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A non-photosynthetic green alga
illuminates the reductive evolution of
plastid electron transport systems
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Abstract

Background: Plastid electron transport systems are essential not only for photosynthesis but also for dissipating
excess reducing power and sinking excess electrons generated by various redox reactions. Although numerous
organisms with plastids have lost their photoautotrophic lifestyles, there is a spectrum of known functions of
remnant plastids in non-photosynthetic algal/plant lineages; some of non-photosynthetic plastids still retain diverse
metabolic pathways involving redox reactions while others, such as apicoplasts of apicomplexan parasites, possess
highly reduced sets of functions. However, little is known about underlying mechanisms for redox homeostasis in
functionally versatile non-photosynthetic plastids and thus about the reductive evolution of plastid electron
transport systems.

Results: Here we demonstrated that the central component for plastid electron transport systems, plastoquinone/
plastoquinol pool, is still retained in a novel strain of an obligate heterotrophic green alga lacking the
photosynthesis-related thylakoid membrane complexes. Microscopic and genome analyses revealed that the
Volvocales green alga, chlamydomonad sp. strain NrCl902, has non-photosynthetic plastids and a plastid DNA that
carries no genes for the photosynthetic electron transport system. Transcriptome-based in silico prediction of the
metabolic map followed by liquid chromatography analyses demonstrated carotenoid and plastoquinol synthesis,
but no trace of chlorophyll pigments in the non-photosynthetic green alga. Transient RNA interference knockdown
leads to suppression of plastoquinone/plastoquinol synthesis. The alga appears to possess genes for an electron
sink system mediated by plastid terminal oxidase, plastoquinone/plastoquinol, and type Il NADH dehydrogenase.
Other non-photosynthetic algae/land plants also possess key genes for this system, suggesting a broad distribution
of an electron sink system in non-photosynthetic plastids.
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Conclusion: The plastoquinone/plastoquinol pool and thus the involved electron transport systems reported herein
might be retained for redox homeostasis and might represent an intermediate step towards a more reduced set of
the electron transport system in many non-photosynthetic plastids. Our findings illuminate a broadly distributed
but previously hidden step of reductive evolution of plastid electron transport systems after the loss of

photosynthesis.
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Background

Multiple lineages possess plastids acquired through inde-
pendent endosymbioses in eukaryotes [1, 2]. An engulfed
cyanobacterium by a heterotrophic eukaryote evolved to
form the first plastid, an evolutionary event that
occurred in the last common ancestor of Archaeplastida,
which comprises land plants, green algae, red algae, and
glaucophytes. Other algal lineages possess red alga-
derived or green alga-derived complex plastids acquired
by secondary or tertiary endosymbiotic events. The fact
that plastids have been laterally transferred multiple
times through eukaryote-eukaryote endosymbioses has
spawned much interest in untangling the evolutionary
events around the diversity of extant plastids.

Photosynthesis provides algae and plants with bio-
chemical energy in forms of ATP and NADPH by
conversion of solar energy through the plastid ATP
synthase complex following photosynthetic electron
transport accomplished by the cytochrome bg/f complex,
plastoquinone/plastoquinol  (PQ/PQH,), plastocyanin,
ferredoxin (Fd), F&:NADP™ reductase (FNR), and photo-
synthetic pigment systems, i.e., photosystems (PS) I and
II [3-6]. The generated NADPH and ATP are utilized
for carbon fixation through the Calvin Benson cycle as
well as for various other metabolic pathways that are
essential in the photosynthetic plastid. Regardless of the
beneficial aspects of photosynthesis that allows
autotrophic lifestyles, some species of algal and plant
lineages have lost their photoautotrophic lifestyles sec-
ondarily. Almost all photosynthetic lineages appear to
include such secondary heterotrophs, indicating multiple
losses of photoautotrophic lifestyles independently in
eukaryotic evolution [7].

The most well-studied species among such secondary
heterotrophs is the malaria parasite Plasmodium falci-
parum (Apicomplexa), which bears a non-photosynthetic
plastid called an apicoplast, with only a few metabolic
functions such as biosynthesis of heme, Fe-S cluster,
fatty acids, and isopentenyl pyrophosphates [8]. It also
retains the most reduced system of photosynthetic elec-
tron transport comprising only Fd and FNR [9, 10].
However, recent investigations have greatly expanded

the spectrum of known functions of remnant plastids in
non-photosynthetic algal/plant lineages [11-19] and
have been reviewed in recent papers [20, 21]. For
example, the non-photosynthetic diatom plastid in
Nitzschia sp. NIES-3581 still retains multiple redox
reactions for glycolysis, pentose phosphate pathway, and
biosynthesis of a variety of amino acids, in addition to
the functions found in the apicoplast, except for isopen-
tenyl pyrophosphate synthesis [16]. The volvocales green
algae Polytomella spp. and the trebouxiophycean green
alga Helicosporidium sp. also possess similarly complex
metabolisms in non-photosynthetic plastids [11, 12]. In
contrast, biosynthetic pathways for certain amino acids
and fatty acids are reported to be lost in non-
photosynthetic plastids of the chrysophycean “Spumella”
sp. NIES-1846 bearing only glycolysis and biosynthesis
of heme and Fe-S cluster [17]. The newly discovered
sister lineage of red algae, Rhodelphidia, possesses a
non-photosynthetic plastid metabolically functioning
only for the synthesis of heme and Fe-S clusters [18].
Nuclear-encoded proteins imported across plastid
membranes after translation in the cytosol are respon-
sible for all the functions introduced above [8-19].

In contrast to the metabolic functions, few studies
have focused on the evolution of the plastid electron
transport system in non-photosynthetic plastids. In
addition to photosynthetic linear electron transport,
multiple branched pathways of electron transport
mediated by PQ/PQH, and plastid terminal oxidase
(PTOX) are equipped in photosynthetic plastids as
particular components to avoid the fatal photodamage
caused by inefficient linear electron transport due to
an imbalanced ratio of reducing power and ATP [22-
25]. In particular, chlororespiration is a system in
which type II NADH dehydrogenase (NDH2) re-
oxidizes the reducing power NADPH from which
electrons are discarded through PQ/PQH, and PTOX
in photosynthetic green algae [22-25]. Chlororespira-
tion is also likely to contribute to redox homeostasis
as a safety valve when excess NADPH is generated by
plastid biochemical reactions [26]. The system medi-
ated by PQ/PQH, and PTOX also contributes as a
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sink for electrons generated through the carotenoid
biosynthetic pathway [22-25].

It is noteworthy that some non-photosynthetic plastids
still retain numerous biochemical functions involved in
redox reactions using NADP"/NADPH and involved in
the carotenoid biosynthetic pathway (e.g., [13, 16]). In
turn, this suggests that the electron transport systems
for redox homeostasis that dissipate excess reducing
power and sink excess electrons might also be dedicated
to certain functions of non-photosynthetic plastids.
However, underlying mechanisms by which metabolic-
ally versatile non-photosynthetic plastids still conduct
numerous redox reactions remain to be elucidated.

