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code and codon usage for protein
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Abstract

Background: How, and the extent to which, evolution acts on DNA and protein sequences to ensure mutational
robustness and evolvability is a long-standing open question in the field of molecular evolution. We addressed this
issue through the first structurome-scale computational investigation, in which we estimated the change in folding
free energy upon all possible single-site mutations introduced in more than 20,000 protein structures, as well as
through available experimental stability and fitness data.

Results: At the amino acid level, we found the protein surface to be more robust against randommutations than
the core, this difference being stronger for small proteins. The destabilizing and neutral mutations are more numerous
in the core and on the surface, respectively, whereas the stabilizing mutations are about 4% in both regions. At the
genetic code level, we observed smallest destabilization for mutations that are due to substitutions of base III in the
codon, followed by base I, bases I+III, base II, and other multiple base substitutions. This ranking highly anticorrelates
with the codon-anticodon mispairing frequency in the translation process. This suggests that the standard genetic
code is optimized to limit the impact of randommutations, but even more so to limit translation errors. At the codon
level, both the codon usage and the usage bias appear to optimize mutational robustness and translation accuracy,
especially for surface residues.

Conclusion: Our results highlight the non-universality of mutational robustness and its multiscale dependence on
protein features, the structure of the genetic code, and the codon usage. Our analyses and approach are strongly
supported by available experimental mutagenesis data.
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Background
Amino acid mutations can have different impacts on pro-
tein stability and fitness. Most are substantially destabi-
lizing and potentially cause the partial or complete loss
of structure and function. However, the large majority of
amino acid mutations that become fixed upon evolution,
called amino acid substitutions in the evolutionary field,
are regarded as neutral with respect to protein fitness [1].
Note that substitutions can also lead to the emergence
of new functions, although with a very low frequency of
about 10−9 per site, thus driving functional evolution [2].
Two concepts play a central role in these matters. The

first is mutational robustness, which refers to the capac-
ity to tolerate mutations without changing the molecular
and/or organism’s phenotype. It is anticorrelated with
the evolutionary or selection pressure, which means that
residues that are more robust to mutations are less con-
strained by selection. The second concept is evolvability,
which is defined as the capacity of proteins to acquire new
functions, hence allowing them to adapt to modifications
in the environment.
Despite recent advances, the role of the evolutionary

mechanisms in the complex interplay between the opti-
mization of these two fundamental but sometimes con-
flicting characteristics is still a major issue in molecular
evolution and protein biophysics [3–10]. A wide variety
of disciplines, from synthetic biology to protein design,
would definitely benefit from a better understanding of
these mechanisms and from the ability of accurately pre-
dicting the future evolutionary processes from the analysis
of the past [11].
Mutational robustness and evolvability can be viewed

as two sides of the same coin, which drive evolution in
an entangled way. On the one hand, physical principles
are expected to favor structured proteins with a high
degree of stability, while on the other hand, the selec-
tion for function imposes opposite constraints in targeted
regions, such as the presence of amino acids carrying
specific chemical moieties or a required degree of struc-
tural flexibility. Once the functional criteria are satisfied,
mutational robustness ensures better tolerance of random
mutations in non-functional regions and thus confers an
evolutionary advantage [12, 13]. Note, however, that too
high tolerance to mutations can also prevent necessary
adaptation to environmental changes [14].
Results obtained from experimental analyses and theo-

retical models of population genetics suggest that muta-
tional robustness is favored or disfavored, and impedes or
facilitates adaptative evolution, according to the polymor-
phicity and size of the population, the mutation rate, and
the fitness landscape [5, 14–16].
To further shed light on these challenging issues, we per-

formed an extensive in silico mutagenesis study, in which
we computed the change in protein thermodynamic

stability caused by all single point mutations inserted in
the structurome, defined as the ensemble of all protein
structures available in the Protein Data Bank [17]. This
is the first systematic and comprehensive investigation at
such a large scale, using bioinformatics tools of which
the validity has largely been demonstrated in different
contexts. On top of that, we also analyzed available exper-
imental data on stability changes and fitness, which brings
experimental support to our analyses.
The first issue that we studied in detail is how the

mutational robustness is influenced by some protein char-
acteristics. A series of papers have studied the impact
of residue- to organism-level properties, such as residue
hydrophobicity, protein size, organism type, and growth
temperature [18–21]. We focused here on protein length
and residue solvent accessibility, as their influence has
to be taken care of when examining nucleobase-level
impacts.
A second question concerns the relation between the

mutational robustness and the standard genetic code
(SGC). It has been shown that this code has evolved to
minimize the costs of amino acid replacements. Indeed,
from the observation of the SGC table (Additional file 1:
Figure S1), we immediately see that amino acids that share
similar biophysical characteristics tend to be encoded in
codons that differ by only a single base. However, a long
and controversial debate regards the level of optimality
that the SGC has reached [22–28].
On the basis of the nucleobase sequence of the whole

structurome, we also investigated the relation between
the mutational robustness, the codon choice, and the
codon usage bias. Indeed, the degeneracy of the genetic
code introduces some variability into protein encoding
in nucleobase sequences, which opens alternative path-
ways in the evolutionary landscape that are likely to allow,
e.g., the minimization of translational errors and an effec-
tive increase of protein mutational robustness [29–31].
Codons are selected for other reasons too, such as the
matching of tRNA abundance and the mRNA stability for
improved translation efficiency [31–34].

