahmed T, Shi J, Bhushan S. Unique localization of the plastid-specific
ribosomal proteins in the chloroplast ribosome small subunit provides
mechanistic insights into the chloroplastic translation. Nucleic Acids Res.
2017;45(14):8581-95.

17. Barandun J, Hunziker M, Vossbrinck CR, Klinge S. Evolutionary compaction
and adaptation visualized by the structure of the dormant microsporidian
ribosome. Nature Microbiol. 2019;4(11):1798-804.



Hew et al. BMC Biology

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

(2020) 18:114

Bieri P, Leibundgut M, Saurer M, Boehringer D, Ban N. The complete
structure of the chloroplast 70S ribosome in complex with translation factor
pY. EMBO J. 201736(4):475-86.

Kushwaha AK, Bhushan S. Unique structural features of the Mycobacterium
ribosome. Prog Biophys Mol Biol. 2020:152:15-24.

Eyal Z, Matzov D, Krupkin M, Wekselman |, Paukner S, Zimmerman E, et al.
Structural insights into species-specific features of the ribosome from the
pathogen Staphylococcus aureus. Proc Natl Acad Sci U S A. 2015;112(43):
E5805-14.

Greber BJ, Ban N. Structure and function of the mitochondrial ribosome.
Annu Rev Biochem. 2016,85:103-32.

Melnikov S, Ben-Shem A, Garreau De Loubresse N, Jenner L, Yusupova G,
Yusupov M. One core, two shells: bacterial and eukaryotic ribosomes.
Nature Struct Mol Biol. 2012;19(6):560-7.

Melnikov S, Manakongtreecheep K, S6ll D. Revising the structural diversity of
ribosomal proteins across the three domains of life. Mol Biol Evol. 2018;
35(7):1588-98.

Rhee SY, Mutwil M. Towards revealing the functions of all genes in plants.
Trends Plant Sci. 2014;19:212-21.

Proost S, Mutwil M. Tools of the trade: studying molecular networks in
plants. Curr Opin Plant Biol. 2016;30:130-40.

Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, et al.
Co-expression tools for plant biology: opportunities for hypothesis
generation and caveats. Plant Cell Environ. 2009;32:1633-51.

Hansen BO, Meyer EH, Ferrari C, Vaid N, Movahedi S, Vandepoele K, et al.
Ensemble gene function prediction database reveals genes important for
complex | formation in Arabidopsis thaliana. New Phytol. 2018,217:1521-34.
Hansen BO, Vaid N, Musialak-Lange M, Janowski M, Mutwil M. Elucidating
gene function and function evolution through comparison of co-expression
networks of plants. Front Plant Sci. 2014:5:394.

Proost S, Mutwil M. Planet: comparative co-expression network analyses for
plants. In: van Dijk ADJ, editor. Methods in molecular biology. New York: Springer
New York; 2017. p. 213-27. https//doi.org/10.1007/978-1-4939-6658-5_12.

Mutwil M, Obro J, Willats WGT, Persson S. GeneCAT--novel webtools that
combine BLAST and co-expression analyses. Nucleic Acids Res. 2008;36(Web
Server issue):W320-6.

Mutwil M, Ruprecht C, Giorgi FM, Bringmann M, Usadel B, Persson S.
Transcriptional wiring of cell wall-related genes in Arabidopsis. Mol Plant.
2009;2:1015-24.

Mutwil M, Usadel B, Schitte M, Loraine A, Ebenhoh O, Persson S. Assembly
of an interactive correlation network for the Arabidopsis genome using a
novel Heuristic Clustering Algorithm. Plant Physiol. 2010;152:29-43.

Mutwil M, Klie S, Tohge T, Giorgi FM, Wilkins O, Campbell MM, et al. PlaNet:
combined sequence and expression comparisons across plant networks
derived from seven species. Plant Cell. 2011,23:895-910. https://doi.org/10.
1105/tpc.111.083667.

Ruprecht C, Mendrinna A, Tohge T, Sampathkumar A, Klie S, Fernie AR, et al.
Famnet: a framework to identify multiplied modules driving pathway
expansion in plants. Plant Physiol. 2016;170:1878-94. https://doi.org/10.
1104/pp.15.01281.

Ferrari C, Proost S, Ruprecht C, Mutwil M. PhytoNet: comparative co-
expression network analyses across phytoplankton and land plants. Nucleic
Acids Res. 2018,46:W76-83.

Ruprecht C, Proost S, Hernandez-Coronado M, Ortiz-Ramirez C, Lang D,
Rensing SA, et al. Phylogenomic analysis of gene co-expression networks
reveals the evolution of functional modules. Plant J. 2017,90:447-65.

Ng JWX, Tan QW, Ferrari C, Mutwil M. Diurnal.plant.tools: comparative
transcriptomic and co-expression analyses of diurnal gene expression of the
Archaeplastida Kingdom. Plant Cell Physiol. 2019,61(1):212-20.

Wen Tan Q, Mutwil M. Malaria.tools—comparative genomic and
transcriptomic database for Plasmodium species. Nucleic Acids Res. 2019;
48(D1):D768-75.

Proost S, Mutwil M. CoNekT: an open-source framework for comparative
genomic and transcriptomic network analyses. Nucleic Acids Res. 2018;46:
W133-40. https://doi.org/10.1093/nar/gky336.