In this study, we demonstrated that a novel strain of a
heterotrophic green alga, chlamydomonad sp. NrCl902,
retains biosynthesis of PQ/PQH,. A transient RNA
interference (RNAi) knockdown experiment strongly
suggests that the product of homogentisate transferase
gene detected in this study is involved in the synthesis of
the PQ/PQH, pool of this alga. In addition to sequences
for Fd-FNR, the transcriptome analysis detected se-
quences for the plastidal, PQ/PQH,-mediated electron
sink systems such as PTOX, which are likely to be re-
quired for carotenoid biosynthesis and redox homeosta-
sis in the non-photosynthetic plastid. Our in-depth
survey further indicates a broad distribution of the gene
set for plastid electron transport systems that are simpler
than that of photosynthetic plastids but more complex
than that of apicoplasts. Our study thus unveiled a
previously hidden step for reductive evolution of photo-
synthetic electron transport systems, along with the
evolution of photoautotrophic algae to heterotrophic
protists.

Results and discussion

A novel lineage of plastid-bearing, non-photosynthetic
Volvocales species

We established and maintained the axenic, clonal cul-
ture of chlamydomonad sp. strain NrCl902, a colorless
Volvocales green alga (Fig. 1a), in a medium containing
sodium acetate as the sole carbon/energy source (see
“Methods” section for details). The cell possesses an
orange eyespot (Fig. 1b), located in plastids of photosyn-
thetic Volvocales green algae [27]. Indeed, a membrane-
bound structure containing starch granules but lacking
accumulation of thylakoid membranes was observed via
transmission electron microscopy (Fig. 1c). In light of
these findings, we conclude that the chlamydomonad sp.
possesses a non-photosynthetic plastid that is capable of
synthesizing starch granules.

After SYBR Green staining, we could observe organel-
lar DNAs in addition to the nuclear DNA (Fig. 1d, e).
Most of organellar DNA signals were derived from mito-
chondrial DNAs as they colocalized with the Mitotracker
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fluorescence (Fig. 1d-g). However, some organellar
DNA signals were outside the Mitotracker fluorescence
(Fig. 1g), strongly suggesting some of them are derived
from a plastid DNA in the new non-photosynthetic
green alga.

In 185 rRNA gene phylogeny, chlamydomonad sp.
NrCl902 was branched with Chlamydomonas pseudopla-
noconvexa (Genbank accession number: AB602849), a
photosynthetic species, with the highest bootstrap
support and the highest PhyloBayes posterior probability
(Fig. 2a). Other non-photosynthetic Volvocales green
algae, Polytoma spp. and Polytomella spp., were distantly
related to chlamydomonad sp. NrCl902. We removed
Polytoma oviformis U22936 [28] from our analysis as the
nucleotide sequence had been reported to be a chimera
[29]. Thus, the chlamydomonad sp. NrClI902 is the third
independent lineage of non-photosynthetic Volvocales
species.

For the first time, we succeeded in assembling the
complete plastid genome in non-photosynthetic Volvo-
cales green algae, given a fragmented assembly of the
previously published plastid genome of the non-
photosynthetic Volvocales green alga Polytomella uvella
[30]. The 176-kb-long, circularly mapping plastid genome
of chlamydomonad sp. NrCl902 does not carry the genes
or pseudogenes for photosynthesis-related thylakoid
membrane complexes, the carbon fixation pathway, and
chlorophyll biosynthesis (Additional file 1: Fig. S1). The
proteins encoded in the chlamydomonad sp. NrCl902
plastid are related to proteolysis, transcription, translation,
protein transport, and plastid division. Notably, the
protein-coding gene repertoire of NrCl902 is completely
identical with that of P. uvella (highlighted by gray back in
Fig. 2b; Additional file 1: Fig. S1). As P. uvella and our
strain NrCl902 have lost photosynthesis independently
(Fig. 2a), the shared gene repertoire represents the conver-
gent reductive plastid genome evolution after loss of
photosynthesis.

Plastoquinone/plastoquinol pool in the functionally
versatile non-photosynthetic plastid

Our prediction of potential plastid metabolic functions
in the non-photosynthetic green alga reveals a previously
undiscovered function of non-photosynthetic plastids in
this organism. We reconstructed the metabolic pathways
of plastids in chlamydomonad sp. by transcriptome
analyses with C. reinhardtii chloroplast functions as ref-
erences; these included nitrite assimilation, sulfur assimi-
lation, biosynthesis of isoprenoids, starches, fatty acids,
glycerolipids, heme, chlorophylls, carotenoids, quinones,
Fe-S clusters, and various amino acids, as well as carbon
fixation through the Calvin Benson cycle [31]. By recip-
rocal blast analyses, we detected contigs encoding
plastid-targeted proteins that are involved in most of the
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Fig. 1. A novel strain of non-photosynthetic Volvocales green algae, chlamydomonad sp. NrCI902. a Light microscopic observation of a cell.
Bar =10 um. b Light microscopic observation of the orange eyespot, indicated by a closed double arrowhead, at the anterior part of a cell. Bar=
10 um. ¢ Transmission electron microscopy of non-photosynthetic plastids containing starch granules. Bar = 1 um. Arrowheads show the
membranes enclosing starch granules. S: starch granule, N: nucleus, M: mitochondrion, P: plastid. d DIC, e SYBR Green, f Mitotracker, g Merge. n:
nuclear DNA. SYBR Green fluorescence signals other than the nuclear DNA are highly likely organellar DNAs. Bar =5 um. Double arrowheads
indicate SYBR Green signal not overlapped with Mitotracker signal, suggesting presence of plastid DNA (pl nucleoid)

>

pt nucleoid

above functions, except for photosynthesis-related func-
tions such as photosynthetic thylakoid membrane com-
plexes, chlorophyll biosynthesis, and carbon fixation
(Additional file 2: Fig. S2; Additional file 3: Table S1). It
is possible that the plastid pentose phosphate pathway
found in chlamydomonad sp. NrCl902 works for supply
of ATP, NADPH, and erythrose 4-phosphate, the latter
of which is then utilized in the shikimate pathway for
aromatic amino acid biosynthesis (Additional file 2: Fig.
S2), as proposed in the non-photosynthetic diatom
plastid [16]. These complex metabolic pathways in the
non-photosynthetic plastid are most likely fueled by
cytosolic/mitochondrial metabolisms through plastid
transporters such as triose phosphate transporters and
glucose phosphate transporters (Additional file 4: Fig.
S3; Additional file 5: Fig. S4; Additional file 6: Table S2).
In addition, the plastid triose phosphate transporter
would play roles for not only import of sugar phosphates
but also export of glycerate 3-phosphate (Additional file 4:
Fig. S3). Interestingly, sequences for the PQ/PQH, bio-
synthetic pathway that follows isoprenoid synthesis were
present in the transcriptome data (Fig. 3a in detail). To
support this finding, we conducted liquid chromatog-
raphy (LC)-tandem mass spectrometry (MS/MS) ana-
lyses for the detection of PQ/PQH,. In addition to
ubiquinone and ubiquinol, which are the electron

acceptor and donor, respectively, in mitochondrial
oxidative phosphorylation (Additional file 4: Fig. S3;
Additional file 6: Table S2), LC analysis detected an ex-
plicit, candidate peak of PQH, and a faint, candidate
peak of PQ (Fig. 3b). The MS spectrum confirmed that
the explicit peak was PQH,-9 (Fig. 3c). After treatment
of cell extracts with FeCl; for oxidization, the PQH,-9
peak disappeared and the candidate peak of PQ became
explicit, indicating that the faint peak detected by the
initial analysis was the oxidized form of PQH,-9, ie.,
PQ-9 (Fig. 3b). Indeed, the MS/MS spectrum indicated
that the peak was most likely PQ-9 (Fig. 3d). In line with
the above analyses, the non-photosynthetic plastid of
chlamydomonad sp. NrCl902 was demonstrated to
possess PQ-9 as the electron carrier. This is the first
report of PQ/PQH, pool in an organism with non-
photosynthetic plastids that lack photosynthesis-related
thylakoid membrane complexes.