Results and discussion
The central question addressed here concerns the protein
robustness against mutations, its dependence on various
parameters at the codon, residue, and protein levels, and
its link with evolutionary rates.
With this objective in mind, we estimated with the

PoPMuSiCsym algorithm [35, 36] the change in folding
free energy (��G) for all single-site mutations in the
non-redundant set D of protein X-ray structures rep-
resenting the protein structurome, as described in the
“Methods” section. In parallel, we considered the smaller
ensembles of experimentally measured ��G values and
fitness scores. These three sets of mutations, that we call
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MPoP,MExp, andMFit contain about 1.0×108, 2.6×103,
and 1.4 × 104 mutations, respectively.
Most of the natural amino acid mutations are the result

of a single base substitution (SBS) in the codon, as the
evolutionary probability to have simultaneously two or
three base substitutions is small. However, we would like
to point out that only a subset of all possible amino acid
mutations can be obtained through SBSs. We call such
amino acid mutations μSBS and limit ourselves to this
subset unless otherwise stated. The amino acid mutations
that result from multiple base substitutions (MBS) are
called μMBSs.

Relative solvent accessibility
We started by analyzing the effect of the relative solvent
accessibility (RSA) of the mutated residues on the muta-
tional robustness. This effect is clearly visible in Fig. 1a,
b: the ��G distribution of μSBSs is much more spread
out and shifted toward destabilizing mutations for core
residues than for surface residues in agreement with ear-
lier findings [37, 38]. Random mutations are thus on
average much more destabilizing when introduced in the
core, where close packing and specific interactions tend
to impede changes in residue size and physicochemical
properties. In contrast, surface residues are more robust
to mutations than core residues, in the sense that they
have a smaller impact on the thermodynamic stability.
It has to be stressed that these results are almost iden-

tical whether using the set of computed or experimental
��Gs from MPoP and MExp (cf. Fig. 1a, b). This sup-
ports the validity and accuracy of PoPMuSiCsym’s ��G
predictions.
We also found that the relationship between RSA and

��G values is linear above an RSA threshold of about
20% and non-linear below this threshold, where the curve
is well fitted by a second-degree polynomial function
(Fig. 1c-d). Again, the same trend is observed for the com-
puted and experimental mutations of MPoP and MExp,
with an even stronger deviation from linearity at small
RSA values for the latter; note that the number of muta-
tions inMExp is low, which explains the noisy behavior.

Protein length
The effects of residue RSA and protein size on the muta-
tional robustness are entangled. Indeed, mutations of
residues located in the core, which have a low RSA,
have on average a larger impact on stability than surface
mutations, which have a large RSA. As a consequence,
proteins of different sizes, which have different core to
surface ratios, appear to have different tolerances to
mutations [39].
The dependence of mutational robustness on protein

length L is shown in Fig. 1e. On average, shorter pro-
teins that have a smaller core to surface ratio are more

robust than longer proteins for which this ratio is larger.
Above about 400 residues, the robustness remains roughly
constant. Such large proteins are usually multi-domain
proteins, which implies that the core to surface ratio does
not increase any more.
To gain insights into this effect, we computed the L-

dependence separately for core and surface residues. We
found that shorter proteins tend to have a less robust core
and a more robust surface than larger proteins, as shown
in Fig. 1e, f and Addional file 1: Figure S2, in agreement
with some previous studies [40–43].
The former observation can be attributed to the larger

compactness and hydrophobicity of the core of short pro-
teins, which is therefore less able to accommodate muta-
tions. We indeed checked that the core becomes less and
less hydrophobic as the protein size increases (Additional
file 1: Figure S3). In fact, the increase in core to surface
ratio is compensated up to a certain level by variations
in the amino acid composition. However, this compensa-
tion is far from perfect, and the core of small proteins is
definitely more hydrophobic than that of large proteins
[40]. For example, the hydrophobic residues (Val, Ile, Leu,
Phe) represent about 45% of buried residues in proteins of
L ≤ 200, 41% for medium-size proteins (200 < L ≤ 400)
residues, and only about 37% in larger proteins (400 < L).
Several hypotheses can be formulated to explain the

lower hydrophobicity of the core of large proteins. It can
simply be due to “incomplete” evolution, in the sense
that their hydrophobic character would still be increas-
ing throughout natural evolution [40]. Alternatively, it
can be argued that core contacts have to be stronger in
small than in large proteins and thus on the average more
hydrophobic, given that short proteins have a smaller
number of native contacts per residue that can be used
to compensate the loss of conformational entropy upon
folding [41, 42].
The second observation, i.e., the higher mutational

robustness of the surface of small proteins compared to
the surface of longer proteins, can be explained by the
larger fraction of functional residues. These residues are
known to be poorly optimized for protein stability, but
well optimized for function, including protein-protein and
protein-ligand interactions, conformational changes, and
catalytic activity [21, 44, 45]. Therefore, their substitutions
are likely to be stabilizing, which confers a higher muta-
tional robustness to the surface of small proteins. Another
explanation could be related to different levels of negative
design pressure, which tends to destabilize and thus avoid
misfolded structures, in contrast to positive design that
strengthens native interactions [41–43].
Finally note that the mean ��G per protein, 〈��G〉,

is, on average, proportional to the fraction of residues in
the core, as seen in Fig. 1g. This follows from the facts
that core mutations have much larger ��G values on
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Fig. 1. Influence of the protein length and of the mutated residues’ RSA (in %) on the mutational robustness, evaluated from the ��G values (in
kcal/mol) of μSBSs from the setsMPoP (a,c,e-h) andMExp (b,d). a, b ��G distribution for different RSA ranges. c, dMean ��G per RSA bin as a
function of the RSA; the chosen bin width is equal to 1%. eMean ��G per protein as a function of the protein length for all residues and f for
surface residues (RSA>20%). gMean ��G per protein as a function of protein length (blue points) and protein core to length ratio, defined as the
number of residues in the core over the number of residues in the protein (orange points). h Difference between the mean ��G per RSA bin of
long proteins (L >200 residues) and short proteins (L ≤200 residues) as a function of RSA

average than surface mutations and that their effect dom-
inates when computing the mean.