Ruprecht C, Mutwil M, Saxe F, Eder M, Nikoloski Z, Persson S. Large-scale co-
expression approach to dissect secondary cell wall formation across plant
species. Front Plant Sci. 2011;2:23.

Takabayashi A, Ishikawa N, Obayashi T, Ishida S, Obokata J, Endo T, et al. Three
novel subunits of Arabidopsis chloroplastic NAD(P)H dehydrogenase identified
by bioinformatic and reverse genetic approaches. Plant J. 2009;57:207-19.

42.

43.

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

Page 13 of 13

Takahashi N, Lammens T, Boudolf V, Maes S, Yoshizumi T, De Jaeger G, et al. The
DNA replication checkpoint aids survival of plants deficient in the novel replisome
factor ETG1. EMBO J. 2008.27:1840-51. https//doi.org/10.1038/emb0j.2008.107.
Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for global
discovery of conserved genetic modules. Science. 2003;302:249-55. https//
doi.org/10.1126/science.1087447.

Yu H, Luscombe NM, Qian J, Gerstein M. Genomic analysis of gene
expression relationships in transcriptional regulatory networks. Trends
Genet. 2003;19:422-7.

Lee |, Ambaru B, Thakkar P, Marcotte EM, Rhee SY. Rational association of
genes with traits using a genome-scale gene network for Arabidopsis
thaliana. Nat Biotechnol. 2010;28:149-56. https://doi.org/10.1038/nbt.1603.
Jiménez-Gémez JM, Wallace AD, Maloof JN. Network analysis identifies ELF3
as a QTL for the shade avoidance response in arabidopsis. PLoS Genet.
2010,609).

Tan QW, Goh W, Mutwil M. LSTrAP-Cloud: a user-friendly cloud computing
pipeline to infer co-functional and regulatory networks. Genes (Basel). 2020;
11(4):428.

Tan QW, Mutwil M. Inferring biosynthetic and gene regulatory networks
from Artemisia annua RNA sequencing data on a credit card-sized ARM
computer. Biochim Biophys acta Gene Regul Mech. 2019;1863(6):194429.
Sibout R, Proost S, Hansen BO, Vaid N, Giorgi FM, Ho-Yue-Kuang S, et al.
Expression atlas and comparative coexpression network analyses reveal
important genes involved in the formation of lignified cell wall in
Brachypodium distachyon. New Phytol. 2017,215:1009-25.

Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-
seq quantification. Nat Biotechnol. 2016;34:525-7.

Patro R, Duggal G, Love M|, Irizarry RA, Kingsford C. Salmon provides fast and
bias-aware quantification of transcript expression. Nat Methods. 2017;14:417-9.
Leinonen R, Sugawara H, Shumway M. The sequence read archive. Nucleic
Acids Res. 2011;39:D19-21.

Broido AD, Clauset A. Scale-free networks are rare. Nat Commun. 2019;10(1):
1017.

Barabdési A-L, Bonabeau E. Scale-free networks. Sci Am. 2003;288:60-9.
Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional
organization. Nat Rev Genet. 2004;5:101-13.

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J,
et al. STRING v10: protein-protein interaction networks, integrated over the
tree of life. Nucleic Acids Res. 2015;43:D447-52.

Kulmanov M, Khan MA, Hoehndorf R. DeepGO: predicting protein functions
from sequence and interactions using a deep ontology-aware classifier.
Bioinformatics. 2018;34:660-8.

Altschul SF, Madden TL, Schéffer AA, Zhang J, Zhang Z, Miller W, et al.
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res. 1997,25(17):3389-402.

Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al.
InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33 SUPPL. 2.
Wu LF, Hughes TR, Davierwala AP, Robinson MD, Stoughton R, Altschuler SJ.
Large-scale prediction of Saccharomyces cerevisiae gene function using
overlapping transcriptional clusters. Nat Genet. 2002;31:255-65. https://doi.
0rg/10.1038/ng906é.

Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan
5: genome-scale protein function classification. Bioinformatics. 2014;30(9):
1236-40.

Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole
genome comparisons dramatically improves orthogroup inference accuracy.
Genome Biol. 2015;16(1):157.

Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
DIAMOND. Nat Methods. 2014;12:59-60. https.//doi.org/10.1038/nmeth.3176.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


https://doi.org/10.1007/978-1-4939-6658-5_12
https://doi.org/10.1105/tpc.111.083667
https://doi.org/10.1105/tpc.111.083667
https://doi.org/10.1104/pp.15.01281
https://doi.org/10.1104/pp.15.01281
https://doi.org/10.1093/nar/gky336
https://doi.org/10.1038/emboj.2008.107
https://doi.org/10.1126/science.1087447
https://doi.org/10.1126/science.1087447
https://doi.org/10.1038/nbt.1603
https://doi.org/10.1038/ng906
https://doi.org/10.1038/ng906
https://doi.org/10.1038/nmeth.3176

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Obtaining and quality-controlling gene expression data for 17 bacterial pathogens
	Construction and evaluation of co-expression networks for the 17 bacteria
	Prediction of novel components of ribosomes by a meta-analysis of the co-expression networks

	Discussion
	Conclusions
	Methods
	Streaming RNA sequencing data
	Generating gene expression matrices for the 17 bacteria
	Identification of genes involved in ribosome biogenesis with co-expression networks
	Identification of protein domains and gene families

	Supplementary information
	Acknowledgements
	Declarations
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