To further confirm involvement of the detected se-
quences, such as homogentisate solanesyltransferase
(HST), in biosynthesis of the PQ/PQH, pool of this alga,
we performed a transient RNAi knockdown experiment
with electroporation of the double-strand RNAs (HST1;
Fig. 4a) for the gene. After the electroporation, HST
transcripts were undetectable by the reverse transcript-
ase PCR (RT-PCR) assay while transcripts of actin, a
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Fig. 2. Loss of photosynthesis and convergent evolution of plastid-encoded gene repertoires in Volvocales. a Phylogenetic position of the
chlamydomonad sp. NrCI902 in the 18S rRNA gene tree of Volvocales green algae. Non-photosynthetic lineages are highlighted in gray. Numbers
at each branch show ML bootstrap values > 90%, whereas thick branches show the PhyloBayes posterior probabilities > 0.95. b Comparison of
gene repertoires in plastid genomes of photosynthetic and non-photosynthetic Volvocales green algae. Genes highlighted in gray are those
shared by plastid genomes of photosynthetic volvocales green algae and non-photosynthetic species, Polytoma and chlamydomonad sp.
NrCl902, while genes highlighted in green are those present in plastid genomes of photosynthetic volvocales green algae but absent from those
of the non-photosynthetic species. The plastid genome of Polytoma is represented by P. uvella. Protein-coding gene repertoires of the plastid
genomes of P. uvella and chlamydomonad sp. NrCl902 are found to be identical. Note that Polytomella spp. are known to lack plastid DNAs
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housekeeping gene for Actin cytoskeleton, were detected
as a positive control (Fig. 4b). This is in stark contrast to
the control experiment for which the entire experimen-
tal procedure was followed but except for electropor-
ation without double-strand RNAs; transcripts of both
genes were detected by the RT-PCR assays (Fig. 4b). The
plastid PQ/PQH, pool size relative to the UQ/UQH,
pool size of presumably mitochondria was significantly
decreased after the double-strand HST1 RNA electro-
poration to ca. 60% of that in the control experiments
(Fig. 4c), which was confirmed by the LC-MS/MS ana-
lyses. Given these, the transient knockdown of the tran-
scripts for HST likely caused suppression of PQH,

synthesis. Interestingly, cell growth has been suppressed
in the knockdown samples during 2 days after the elec-
troporation (Fig. 4d), suggesting PQ/PQH, deficiency
might affect cell viability. To investigate a possibility of
off-target effects in the cell growth, two other distinct
double-strand RNA molecules (HST2 and HST3; Fig. 4a)
within the same target region of HST1 were designed
for independent RNAi experiments, and suppression of
both HST mRNA expression and cell growth was
observed as well (Fig. 4e, f). It is noteworthy that the
number of cells in the knockdown samples became com-
parable with that of the control cells by 3 days after the
electroporation (Fig. 4f) and that the RT-PCR assays for
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cells 3 days after the electroporation detected both HST
and actin transcripts (Fig. 4g). These observations
indicate that the RNAi effect in the current condition
has lasted during a few days after the electroporation.

Possible roles of PQ/PQH, pool in the non-photosynthetic
plastid

PQ is known as the electron acceptor from the carote-
noid biosynthetic pathway in which phytoene desaturase
(PDS or CrtP) and (-carotene desaturase (ZDS or CrtQ)
pull out electrons from carotenoid precursors [24].