Evolutionary rate
We compared the mutational robustness analyzed in the
previous sections with the evolutionary rate, defined as

the ratio of nonsynonymous to synonymous base substi-
tutions, which has been estimated in a series of papers
on the basis of sequence evolution models [46–50]. These
two quantities are expected to be related given that stabil-
ity is known to be one of the major factors contributing to
the evolutionary pressure [51–53].
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The dependence of the evolutionary rate on RSA was
investigated in [46, 47]. A larger rate was found for sur-
face than for core residues. This is in agreement with our
findings of a larger mutational robustness. In brief, surface
residues, whose mutations have on average smaller effects
on protein stability, evolve faster than buried residues.
However, while the relationship between RSA and evo-

lutionary rate appears to be linear [46, 47], the relationship
between RSA and mutational robustness is shown to be
linear only for RSA values larger than 20% (Fig. 1c, d).
This suggests that mutational robustness and evolution-
ary rate are linearly correlated solely for surface residues.
The relation becomes non-linear for core residues, with
the robustness decreasing more than the rate.
Note that our results indicate a monotonic relation

between mutational robustness and evolutionary rate,
whereas other predictions based on stability against mis-
folding rather suggest a non-monotonic relation [54].
Finally, the RSA-evolutionary rate regression line has

been suggested to have a larger slope for large than for
small proteins [46, 47]. More precisely, surface residues
from large proteins seem to evolve faster than those from
small proteins, whereas almost no difference is observed
for core residues. These results appear a priori to be in
contradiction with ours. Indeed, we found that small pro-
teins have a more robust surface and a less robust core
than large proteins on the basis of both predicted and
experimental ��G values (Fig. 1h and S4).
There is in fact no contradiction. Rather, we run here

up against the limits of the correlation between evolution-
ary rate and mutational robustness: small proteins have a
more robust and slower evolving surface than large pro-
teins and a less robust and equally evolving core. The
interpretation of this difference lies in the fact that a
significant proportion of surface residues are functional,
especially in small proteins. These functional residues

increase the robustness by lowering the 〈��G〉 as they
are not optimized for stability [21, 44, 45] and decrease
the evolutionary rate as many mutations render the pro-
tein non-functional. Note that this counterintuitive result
is due to our definition of robustness in terms of protein
stability rather than fitness (see the next section).

Experimental fitness
To compare the computed mutational robustness with
experimental fitness measures, we subdivided the muta-
tions into stabilizing, neutral, and destabilizing, using the
free energy thresholds: ��G < −0.5 kcal/mol, − 0.5
kcal/mol≤ ��G ≤ 0.5 kcal/mol, and 0.5 kcal/mol<
��G, respectively.
With these definitions, the fractions of destabilizing,

neutral, and stabilizing μSBSs from MPoP are (68%, 28%,
4%) in the core, (41%, 55%, 4%) on the surface and (55%,
41%, 4%) overall (Fig. 2 and Additional file 1: Table S1 for
more detailed RSA dependence).
Note that, in the set of experimentalμSBSs ofMExp, the

fraction of stabilizing mutations is slightly higher (about
10 to 12%, according to whether they are introduced
in the core or at the surface). This is not surprising as
these mutations are non-random; they are engineered and
biased toward stabilizing mutations.
The fraction of stabilizing mutations obtained via a sin-

gle base substitution is thus constant and equal to 4% of
the total number of mutations both in the core and on
the surface. In contrast, destabilizing μSBSs dominate in
the core and neutral μSBSs dominate on the surface. Of
course, the precise fractions of stabilizing, neutral, and
destabilizing mutations depend on the somewhat arbi-
trary threshold energy values of − 0.5 and + 0.5 kcal/mol.
We compared these results with experimentally char-

acterized fitness values of random mutations, taken from
three different studies and grouped in MFit (Table 1).

Fig. 2. Fraction of stabilizing μSBSs (��G < −0.5 kcal/mol), neutral μSBSs (− 0.5≤ ��G ≤ 0.5 kcal/mol) and destabilizing μSBSs (��G > 0.5
kcal/mol) inMPoP for a all residues, b core residues (RSA≤ 20%), and c surface residues (RSA> 20%)
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Table 1 Comparison between mutational robustness and fitness: computed fraction of destabilizing, neutral, and stabilizing μSBSs
fromMPoP and experimentally characterized fraction of deleterious, neutral, and advantageous mutations. The fitness thresholds for
defining the mutation phenotypes are chosen by the authors for mutations in [55]; for the other sets of experimental mutations:
deleterious if the fitness is lower than the mean of loss-of-function and wild-type scores, neutral if the fitness is between that threshold
and 1.25 times the wild-type score, and advantageous otherwise

Mutation set Destabilizing Neutral Stabilizing Reference

MPoP 55% 41% 4% This paper

Mutations in Deleterious Neutral Advantageous Reference

AraC/D/E 53% 43% 4% [55]

UBE2I/SUMO1/CALM1/TPK1 51% 44% 5% [56]

TEM-1 37% 59% 4% [57]

Note that the concept of fitness is not precisely defined
and depends on the experimental setup used to char-
acterize it. Stability is for sure a major factor [51], but
fitness contains also other factors, related to, e.g., protein
expression, solubility, and function.
The first study involves about 150 mutations inserted in

three proteins (the transcription factor AraC, the enzyme
AraD and the transporter AraE) [55]. Among these muta-
tions, the number of deleterious, neutral and advanta-
geous mutations were found to be equal to 53%, 43%, and
4% on average, with some differences between the three
tested proteins. These values are close to the fractions of
destabilizing, neutral, and stabilizing mutations that we
predicted for the full structurome.
A second experimental investigation used deep muta-

genesis scanning to investigate about 13,000 mutations in
four proteins (SUMO E2 conjugase, a small ubiquitin-like
modifier, thiamin pyrophosphokinase and calmodulin).
The percentage of deleterious (51%), neutral (44%), and
advantageous (5%) mutations [56] also fits very well with
our predictions.
The third series of experimental results concerns the

mutational landscape of TEM-1 β-lactamase, with about
800 mutants [57]. In this case, a bigger fraction of neu-
tral than of destabilizing mutations was found. This could
suggest that the activity of this enzyme is particularly well
optimized as already observed in [57].
Wewould like to underline the good agreement between

our predictions and these mutagenesis data, which con-
tain about 10 times more mutations than the training
set of our predictor (basically MExp) and has negligi-
ble overlap with it. This proofs the good generalization
properties of our predictor (as also discussed in the
“Methods” section) which successfully generalizes the
statistics-based rules derived from the small training
datasetMExp to large independent datasets.