Transcriptome analyses of chlamydomonad sp. NrCl902
revealed the presence of contigs encoding carotenoid
biosynthesis proteins that could convert an isoprenoid to
zeaxanthin (Fig. 2a; Additional file 7: Fig. S5). Indeed,
high-performance liquid chromatography (HPLC)
analyses demonstrated that the chlamydomonad sp.
possesses several different carotenoids including pB-
carotene, y-carotene, 3-hydroxy-y-carotene, and zeaxan-
thin (Additional file 7: Fig. S5). Those carotenoids might
be either components of the eyespot (Fig. 1b [27]) or
scavengers of reactive oxygen species [32]. The non-
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Fig. 4. Suppression of plastoquinol synthesis. a Target regions of the RNAi experiment. A closed box shows the coding region of the
homogentisate solanesyltransferase (HST) transcripts. Gray boxes show regions targeted by double-strand RNAs HST1-3. b RT-PCR assays for the
transcripts of HST and actin. Lanes 1-3 (controls): RT-PCRs with total RNAs extracted from each of three cell suspensions for which electroporation
was conducted without double-strand RNAs. Lanes 4-6: RT-PCRs with total RNAs extracted from each of three cell suspensions for which
electroporation was conducted with HST1. RNA was extracted from cell suspensions 1.5 days after the electroporation. ¢ Relative amount of
plastoquinone (PQ) pool. Relative amount of quinones are evaluated as peak areas of MRM chromatogram in the LC-MS/MS analyses.
Normalization of a PQ peak area was performed by a peak area of ubiquinone (UQ). Quinones were extracted from cells 2 days after the
electroporation with or without HST1. All the reduced quinones, plastoquinol and ubiquinol, were oxidized with FeCls prior to the LC-MS/MS
analyses, resulting in PQ and UQ. Error bar shows standard deviation. The numbers on the bars show mean values. *: P < 0.05 (Welch t-test). N=3.
d Growth of chlamydomonad sp. NrCI902 until 2 days after the electroporation. Error bar shows standard deviation. N = 3. e RT-PCR assays for the
transcripts of HST and actin in RNAi experiments with additional double-strand RNAs. Lanes 1-3 (controls): RT-PCRs with total RNAs extracted
from each of three cells suspensions for which electroporation was conducted without double-strand RNAs. Lanes 4-6: RT-PCRs with total RNAs
extracted from each of three cells suspensions for which electroporation was conducted with HST1. Lanes 7-9: RT-PCRs with total RNAs extracted
from each of three cells suspensions for which electroporation was conducted with HST2. Lanes 10-12: RT-PCRs with total RNAs extracted from
each of three cell suspensions for which electroporation was conducted with HST3. RNA was extracted from cell suspensions 1.5 days after
electroporation. f Growth of chlamydomonad sp. NrCI902 until 3 days after electroporations. Error bar shows standard deviation. N = 3. RT-PCRs
were performed 36 and 72 hours after electroporation (highlighted in grey). g RT-PCR assays for the transcripts of HST and actin in RNAI
experiments after 3 days from electroporation. Lanes 1-3 (controls): RT-PCRs with total RNAs extracted from each of three cell suspensions for
which electroporation was conducted without double-strand RNAs. Lanes 4-6: RT-PCRs with total RNAs extracted from each of three cell
suspensions for which electroporation was conducted with HST1. Lanes 7-9: RT-PCRs with total RNAs extracted from each of three cell
suspensions for which electroporation was conducted with HST2. Lanes 10-12: RT-PCRs with total RNAs extracted from each of three cell
suspensions for which electroporation was conducted with HST3. RNA was extracted from cell suspensions 3 days after electroporation
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Fig. 5. Evolution of plastid electron transport systems. a Photosynthetic plastid such as Chlamydomonas reinhardtii. The photosynthetic electron
transport system comprises linear electron transport, plastid terminal oxidase (PTOX)-mediated electron sink, cyclic electron flow, and FNR-
mediated NADPH-Fd electron transfer [3-6]. Solid arrows indicate the direction of reactions. Dotted arrows indicate the electron flow. b The non-
photosynthetic plastid lacking the photosynthetic pigment system but retaining the PTOX-mediated sink of electrons and reducing power (NADP
H). NADPH-Fd electron transfer was also performed. Gray arrows indicate the postulated direction and flow from the model in a, not
experimentally confirmed. Chlamydomonad sp. NrCl902 is highly likely to possess this type of plastid. ¢ Distribution of the plastid-targeted
proteins/plastid functions in eukaryotes bearing non-photosynthetic plastids. Dark gray boxes enclosed by solid lines indicate the presence of
corresponding proteins or functions localized in plastids, whereas those without solid lines indicate the presence of homologous sequence with
no plastid-targeting sequence. Highlighted in light gray are the genes of the electron sink machineries. Data of Polytomella spp. (Volvocales),
Helicosporidium sp. (Trebouxiophycea), Monotropa hypopithys (Eudicot land plant), Nitzschia sp. (Bacillariophyceae), “Spumella” sp. (Chrysophyceae),
Rhodelphis spp. (Rhodelphidia), and Plasmodium falciparum (Apicomplexa) are derived from previous studies [8, 11-14, 16-18]. Data of Polytomella,
Monotropa, Nitzschia, and Spumella are of transcriptome, while the others are of genome. 1 Only this is the plant-type while the others are the
divergent-type [34]. 2 Enolase and phosphoglycerate mutase are absent. 3 Flavodoxin (FId) is used instead of ferredoxin (Fd). d Non-
photosynthetic plastid with only NADPH-Fd electron transfer, such as a non-photosynthetic plastid of Helicosporidium sp. AAA: aromatic amino
acids, Asp-Lys: aspartate-lysine conversion, BCAA: branched chain amino acids, FA: fatty acids, Fe-S: iron sulfur cluster, FNR: Ferredoxin-NADP™
reductase, HPD: 4-hydroxyphenylpyruvate dioxygenase, HST: homogentisate solanesyltransferase, IPP: isopentenyl pyrophosphate, MMT: MPBQ/
MSBQ methyltransferase, NDH2: type 2 NADH dehydrogenase, PSI: photosystem |, PSII: photosystem II, Cyt b6/f. cytochrome b6/f, PC: plastocyanin,
PQ: plastoquinone, Phy: phytoene, PPP: pentose phosphate pathway, (-Car: (-Carotene, Lyc: lycopene, and e™: electron

photosynthetic green alga Polytomella magna (Fig. 2a) is
known to have an eyespot and genes for the carotenoid
biosynthesis pathway, although what carotenoids are
synthesized remains unknown [13]. In addition, certain
carotenoids were also detected and were thought to be
antioxidants in the malaria P. falciparum, although the
exact localization of the carotenoid biosynthesis
remained unclear in the parasite [33].

If PQ is utilized as an electron acceptor in the biosyn-
thesis of carotenoids in NrCl902, a certain electron sink
system should be functional in the plastid to re-oxidize
PQH, to PQ. Plastid terminal oxidase (PTOX) functions
in the oxidation of PQH, as a key component of the

plastid sink of excess electrons in photosynthetic plastids
[22, 24, 25] (Fig. 5a), and the transcriptome data also
contain a contig encoding PTOX with a plastid transit
peptide (Additional file 3: Table S1). We thus inferred
that PTOX in chlamydomonad sp. NrCl902 is involved
in the oxidation of PQH, generated in association with
carotenoid biosynthesis (Fig. 5b).

The PQ pool is also reduced by cyclic electron trans-
port and by chlororespiration mediated by type II
NADH dehydrogenase (NDH2) in the photosynthetic
model alga C. reinhardtii [23-25] (Fig. 5a), in addition
to carotenoid biosynthesis. We further investigated the
candidate roles of PQ/PQH, in the non-photosynthetic
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green alga chlamydomonad sp. NrCl902. We detected a
sequence for NDH2 with a plastid transit peptide (Add-
itional file 3: Table S1). Because the presumably plastidal
NDH2 likely catalyzes the redox exchange between NADP
H and PQ [25], PQ/PQH, pool may also be involved in a
part of the electron transport system to the terminal elec-
tron sink PTOX from NADPH. If correct, NDH2 together
with PQ/PQH, may be a component of an electron
transport system for chlororespiration in the non-
photosynthetic plastid of our strain NrCI902 (Fig. 5b), as
chlororespiration has been proposed to be involved in
NADP*/NADPH homeostasis previously [26].

In addition to the possible roles of the PQ/PQH, pool
as the electron sink systems for redox homeostasis in
the non-photosynthetic green algal plastid, it cannot be
completely ruled out the PQ/PQH, pool has other roles.
For example, it is also possible that nuclear gene expres-
sion is regulated by monitoring the redox state of the PQ/
PQH2 pool as proposed in photosynthetic organisms [35].

Broad distribution of electron transport systems in
eukaryotes with non-photosynthetic plastids

Intriguingly, the chlamydomonad sp. NrCl902 transcrip-
tome data revealed two additional sequences related to
the plastid electron transport system, plastid-targeted Fd
and FNR. Although their exact roles in the non-
photosynthetic green alga NrCl902 are unclear, the FNR
of the non-photosynthetic plastid may reversely function
to reduce Fd by NADPH-derived electrons as demon-
strated in the cyanobacterial heterocyst where linear elec-
tron transport is absent [36] and in non-photosynthetic
plastids of land plants with root-type FNR [37]. The re-
verse electron transport from NADPH to Fd could explain
how the non-photosynthetic plastid forms the reduced Fd
required for reduced Fd-dependent nitrite and sulfate
assimilation, reduction of oxidized thioredoxin by
ferredoxin:thioredoxin reductase, and for Fe-S cluster
assembly (Additional file 2: Fig. S2; Additional file 3: Table
S1) [8, 38-41]. Otherwise, the plastid Fd-FNR system
might also contribute to NADP*/NADPH homeostasis by
re-oxidizing excess NADPHs [26] in the
photosynthetic green algal plastid.

It was unclear how broadly genes for the plastid redox
homeostasis distribute in non-photosynthetic algae/land
plants, while only the plastid Fd-FNR system in apico-
plasts and Rhodelphidia [9, 10, 18] and PTOX in a non-
photosynthetic chrysophyte [17] have been reported.
Our additional in-depth survey suggests that the NADP
H-Fd electron transport system and the PQ/PQH,-medi-
ated electron transport system are still retained in vari-
ous non-photosynthetic algae/plants. Plastid Fd and FNR
are conserved in all the examined algae/land plants with
non-photosynthetic plastids, though we detected plastid
flavodoxin (Fld), a functional analog of ferredoxin, in a

non-
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non-photosynthetic diatom [42] (Fig. 5¢). Therefore, the
electron transport between Fd/Fld and NADP(H) medi-
ated by FNR is highly likely one of the indispensable
functions for maintaining non-photosynthetic plastids.
In contrast, the sequences for NDH2, PTOX, and PQH,
synthesis show a rather punctate distribution (Fig. 5¢;
Additional file 8: Table S3; Additional file 9: Table S4);
NDH2 sequences are detected only from green algae, se-
quences for PTOX and PQH, synthesis from a diatom, a
chrysophyte, a land plant and green algae. The organ-
isms used in this comparative analysis have lost photo-
synthesis independently [8—19], indicating convergent
evolution towards retention of genes for NDH2, PTOX,
and PQH, synthesis. Note that some of the sequences
for PQ/PQH, biosynthesis obtained from the transcrip-
tome data lack N-terminal plastid-targeting sequences
(Fig. 5¢; Additional file 8: Table S3). It remains unclear
whether the lack of plastid-targeting sequence in some
sequences is caused by their incomplete, 5’ truncate se-
quences in the transcriptome data or reflects their
localization outside plastids. Phylogenetic analyses of the
key proteins, FNR, PTOX, and methyl-6-solanyl-1,4-ben-
zoquinol methyltransferase (MMT) for the last step of
PQH, synthesis, show no clear evidence of lateral trans-
fer, but rather many of the sequences are suggested to
be of vertical inheritance (Additional file 10: Fig S6,
Additional file 11: Fig S7, Additional file 12: Fig. S8). In
addition to chlamydomonad sp. NrCl902, through
vertical inheritance, multiple distinct lineages with non-
photosynthetic plastids might retain or might have
retained the functional, abovementioned PTOX- and
PQ/PQH,-mediated electron transport system until
recently (Fig. 5c¢). Whether these species bearing the
genes are indeed capable of synthesizing PQ/PQH,
should be investigated biochemically.

Conclusion: evolutionary principle of the electron
transport system

Plastids are widely known as light-dependent cellular
powerhouse organelles supplying sugar through photo-
synthesis to the algal and plant cells [1-6]. However, re-
search over the past decade has shown that plastids exist
on a functional and evolutionary continuum that in-
cludes a variety of non-photosynthetically functioning
organelles [7, 8, 11-21]. Nevertheless, the evolutionary
transitions of the electron transport system and the
branched pathways for the electron sink between photo-
synthetic and non-photosynthetic plastids have remained
unclear. Our findings clearly demonstrate that the entire
photosynthetic electron transport system (Fig. 5a) is not
always straightforwardly evolved to the simplest form
comprising only Fd and FNR, soon after loss of photo-
synthesis (Fig. 5d). Instead, some non-photosynthetic
plastids have the PQ/PQH,-mediated electron transport
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system, and they might reflect an intermediate step for
reductive evolution of the plastid electron transport
system (Fig. 5a, b, and d). First, associated with loss of
photosynthesis, components for the photosynthetic
electron transport system are lost, i.e., PSI, PSII, cyto-
chrome b6/f, and plastocyanin, while the PQ/PQH,-me-
diated electron transport system and the Fd-FNR system
are retained (Fig. 5b). Subsequently, only Fd-FNR system
is left after loss of PQ/PQH,-mediated electron trans-
port system as seen in a non-photosynthetic plastid of
the trebouxiophycean green alga Helicosporidium sp.
(Fig. 5d). Given multiple non-photosynthetic plastid-
bearing species with genes to synthesize PQH, (Fig. 5¢),
plastids in the green alga NrCl902 and some other non-
photosynthetic algae/plant might belong to the evolu-
tionary stages shown in Fig. 5b. Metabolic pathways that
require redox reactions such as glycolysis and/or the
pentose phosphate pathway might be a key constraint
against the evolutionary loss of PQ/PQH, pool. In this
point of view, the Helicosporidium plastid might have an
alternative way for redox homeostasis as its genome
lacks PTOX and PQ/PQH, biosynthesis (Fig. 5¢) regard-
less of plastid-targeted proteins for a variety of biochem-
ical reactions [11]. Otherwise, the complex metabolic
pathways retained in the Helicosporidium plastid might
be no longer functional efficiently and thus might
require no efficient system for redox homeostasis. In
contrast, “Spumella” sp. likely lacks various pathways
but possesses genes for PTOX and some homologs for
PQ/PQH, synthesis (Fig. 5¢ [17]), suggesting multiple
evolutionary routes towards loss of PTOX and PQ/
PQH, biosynthesis. Additional systematic analyses
exploring the links between reductive evolution of the
electron transport system and metabolisms with redox
reactions in the non-photosynthetic plastids of diverse
eukaryotes may provide further insights into the
principle that would govern the functional reduction of
plastids.

Methods

Cultivation of strain

Chlamydomonad sp. NrCl902 was isolated by a single-cell
isolation technique with a glass pipet, from a freshwater
sediment sample collected from a paddy field in Niinomi,
Sammu, Chiba, Japan (35° 37" 01" N, 140° 24" 59" E).
The cell was grown and maintained in the AFAC medium
[43] at 25°C under the dark condition. The culture was
deposited to Microbial Culture Collection of National In-
stitute for Environmental Studies (NIES [44]), Japan, as
NIES-4405.

Cell observation
Cell shape was observed by the CCD Camera DP74-CU
(Olympus) equipped with a light microscope (Zeiss). To
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stain DNA, SYBR Green I nucleic acid stain (Thermo
Fisher Scientific) was added to the cell suspension to
give a final dilution of 1:1000. To stain mitochondrial
membranes, MitoTracker CMTM Ros (Thermo Fisher
Scientific) were added to the cell culture to give a final
concentration of 200 nmol L™, After staining, cells were
observed using BX51 fluorescence/differential interfer-
ence microscope (Olympus) connected to DP72 charge-
coupled device camera. Ultrastructure was observed by
transmission electron microscopy as follows. Cells were
frozen in liquid propane at — 175 °C and substituted with
2% glutaraldehyde, 0.5% tannic acid in acetone, and 2%
distilled water at —80°C for 2days. The sample was
incubated at 4°C for 2h, following to incubation at
—-20°C for 2h. The sample was rinsed with acetone 4
times for 15 min each and fixed with 2% osmium tetrox-
ide (OsO,) in acetone at 4°C for 60 min. Dehydration
was performed with ethanol 3 times for 30 min each,
followed by additional dehydration with ethanol at room
temperature overnight. The sample was infiltrated with
propylene oxide 2 times for 30 min each and put into a
70:30 mixture of propylene oxide and resin (Quetol-651;
Nisshin EM Co.) for 1 h. After volatilization of propylene
oxide, the sample was transferred into a fresh 100%
resin, followed by polymerization at 60 °C for 48 h. The
resin block was ultrathin-sectioned at 70 nm with a dia-
mond knife using a ultramicrotome (ULTRACUT,
Leica), and then the sections were placed on the copper
grids. The sections were stained with 2% uranyl acetate
at room temperature for 15min, rinsed with distilled
water, and secondarily stained with lead stain solution
(Sigma-Aldrich Co.) at room temperature for 3 min. The
sections were observed by a transmission electron
microscope (JEN-1400Plus; JEOL Ltd.) at an acceleration
voltage of 80kV. Digital images (3296 x 2472 pixels)
were taken with a CCD camera (EM-14830RUBY2; JEOL
Ltd.).