Similarity matrices
Similarity matrices, such as the series of BLOSUM matri-
ces [58], are commonly used in sequence alignment meth-
ods to account for the similarity between the 20 amino

acids and the ease with which they are mutated into
each other. They are derived from multiple sequence
alignments of homologous proteins and thus reflect both
the physicochemical similarity of the substituted amino
acids, the evolutionary mechanisms acting on protein
sequences, and the structure of the genetic code.
We expected a certain correlation between BLOSUM

scores and mutational robustness, as they share stabil-
ity as one of their main ingredients [18, 59] and more
specifically, hydrophobicity [60]. Moreover, BLOSUM and
fitness scores have been shown to correlate well in the
mutational landscape of TEM-1 β-lactamase [57].
We focused here on mutational robustness rather than

fitness, expanded the analysis to the ensemble of allμSBSs
in the structurome set MPoP, and computed the ��G
distribution as a function of the BLOSUM scores.We con-
sidered for that purpose the commonly used BLOSUM62
matrix.
We clearly observe a strong correlation between the

mean ��G and the BLOSUM62 score, with a linear cor-
relation coefficient as high as r = −0.97. As shown in
Table 2, the substitutions that are the most likely to occur
during natural evolution are mostly neutral for stabil-
ity and only a small fraction is destabilizing. The picture
is completely reversed for the substitutions that are less
likely to occur. Indeed, these substitutions impact on aver-
age quite strongly on protein stability, while only a very
small fraction is neutral. Interestingly, the fraction of sta-
bilizing mutations is almost constant, between 3 and 5%,
except for mutations between very similar amino acids
where it drops to 1%.
The relation between mutational robustness and BLO-

SUM scores is clearly seen in Fig. 3: the ��G distribu-
tion extends more and more toward positive values—i.e.
toward destabilizing mutations—when the BLOSUM62
score decreases.

Structure of the genetic code
We investigated the relation between the mutational
robustness and the structure of the standard genetic
code. In the codon-to-amino acid mapping, single base



Schwersensky et al. BMC Biology          (2020) 18:146 Page 7 of 17

Table 2 Mean ��G (in kcal/mol) of all μSBSs inMPoP as a
function of the BLOSUM62 class. Positive BLOSUM scores indicate
more likely amino acid substitutions and negative scores, less
likely substitutions. The fraction of stabilizing (Stab), neutral
(Neut), and destabilizing (Dest) substitutions in each class is also
reported

BLOSUM 〈��G〉 Stab (%) Neut (%) Dest (%)

− 4 1.58 4 18 78

− 3 1.15 5 29 66

− 2 1.11 4 27 69

− 1 0.83 4 34 62

0 0.56 5 46 49

1 0.33 3 65 32

2 0.28 3 71 26

3 0.25 1 78 21

substitutions lead to some but not all amino acid muta-
tions. To get them all, the simultaneous substitution of
two or three bases has to be considered, which occur at a
much lower rate.
We thus compared the mutational ��G profiles of

single versus multiple base substitutions (μSBSs versus
μMBSs) to better understand the extent to which the
standard genetic code is optimized to ensure mutational
robustness. Note that we call μMBS, amino acid muta-
tions that cannot be reached by any SBS.
First of all, we found that mutations resulting from

single base substitutions are on average less destabiliz-
ing than those resulting from multiple base substitutions,
for both the core and surface regions (Fig. 4a, b and
Table 3, and Additional file 1: Table S1 and Figure S5 for

more detailed RSA dependence). This suggests that the
structure of the standard genetic code is optimized, at
least partially, for protein mutational robustness through
the minimization of the destabilizing impact of random
mutations.
However, a deeper investigation leads to nuance this

view. Indeed, there is a large difference according to which
bases in the codon are substituted, as seen in Fig. 4c, d and
Table 4. We denote as I, II, and III the three bases in the
codons.
Clearly, the substitution of base II in the codon yields

the most destabilizing amino acid mutations, on aver-
age. At the other extreme, the least destabilizing SBSs
involve base III, followed by base I. This is related to the
structure of the genetic code and the smallest physico-
chemical property changes caused by base III substitu-
tions and the largest changes caused by base II substi-
tutions. Again, the trends are more pronounced for core
than for surface residues (Additional file 1: Table S1 and
Figure S5).
An important result is that we find the same trends with

experimental stability values from MExp than with com-
puted values from MPoP, as shown in Additional file 1:
Table S2.
Moreover, only 14 amino acid mutations are reachable

by varying base III, against 64 for base I, and 80 for base
II, as can be deduced by looking at the genetic code table
(Additional file 1: Figure S1). Thus, not only is base III the
most optimized for stability, but it is also the base that
leads to the lowest number of non-synonymous muta-
tions. Base II is the least optimized for stability and more-
over leads to the highest number of non-synonymous
mutations.

Fig. 3. ��G distribution (in kcal/mol) of all μSBSs inMPoP as a function of the BLOSUM62 score. Positive BLOSUM scores indicate more likely
amino acid substitutions and negative scores, less likely substitutions
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Fig. 4. Effects of single and multiple base substitutions and the nucleobase position in the codon. a–d ��G distribution (in kcal/mol) of amino acid
mutations inMPoP. a μSBSs and μMBSs in the core (RSA≤ 20%) and b on the surface (RSA> 20%). c μSBSs resulting from substitutions of bases I,
II, or III in the codon. d μMBSs resulting from simultaneous substitutions of two or three bases in the codon. Ratio of stabilizing, destabilizing, and
neutral mutations considering randommutations (that occur with equal frequency at each codon position) e, or considering translation errors (that
occur with different frequency at each codon position) f. Note that in e, f, the synonymous mutations and mutation degeneracy are included in the
computations

As a consequence, the difference between the three base
substitutions is even clearer when including the synony-
mous mutations in the estimation of the mean ��G,
which consist of base substitutions that lead to the same
amino acid and thus to ��G values equal to zero. We
have in that case also to count the degeneracy, that is the
number of different base substitutions that yields the same
amino acid mutation. The results are shown in Table 4:
the mean ��G is lowest for base III (0.16 kcal/mol),
medium for base I (0.64 kcal/mol), and highest for base
II (0.91 kcal/mol). Analogous differences can be observed

at any values of the solvent accessibility and become even
more important in the core while decrease at the surface
(Additional file 1: Table S1).
So, there seems to be a stronger positive selection pres-

sure on base I and even more on base III, whereas base
II appears much more constrained across evolution. This
has sometimes been related to the origin of the genetic
code and considered as a by-product of the expansion
of the primitive code through the diversification of the
amino acids repertoire [61, 62]. Another interpretation is
more straightforward in the present context: our results
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Table 3 Comparison between the mean ��G values (in
kcal/mol) of single and multiple nucleotide substitutions (μSBS
and μMBS) inMPoP and the fraction of stabilizing, neutral and
destabilizing mutations. Core residues have an RSA≤ 20% and
surface residues an RSA > 20%

Region 〈��G〉 Stab (%) Neut (%) Dest (%)

μSBS

All 0.81 4 41 55

Core 1.09 4 28 68

Surface 0.49 4 55 41

μMBS

All 0.97 4 32 64

Core 1.35 4 18 78

Surface 0.56 5 47 48

are related to the codon-anticodon pairing and mispair-
ing in the translation process. Indeed, transfer RNA reads
with much higher accuracy base II in the codon than base
I and even more, than base III [22, 63]. However, whether
the standard genetic code has adapted to the translation
machinery or vice versa is impossible to know at this stage.
Our results can thus be taken to mean that natural

selection, through targeted adaptation of the standard
genetic code and/or the translation machinery, primarily
favors an increased translation accuracy, rather than the
minimization of the impact of random mutations.
This interpretation is supported by the finding of a high

anticorrelation between the mean ��G per position in
the codon and the frequency of the translation error at
these positions; these frequencies are equal to (31.3%,
6.2%, 62.5%) [25]. Indeed, the Pearson’s linear correlation
coefficient is almost perfect: r = −0.996 (P value� 0.05).
We also compared the impact of single and multiple

nucleotide substitutions (Fig. 4c, d and Additional file 1:

Table 4 Mean ��G (in kcal/mol) for μSBSs fromMPoP

obtained from SBSs at different codon positions (I, II, III). In the
lower part of the table, the mean ��G is computed by
considering also the synonymous mutations (with ��G = 0)
and the degeneracy (the number of SBSs leading to a μSBS)

Position 〈��G〉 Stab (%) Neut (%) Dest (%)

Without synonymous mutations and degeneracy

I 0.65 3 49 48

II 0.91 5 36 59

III 0.51 4 50 46

With synonymous mutations and degeneracy

I 0.64 3 50 47

II 0.91 5 36 59

III 0.16 2 84 14

Table S1 and Figure S5). We found that the ��G pro-
file obtained from μMBSs of the two bases I+III are less
destabilizing than base II μSBSs and only slightly more
destabilizing than base I or base III μSBSs. Furthermore,
the ��G profile of base II μSBSs strongly resembles the
profiles of bases I+II and bases II+III μMBSs.
In summary, we have the following increased destabi-

lization ranking: III, I, I+III, II, II+III, I+II, I+II+III. The
comparison of these results with the frequency of trans-
lation errors yields a very interesting result that further
confirms our hypotheses: the anticorrelation between the
mean��G and the frequency of the translation errors for
all these different types of substitutions is extremely high
r = −0.951 (P value < 0.001).
Finally, we computed the fraction of stabilizing, desta-

bilizing and neutral mutations according to whether they
result from random mutations or from errors in transla-
tion. In the latter case, the frequencies of the translation
errors at the three positions in the codon must be taken
into account. As shown in Fig. 4e, f, a much larger number
of neutral mutations and a reduced fraction of destabiliz-
ing mutations are found if we consider translation errors.
This trend is even more pronounced in the core, as seen
in Additional file 1: Figure S6.
This result signals a better optimization of the standard

genetic code for minimizing the consequences of errors
in translation. It is also optimized to minimize the effects
of random mutations in the DNA, but to a lesser extent;
indeed, random mutations occur with equal frequency at
the three codon positions.
The error rates are known to be of the order of 10−8

in genome replication with a substantial variation as a
function of the organism and of the order of 10−5 in tran-
scription. Instead, the error rate in protein synthesis is
higher with a value of about 10−4. This suggests that the
mRNA translation process is the real bottleneck in pro-
teome accuracy maintenance [64, 65] and explains our
finding that the standard genetic code evolved to primar-
ily favor robustness against mutations caused by defaults
in the translation machinery.