Phylogenetic position of chlamydomonad sp. NrCl902

Nuclear small subunit rRNA gene sequence of NrCl902
was retrieved from the nuclear DNA sequencing data
obtained with Illumina (see below). The rRNA sequence
of NrCl902 was aligned with those of Volvocales species
by MAFFT [45] and ambiguously aligned sites were re-
moved with Bioedit [46]. The dataset comprised of 54
taxa and 1726 sites was subjected to phylogenetic ana-
lyses with PhyloBayes 4.1 [47] and IQtree 1.6.5 [48] for
Bayesian and maximum likelihood frameworks, respect-
ively. The best-fitting available model based on the
Bayesian Information Criterion was the TIM3e+I1+T
model, which was used for estimation of the maximum
likelihood tree and for a bootstrap analysis with the 100
pseudoreplicates. PhyloBayes analyses were performed
under the CAT-GTR +T model with two independent
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Markov chain Monte Carlo chains (MCMC) were run
for 50,000 trees, sampling every 100 trees, with burnin
of 12,500 trees. Two chains converged with maxdiff =
0.09. Subsequently, the consensus tree with branch
lengths and Bayesian posterior probabilities (BPPs) were
calculated from the rest of the sampled trees. The 18S
rRNA gene sequence of NrCl902, and the dataset used
for the analysis are attached in Additional file 13:
Datasets.

Organellar DNA sequencing

Total DNA was extracted with Plant DNA extraction kit
(Jena Biosciences) according to the manufacturer’s
instruction. Total DNA was sent to Hokkaido System
Science Co. for subjecting to library construction with
v2 / TruSeq DNA PCR-free Sample Prep Kit (Illumina)
and HiSeq2500 sequencing, resulting in 45.9 million
paired-end reads. Adapter trimming and quality filtering
were performed with fastX toolkit [49]. In quality filter-
ing, reads with quality scores >20 for at least 75% of
their length were retained, resulting in 36.9 million
paired-end reads. The filtered short reads were subjected
to KmerGenie 1.7044 [50] to predict an assembled
genome size which is the required parameter for the
following HGAP-based assembling. DNA was also se-
quenced by PacBio RSII, with SMRT cell 8Pac V3 and
DNA Polymerase Binding Kit P6 v2, in Macrogen, and
the resultant 1.6 Gb subreads were subjected to assem-
bling by HGAP v3 [51] through DDB]J Pipeline [52]. By
the tblastN search [53] with plastid-encoded protein
sequences of Chlamydomonas reinhardtii (GenBank no.
BK000554), a single contig derived from a plastid gen-
ome was detected. For error correction, we mapped the
filtered Illumina short reads onto the contig with
Bowtie2 [54] with default settings, and detected errors
on the PacBio contig were manually corrected. By using
PCR assay followed by the Sanger sequencing to fulfill
the gap between the termini of the contig, we obtained
the complete sequence of plastid genome with 176,432
bp in length. Protein-coding genes were identified with
Mfannot [55] and blastX-based homology search to the
nr database of GenBank [53]. Transfer RNA genes were
identified with Mfannot [55] and tRNAscan [56].
Similarly, the mitochondrial contig was detected and
annotated by comparison with the mitochondrial DNA
sequence of C. reinhardtii (GenBank no. EU306622 [57])
and its close relative C. leiostraca (GenBank no. KP69
6389 [58]).

Nuclear-encoded protein sequences

Total RNA was extracted with Trizol (Thermo Fisher
Scientific) according to the manufacturer’s instruction.
RNA was subjected to library construction with TruSeq
RNA Sample Prep Kit v2 (Illumina) and HiSeq2500
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sequencing, resulting in 43.7 million paired-end reads.
Adapter trimming and quality filtering were performed
with fastX toolkit [49]. In quality filtering, reads with
quality scores > 20 for at least 75% of their length > 50
bp long were retained, resulting in 21.8 million paired-
end reads. Assembling was performed by trinity 2.4.0
with default settings. The C. reinhardtii chloroplast
functions for photosynthesis; nitrite assimilation; sulfur
assimilation; biosynthesis of isoprenoids, starches, fatty
acids, glycerolipids, heme, chlorophylls, carotenoids,
Fe-S cluster, and various amino acids; and carbon
fixation through the Calvin Benson cycle were partly
comprised of glycolysis and the pentose phosphate
pathway [31]. By using tblastN [53] with the C.
reinhardtii sequences involved in the above plastid
functions as queries with a cut off criterion of e™'°, we
searched for homologous sequences in the transcrip-
tome data of chlamydomonad sp. NrCl902. We then
confirmed that the detected sequences are not distant
paralogues by using blastP with deduced amino acid se-
quences as queries against the non-redundant protein
database [53]. To check whether encoded proteins in
the detected sequences possess plastid-targeting transit
peptides at the N-termini, ChloroP 1.1 [59] was sub-
jected with a cutoff value of 0.5 (Additional file 3: Table
S1). We also surveyed sequences for the cytosolic
glycolysis/gluconeogenesis, the acetate metabolisms,
and the mitochondrial tricarboxylic cycle as described
above. Mitochondrial targeting sequences were sur-
veyed by Mitofates [60].

Survey of plastid-targeted proteins for electron transport

systems in other non-photosynthetic algae/plant lineages

Plastid-targeted proteins for electron transport systems
(Fig. 5¢) were surveyed as described above for transcrip-
tome data of Polytomella spp. [12, 13], Monotropa
hypopitys [14], Nitzschia sp. [16], and “Spumella” sp.
[17], and genome data of Helicosporidium sp. [11],
Rhodelphis limneticus [18], and Plasmodium falciparum
[8]. Before the analyses, we checked the quality of the
transcriptome data with gVolante [61]. The BUSCO v2
“complete + partial” scores with 303 eukaryote con-
served proteins by gVolante were 94.06% in NrCl902,
93.73% and 92.74% in Polytomella parva and Polyto-
mella magna, respectively, and 93.4% in Monotropa. The
scores for the transcriptome data of Nitzschia and Spu-
mella used in this study were already reported to be
higher than 80% [16, 17]. Detected sequences are shown
in Additional file 8: Table S3 and 9: Tables S4, respect-
ively. Plastid-targeting sequences of detected homologs
were investigated as performed in previous studies [11-
18]. Phylogenetic analyses of FNR, PTOX, and MMT for
the last step of PQH, synthesis were performed with
IQtree 1.6.5 [48] with 100 bootstrap analyses. Details of
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the datasets and the used models are described in leg-
ends for Figs. S6-S8 (Additional file 10: Fig. S6, Add-
itional filel1l: Fig. S7, Additional file 12: Fig. S8).
Datasets used for the analyses are attached in
Additional file 13: Datasets.