Nucleotide composition
Let us now study the mutational robustness as a function
of the nucleotide composition of the mRNA sequence,
which is often biased and varies from GC- to AT-rich.
The GC-content influences the amino acid composition
of the encoded protein and has even been used to predict
the amino acid frequencies. For low or high GC content,
mutual evolutionary adjustments between genomic GC
content and amino acid composition are observed [20].
Moreover, the GC-content, especially at the third posi-
tion in the codon, has been shown to correlate with the
hydrophobic amino acid content and thus with protein
stability [66–68], as well as with gene expression efficiency
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in mammalian cells [69]. However, the relative weight of
these different effects is still debated [70].
Here, we investigated the protein mutational robustness

as a function of the mutated nucleotide type by estimating
the mean ��G of μSBSs resulting from the substitution
of each of the four nucleobases, independently of their
position in the codon (Table 5, Fig. 5a and Additional file
1: Table S3). We observed that substitutions of A yields
the most robust amino acid mutations and substitutions
of T the least robust mutations. C and G show simi-
lar intermediate behaviors. The same trends are observed
for experimental mutations fromMExp (Additional file 1:
Table S4).
The low robustness of T is not surprising as it is the least

frequently substituted base in exome regions [70, 71] and
there is thus a strong evolutionary pressure acting on it.
In contrast, the high robustness of A is a priori surprising
since it is usually less frequently mutated than G and C
bases.
In fact, the differences between the four bases are

mainly observed in the protein core. This can be clearly
seen from Fig. 5b, d, where the mean ��G as a func-
tion of the solvent accessibility is plotted for each kind
of wild-type nucleobase, for computed and experimental
��Gs.
We can thus hypothesize that these differences are

linked to the hydrophobicity of the encoded amino acids
[72]. This is indeed the case: the T content of the codons is
correlated with the hydrophobicity of the encoded amino
acids (r = 0.55 using the hydrophobicity scale of Kyte-
Doolittle, P value < 10−7), the A content is anticorrelated
with it (r = − 0.28, P value < 0.005). No correlation is
observed for C and G.
Thus, T-containing codons code preferentially for

hydrophobic amino acids, and their mutations in the core
induce on average strong destabilization. In contrast, A-
containing codons tend to encode polar amino acids, and
their mutations in the core are often neutral or stabilizing.
This explains the observed mutational robustness profile
upon specific base substitutions and the absence of link
with the rate of SBSs in exome regions [71].
To better assess our observations, we compared them

with the mutagenesis data from MFit. We found a nice

Table 5 Mean ��G (in kcal/mol) and fraction of stabilizing,
neutral and destabilizing μSBSs fromMPoP which result from
the substitution of one of the four nucleobases

Base 〈��G〉 Stab (%) Neut (%) Dest (%)

A 0.43 6 55 39

C 0.67 3 41 55

G 0.74 5 46 49

T 1.23 2 27 71

agreement between our stability predictions (Fig. 5a) and
the experimental fitness data of TEM-1 β-lactamase [57]
as measured via the minimum inhibitory concentration
(MIC) to β-lactam amoxicillin (Fig. 5c). A similar agree-
ment was found with the other fitness data from MFit
(Additional file 1: Figure S7).

Transition to transversion bias
Transitions are substitutions that interchange purines
(A↔G) or pyrimidines (C↔T), whereas transversions
interchange purines and pyrimidines (C,T↔A,G). Transi-
tions are known to be from 2 to 5 times more frequent
than transversions [73, 74], an observation called the tran-
sition to transversion bias. However, the origin of this bias
is a longstanding problem in molecular evolution.
Recently, the relationship between this bias and the fit-

ness score was analyzed on a set of about 1,200 mutations,
in which a probability of 53% was found for the transi-
tions to be fitter than the transversions [74]. However, this
tiny difference cannot justify the large bias observed in
evolutionary investigations and thus essentially discard a
selection effect as main explanation.
In another recent study [75], transitions were seen to

be significantly less detrimental than transversions in
deep mutagenesis scanning experiments on the influenza
and HIV viruses. This suggests instead that the selec-
tive hypothesis cannot be totally ruled out, but that it
could contribute, together with other mutational biases,
to explain the observed transition to transversion substi-
tution rate.
Our results are basically in agreement with the first

aforementioned analysis. Indeed, we found the transitions
to be slightly more robust than transversions, with a mean
〈��G〉 of 0.51 and 0.60 kcal/mol, respectively, when con-
sidering the mutation degeneracy and the synonymous
mutations. However, this free energy difference is too
small to explain the large bias observed.
Note that, if only the non-synonymous mutations are

included in the 〈��G〉 computation, the opposite trend
is observed, both using computed and experimental sta-
bility data (Table 6 and Additional file 1: Tables S5 and
S6). This is due to the fact that transitions are enriched in
synonymous mutations.

Codon usage
The understanding of the codon usage and its evolu-
tion are strongly debated in the molecular evolution field.
Indeed, the codon usage is intrinsically connected with
a wide range of factors whose contributions are difficult
to disentangle [76]. For example, relations of codon usage
with tRNA abundance, translation elongation rate, protein
expression levels, and stability of mRNA secondary struc-
ture have been observed, which suggests an explanation in
terms of selection for translation efficiency [77–79].



Schwersensky et al. BMC Biology          (2020) 18:146 Page 11 of 17

Fig. 5.Mean ��G (in kcal/mol) and fitness of amino acid mutations caused by the substitution of each of the four nucleobases. a Computed
〈��G〉 of SBSs in theMPoP set. b Computed 〈��G〉 of SBSs as a function of the residue solvent accessibility (RSA) in theMPoP set. c Fitness score
of mutations measured via the minimum inhibitory concentration (MIC) to β-lactam amoxicillin [57]. d Computed 〈��G〉 of SBSs as a function of
the RSA in theMExp set. Note that here only three RSA bin (0–20%, 20–50%, 50–100%) are considered due to the limited number of entries

Another interesting hypothesis is that codon usage is
shaped to minimize errors at the protein level. This
adaptive hypothesis suggests that a selective pressure for
mutational robustness acts on codon usage to reduce the
deleterious impacts of genetic variants [30, 31, 34, 80–82].
In [83], the comparison between wild type and engineered
capsid poliovirus, in which synonymous mutations are
introduced, suggests that the former has a higher muta-
tional robustness than the latter, and thus that codon
choice is directly connected to robustness.