Detection of carotenoids and quinones/quinols

The pigments including carotenoids were extracted with
acetone/methanol (7:2, v/v) using an ultrasonicator. Each
pigment was separated using a C8-HPLC column [62]
equipped in the Separations Module Waters 2695
(Waters) and then detected by the Photodiode Array
Detector Waters 2996 (Waters) and the Multi A Fluores-
cence Detector Waters 2475 (Waters). Carotenoids were
identified on the basis of their retention time and
characteristic absorption spectra. We also confirmed the
identification of each carotene with a method using a
C18-HPLC column [63].

For quinone/quinol extraction, an aliquot of 2-
propanol (LC-MS grade, Kanto Chemical Co., Inc,
Tokyo, Japan) were added to a microtube containing
the pelleted fresh cells of chlamydomonad sp. NrC1902
and then placed in an ice-cooled ultrasonication bath
for extraction for 1 min. The supernatant was immedi-
ately separated from suspends by centrifugation. A half
of the supernatant was directly injected into the HPLC
apparatus for analysis. The other half was treated with
ferric chloride (final concentration, 1.2 mM) before the
analysis for oxidation of total quinones and quinols.
The LC-MS/MS instrument was composed of a
Shimadzu Nexera X2 liquid chromatography system,
comprising a CBM-20A communication bus module,
two DGU-20A3R/5R HPLC degassing units, three LC-
30AD solvent delivery units constituting a ternary
pumping system, an SIL-30 AC autosampler, a CTO-20
AC column oven, and a LC-MS-8030 triple quadrupole
mass spectrometer connected through an atmospheric
pressure chemical ionization (APCI) interface (Shi-
madzu, Kyoto, Japan). The system was coupled to a
personal computer configured to run the Shimadzu
LabSolution software. Reverse-phase HPLC was per-
formed on a Zorbax Eclipse Plus C18 column (Rapid
Resolution HT, 3.0 x 100 mm, 1.8 pm silica particle size;
Agilent Technologies, Santa Clara, USA) with the binary
gradient (flow rate of 0.5mLmin") of ethyl acetate
(LC-MS grade, Honeywell, Seelze, Germany) with 0.1%
[v/v] formic acid (LC-MS grade, Wako Pure Chemical
Industries, Ltd., Osaka, Japan) in methanol (LC-MS
grade, Kanto Chemical Co., Inc., Tokyo, Japan) with
0.1% [v/v] formic acid as follows (all v/v); 30% for 1.0
min, 30-80% in 4.0 min, 80% for 3 min, 80-30% in 0.1
min, and 30% for 3.9 min. All the mobile phases were
degassed in vacuo with ultrasonication. The mobile-
phase reservoir bottles were designed to prevent any
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contact between the mobile phases and air during ana-
lysis. The APCI was set as following conditions:
nebulizer gas flow, 3.0Lmin" ' interface temperature,
350°C; desolvation line temperature, 200 °C; heat block
temperature, 200 °C; drying gas flow, 5L min~ . Parame-
ters of the multiple reaction monitoring (MRM) in the
positive ion mode of the mass spectrometer were
summarized in Additional file 14 (Table S5). Parameters
of the Q3 product ion scan in the positive ion mode of
the mass spectrometer were summarized in Add-
itional file 15 (Table S6).

RNAi knockdown of homogentisate solanesyltransferase
In silico prediction of suitable regions in the homogenti-
sate solanesyltransferase (HST) transcript for RNAi was
performed with siDirect 2.0 [64], unveiling accumulation
of the suitable regions at ca. 600 bp of the 5 terminal
region (data not shown). Therefore, we decided to pre-
pare three double-strand RNA molecules for the 5 ter-
minal region (Fig. 4a) as follows. One microgram of total
RNA extracted from cells of chlamydomonad sp.
NrCl902 with Trizol (Thermo Fisher Scientific) was
subjected to cDNA synthesis with 3" RACE System for
Rapid Amplification of ¢cDNA Ends (Thermo Fisher
Scientific) according to the manufacturer’s instructions.
PCR assay with the primer set, 5'-AGCCTGAATA
ATGGCGCAAG-3" and 5 -TGACGAAGGCGGTGAT
GAAG-3’, was performed in order to obtain DNA frag-
ments of homogentisate solanesyltransferase (HST).
Using the HST DNA fragment as the template, the
nested PCR was performed with primers (HST1F: 5'-
CTAATACGACTCACTATAGGGAGAATAATGGCG
CAAGATCAGCTTC-3" and HSTIR: 5-CTAATACG
ACTCACTATAGGGAGACTTGTTCACCACGTCAAT
GTCC-3') in order to prepare the DNA fragment
attached with the T7 promoter at the 5’ end, which is
subsequently used as the template for double-strand
RNA synthesis with MEGA script RNAi Kit (Thermo
Fisher Scientific) equipped with T7 RNA polymerase.
The double-strand RNA molecule prepared as describe
above is called HST1. To reduce the possibility of off-
target effect, we additionally prepared two distinct
double-strand RNA molecules, called HST2 and HSTS3,
targeting the HST transcript (Fig. 4a). RT-PCR assays
were performed using the following primer sets: HST2F:
5'-CTAATACGACTCACTATAGGGAGAAGCCTGAA
TAATGGCGCAAGAT-3" and HST2R: 5'-CTAATACG
ACTCACTATAGGGAGACACCTGGCTGTCATTTGT
GGA-3’, and HST3F: 5'-CTAATACGACTCACTATAG
GGAGAAAATTCAGCCATGCGTTTTGG-3" and HST
3R: 5'-CTAATACGACTCACTATAGGGAGACCACAC
CGGTTGACATCTCG-3'. The synthesized PCR prod-
ucts were used as the templates for double-strand RNA
synthesis as described above.
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Chlamydomonad sp. NrCl902 were preliminarily
cultivated as described above for 4 days. The culti-
vated cells were further incubated in a fresh AFAC
medium for 24 h. Cells were collected by centrifuga-
tion at 2500 rpm for 5min and washed with the TAP
medium (Thermo Fisher Scientific) containing 40 mM
sucrose. The 8.0 x 10° cells were suspended in 40 pL
of the sucrose-containing TAP medium. The cell sus-
pension was placed into an electroporation cuvette
with a 2-mm gap (NEPAGENE). By using NEPA21
Super Electroporator (NEPAGENE), electroporation
was performed with no double-strand RNAs or 4 g
of HST1 double-strand RNAs for nine cell suspension
samples, each containing 8.0x10° cells in the
sucrose-containing TAP medium under the following
electroporation conditions reported in Yamano et al.
[65] with some modifications. For details, parameters
of poring pulse were one polarity-exchange pulse of
300V with 8 ms pulse length, 50 ms pulse interval,
and a 40% decay rate, while those of transfer pulse
were a ten polarity-exchanged pulse of 20V with 50
ms pulse length, 50ms pulse interval, and a 40%
decay rate. In this case, the measured value of
electrical impedance was within 440-500 Q2 in the cell
conditions described above. Of nine cell suspension
samples, three were subjected to cell counting, three
others to the RT-PCR assays, and the others to the
PQ/PQH, detection/quantification.  Electroporated
cells in the TAP medium were transferred to the
AFAC medium and cultivated as described above,
under the dark condition. Cells were counted every
12h under the light microscopy until 48 h after elec-
troporation. Total RNA was extracted from cells 1.5
days after the electroporation as described above. RT-
PCR assays with the total RNA as the template were
conducted with the primer set for HST (5'-AGCC
TGAATAATGGCGCAAG-3" and 5'-TGACGAAGGC
GGTGATGAAG-3") or with that for actin (5'-ACTC
ATACGTCGGTGATGAG-3" and 5'-GCTCCATCAA
GATCTTCATC-3"). Cells 2 days after electroporation
were subjected to quinone/quinol extraction as de-
scribed above. The quinols in the total extract was
oxidized into quinones with ferric chloride before
analyses described above.

To reduce the possibility of off-target effect, six cell
suspensions were subjected to the electroporation with
no double-strand RNAs or each of HST1, HST2, and
HST3 double-strand RNAs as described above: of six cell
suspension samples, three were for the RT-PCR assays
at 1.5 days after the electroporation and the others for
cell counting for 3 days after the electroporation. Note
that after the cell counting, the cells were used for the
RT-PCR assays to check the RNAi effect after 3 days
from the electroporation.
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512915-020-00853-w.

Additional file 1. Figure S1. Plastid genome of chlamydomonad sp.
NrCl902. Dark gray boxes show canonical plastid genes. Closed boxes
show genes with no homolog in other organisms and intronic ORFs.
Light gray boxes between dark gray ones show introns. Thin bars show
tRNA genes.

Additional file 2. Figure S2. Predicted plastid metabolic map of
chlamydomonad sp. NrCl902. 1. Heme synthesis, 2. branched chain
amino acid synthesis, 3. sulfate assimilation, 4. Fe-S cluster synthesis, 5.
aspartate-to-lysine conversion, 6. starch metabolism, 7. pentose phos-
phate pathway, 8. nitrite assimilation, 9. aromatic amino acid biosynthesis,
10. fatty acid synthesis, and 11. glycerolipid synthesis. Sequences in which
plastid-targeting transit peptides were detected are shown by green cir-
cles with solid lines, while those lacking explicit plastid-targeting transit
peptides are shown by green circle with no line. Details for isoprenoid
(IPP), carotenoid, and plastoquinone syntheses are depicted in Fig. 3a.
Substrate possibly imported from the cytosol and/or mitochondria are
highlighted in blue, while those possibly exported to contribute to the
cytosolic and mitochondrial functions are in red. Abbreviations of pro-
teins are explained in Additional file 3 (Table S1).

Additional file 3. Table S1. Plastid-targeted protein sequences de-
tected in the transcriptome data of chlamydomonad sp. NrCl902.

Additional file 4. Figure S3. Interaction between the non-
photosynthetic plastid and other compartments. Protein sequences with
clear plastid-targeting sequences are shown by light green circles enclosed
by solid lines. Protein sequences with clear mitochondrial targeting se-
quences are shown by orange circles enclosed by red lines. Protein se-
quences with neither targeting sequence are shown by light blue circles. “?":
Aconitase that catalyzes the conversion from citrate to isocitrate outside
mitochondria was not detected in the transcriptome data of chlamydomo-
nad sp. NrCI902. Translation initiation from the 2nd methionine of the mito-
chondrial aconitase gene might express Aconitase functioning outside
mitochondria. Abbreviations are explained in Tables ST and S2.

Additional file 5. Figure S4. Mitochondrial genome of
chlamydomonad sp. NrCl902. Conserved mitochondrial genes are shown
by closed boxes, while intronic open reading frames are shown in gray.
Intron regions are shown as open boxes. L1-L6 and S1-5S3 show large
subunit and small subunit rRNA gene fragments. Transfer RNA genes are
shown by their amino acids and anticodons in parentheses. Given a var-
iety of structures of mitochondrial genomes in Volvocales, i.e, circular ge-
nomes and tandem repeats of linear genome, it remains unclear whether
the mitochondrial genome is a circularly mapping molecule or a linear,
tandemly repeated molecule.

Additional file 6. Table S2. Mitochondrial and cytosolic protein
sequences for carbon and energy metabolisms detected in the
transcriptome data of chlamydomonad sp. NrCl902.

Additional file 7. Figure S5. Carotenoid biosynthesis in
chlamydomonad sp. NrCl902. A. The detailed pathway for carotenoid
biosynthesis and structures of carotenoids predicted to be synthesized in
this pathway. B. HPLC profile for carotenoid detection by absorbance at
450 nm in chlamydomonad sp. NrCl902.

Additional file 8. Table S3. Detected sequences for electron transport
systems in non-photosynthetic species of algal and plant lineages.

Additional file 9. Table S4. Detected sequences for representative
plastid metabolic functions in the non-photosynthetic eudicot plant
Monotropa hypopytis.

Additional file 10. Figure S6. Maximum likelihood tree of plastid
terminal oxidase in eukaryotes. Non-photosynthetic algae are highlighted
in black. Numbers on branches are bootstrap values equal to or higher
than 80%. The dataset comprised of 67 taxa and 236 sites was analyzed
with IQtree under the LG + 1+ model selected with Bayesian Informa-
tion Criterion.

Additional file 11. Figure S7. Maximum likelihood tree of

Ferredoxin:NADP+ oxidoreductase in eukaryotes. Non-photosynthetic
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algae are highlighted in black. Numbers on branches are bootstrap values
equal to or higher than 80%. The dataset comprised of 96 taxa and 303
sites was analyzed with IQtree under the LG + 1+ I model selected with
Bayesian Information Criterion.

Additional file 12. Figure S8. Maximum likelihood tree of MPBQ/MSBQ
methyltransferase in eukaryotes. A. Plant-type MMT. The dataset com-
prised of 17 taxa and 250 sites was analyzed with IQtree under the LG+ T
model selected with Bayesian Information Criterion. B. Divergent type
MMT. The dataset comprised of 35 taxa and 292 sites was analyzed with
IQtree under the LG + 14T model selected with Bayesian Information Cri-
terion. Non-photosynthetic algae are highlighted in black. Numbers on
branches are bootstrap values equal to or higher than 80%.

Additional file 13. Datasets for phylogenetic analyses.

Additional file 14. Table S5. Parameters of the multiple reaction
monitoring (MRM) in the positive ion mode of the mass spectrometer
used in the present study.

Additional file 15. Table S6. Parameters of the Q3 product ion scan in

the positive ion mode of the mass spectrometer used in the present
study.
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