Table 6 Mean ��G (in kcal/mol) for μSBSs fromMPoP

obtained from transitions and transversions. In the upper part of
the table, the mean ��G includes the synonymous mutations
(with ��G = 0), while the lower part is without them

Mutation 〈��G〉 Stab (%) Neut (%) Dest (%)

With synonymous mutations

Transitions 0.51 2 63 35

Transversions 0.60 4 53 43

Without synonymous mutations

Transitions 0.79 3 44 53

Transversions 0.73 5 43 52

Codon usage could also be related to protein evolvabil-
ity, since synonymous codons allow the exploration of
different evolutionary pathways displaying different sets
of proximal amino acid mutations [29].
In order to deepen the hypothesis of the role of the

codon usage in minimizing errors at the protein level,
we compared the mutational robustness of proteins when
using the actual codon or synonymous codons. More
specifically, we analyzed how the 〈��G〉 that results from
random mutations or translation errors differs according
to the codon usage. We also analyzed the 〈��G〉 at each
codon position to study a possible position-dependent
codon selection.
The difference in 〈��G〉 when using the actual or a

synonymous codon is reported in Table 7 and Additional
file 1: Table S7 for predicted stability values and in Addi-
tional file 1: Table S8 for experimental ones. We observe
that the used codons lead in general to higher robust-
ness than synonymous ones. The difference can amount
to about 10% of the standard deviation of the ��G distri-
butions. This effect is apparent for mutations inserted at
each of the three positions in the codon, although to a dif-
ferent extent, and both for random mutations, which do
not distinguish between the positions in the codon, and
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Table 7 Difference between 〈��G〉 for μSBSs inMPoP reached
from synonymous codons (syn) or from the wild-type codon
(used), according to the position of the substituted base in the
codon (I, II and III), and according to whether the position-
dependent frequency of translation errors is taken into account
(translation) or not (random). σ is the standard deviation of the
��G distribution: σ 2(��G) = σ 2

(
��Gused

) + σ 2
(
��Gsyn

)

(〈
��Gsyn〉 − 〈

��Gused〉) /σ

All (%) Core (%) Surface (%)

I 3 − 2 11

II 7 6 6

III 11 9 8

Random 7 3 9

Translation 6 4 7

for translation errors, in which the error rate depends on
the position.
Interestingly, the higher robustness of used compared

to synonymous codons is on average smaller for core
residues and bigger for surface residues (Fig. 6, Table 7
and Additional file 1: Tables S7 and S8). It has however to
be noted that this trend is basically due to substitutions
at codon position I; no difference is observed for substitu-
tions at positions II or III when compared to the standard
deviation of the ��G distribution. It has to be underlined
that we obtained this result for both experimental and pre-
dicted stability values (Additional file 1: Tables S7 and S8).
The observed difference between mutations on the sur-
face and in the core could be related to the fact that the
former evolve faster than the latter.
Another interesting result is that the codon choice

seems to minimize to the same extent the impacts of
translation errors and of random mutations.
We also analyzed the C+G-content in the codons. We

found that the difference in CG content between used and

Fig. 6. Difference between 〈��G〉 for μSBSs inMPoP andMExp

reached from synonymous codons (syn) or from the used codon
(used) as a function of the RSA

synonymous codon is equal to be about − 4%. This indi-
cates that codons with higher CG content have a slightly
higher chance to be used. Several reasons have been pro-
posed to explain this bias [84], among which improved
mRNA translation efficiency [69].

Codon usage bias
Some codons occur much more frequently than others,
and this effect, known as the codon usage bias, strongly
depends on the host organism [85]. This bias has been
related to the tRNA pool in the organisms; indeed a
correlation between the codon frequency and the con-
centration of tRNAs with the complementary anticodons
has been found in many genomes. This correlation could
contribute to the efficiency of the translational process by
tuning the elongation rate [86–88].
We analyzed here whether there is a link between codon

choice, codon usage bias, and mutational robustness.
More precisely, we investigated if the used codon is bet-
ter optimized for mutational robustness than synonymous
codons in the biased or unbiased subsets of codons.
To explore this question, we retrieved the codon usage

frequency tables [89] of the host organisms of the pro-
teins from the structurome set D, and defined codons
as biased if their frequency deviates by more than 12.5%
from equiprobability [89]. We then compared the 〈��G〉
of μSBSs reached from synonymous and used codons,
according to whether these codons are biased or not in the
protein’s host organism.
For unbiased codons, the wild-type and synonymous

codons appear to have basically the same mutational
robustness (Table 8). In contrast, for biased codons, the
used codons clearly appear to be more robust than the
synonymous ones.
Note that we also dropped the assumption of equiprob-

ability of the four nucleobases and defined the codon
usage as biased or unbiased on the basis of the devi-
ation from the expected codon frequencies calculated
from the observed nucleotide frequencies in the spe-
cific host organism [89]. We found similar though slightly
less pronounced trends, as shown in Additional file 1:
Table S9.

Table 8 Difference between 〈��G〉 for μSBSs inMPoP reached
from synonymous codons (syn) or from the wild-type codon
(used), according to whether the position-dependent frequency
of translation errors is taken into account (translation) or not
(random). σ is the standard deviation of the ��G distribution
(see legend to Table 7)

(〈
��Gsyn〉 − 〈

��Gused〉) /σ

Biased (%) Unbiased (%)

Random 8 0

Translation 8 1
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This interesting result suggests that the codon usage
bias is not only related to the optimization of the transla-
tion efficiency, but also to increase the mutational robust-
ness. It points out the non-trivial role of the selection
for error minimization at the protein level in shaping the
codon usage, in agreement with an adaptationist hypothe-
sis [31]. Here, for the first time, we quantified these effects
that certainly play an important role in the highly complex
interdependence with other factors, such as translation
elongation speed, initiation efficiency, and mRNA stabil-
ity. These interrelationships need to be further explored.

Outliers
We would like to emphasize that all the above results
represent average tendencies. Additional insights can be
gained from analyzing proteins or protein regions which
deviate from these average tendencies. For example, we
found that the least mutationally robust protein in D is
wheat agglutinin isolectin 3 (PDB code 2X52). The average
��G over all its μSBSs is equal to 1.08 kcal/mol, which
is much higher than the average value of 0.81 kcal/mol
(Table 3). A closer look at this protein shows that it has
many disulfide bridges: 16 for 170 residues. Computing
separately the ��G values of residues involved in disul-
fide bridges and of those that are not yields 〈��G〉 values
of 2.07 and 0.84 kcal/mol, respectively. The per-residue
〈��G〉 is shown in Additional file 1: Figure S8.
As expected, mutations affecting disulfide bridges are

strongly destabilizing, which makes this protein much
less robust against mutations on average than other pro-
teins. The lower robustness of disulfide bridge-containing
proteins can be expected to be a general result. We will
perform a systematic analysis of outliers at large scale in a
forthcoming study.

Conclusion
The mutational robustness of proteomes and its adapta-
tion across natural evolution are key questions in pro-
tein science. Answering these would be proficuous not
only for fundamental understanding but also for a wide
range of biotechnological and biopharmaceutical applica-
tions. To deepen this issue, we investigated here how a
series of factors influences protein mutational robustness
through large-scale in-silico deep-mutagenesis scanning
experiments and the analysis of experimental mutagenesis
data.
A first point to emphasize is that, whenever the amount

of experimental data is sufficient, experimental and com-
puted results largely coincide. This strongly supports the
accuracy and unbiased nature of our predictions and the
validity of our structurome-scale approach. The good gen-
eralization properties of our predictor are further detailed
in the “Methods” section.

Summary of the results and importance of the 3D structure
Our results can be summarized as follows:

• Core residues are much less robust on average and
evolve slower than mutations on the surface, as they
are more structurally constrained.

• Short proteins have a less robust core and a more
robust surface than longer proteins, as they have
larger proportions of buried hydrophobic residues
and of exposed functional residues.

• The fraction of stabilizing mutations is almost
identical on the surface and in the core (about 4%), the
fraction of neutral mutations is higher on the surface,
and the fraction of destabilizing mutations is higher
in the core. They nicely agree with the fractions of
beneficial, neutral, and deleterious mutations
estimated in experimental mutagenesis studies. This
result supports the pivotal role of thermodynamic
stability in the fitness cost of mutations [51].

• The mean frequency of substitutions across
evolution, characterized by the BLOSUM62 matrix, is
highly correlated with their mutational robustness:
rare substitutions are on average more destabilizing
that frequent ones.

• Single base substitutions are on average less
destabilizing for the protein than multiple base
substitutions, which occur at a much lower rate. This
led to the first conclusion that the standard genetic
code evolved to minimize the errors of random
mutations and to preserve the genome information at
all stages, from DNA replication and transcription to
mRNA translation and protein synthesis.

• Not all bases in the codon are optimized in the same
way. The mean robustness upon single and multiple
base substitutions decreases according to the
following ranking: base III, I, I+III, II, II+III, I+II, and
I+II+III. Notably, the corresponding 〈��G〉 values
are almost perfectly anticorrelated with the frequency
of translation errors. The genetic code is thus
primarily optimized to limit mRNA translation
errors. As these errors are more frequent than
transcription and replication errors, their
minimization can be viewed as an overall
optimization of the genetic material encoding.

• Wild-type codons are on average more robust than
synonymous codons, in the sense that SBSs of the
wild-type codon yield less destabilizing amino acid
mutations. The codon is thus selected, at least partly,
to minimize the effect of both transcriptional and
translational errors. Note that our results show that
the codon usage is partially optimized for the
precision of translation. This effect adds to the codon
optimization for translation efficiency and for mRNA
stability [64, 77–79].
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• The codon selection for mutational robustness seems
on average stronger at the protein surface, where the
substitution rate is higher and thus where natural
selection has had more opportunities for
optimization.

• The codon selection for mutational robustness is
stronger for biased than for unbiased codons,
suggesting that also the codon usage bias could be
partly due to mutational robustness optimization.

We would like to underline that the use of 3D struc-
tural information is a fundamental piece in our analyses,
which allowed us to gain a deeper understanding of the
link between thermodynamic constraints and natural evo-
lution. We believe that this is a general trend, and that
the integration of structure and sequence data is needed
to further improve our understanding of the evolutionary
mechanisms and how the biophysical features shape and
are shaped by them.

Perspectives
Different questions still need to be addressed. A first issue
is the origin of the mutational robustness and whether it
can be considered as an emergent property or a property
that depends on an intricate combination of factors, some
of which are analyzed in this paper [90]. Other biophys-
ical features such as protein dynamics, conformational
disorder, and thermal stability as well as environmen-
tal and life-style variables such as the type of organism,
the organism growth temperature (OGT), and the aer-
obic or anaerobic environment should be explored and
integrated in the current analysis to better understand
the mutational robustness and its highly complex depen-
dencies. For example, using large-scale experimental data
about protein melting temperatures [91] and OGT [92],
it would be very interesting to further investigate how
robustness with respect to mutations is related to these
two quantities.

Methods
Protein structurome
The non-redundant set D of protein structures analyzed
here, which represent the structurome, was obtained by
following steps, schematically depicted in Additional file
1: Figure S9:

1 We used the PISCES protein culling server [93] to get
the subset of proteins from the Protein Data Bank
(PDB) [17] which have an experimental X-ray
structure of at most 2.5Å resolution and share less
than 95% pairwise sequence identity. We considered
each of these proteins in the context of their
biological unit referenced in the PDB.

2 We filtered out the membrane proteins, viral capsid
proteins, and antibodies on the basis of PDB

annotations. The first series of proteins is overlooked
because the PoPMuSiCsym predictor is applicable to
globular proteins only, the second series because they
form very large oligomeric assemblies, and the last
because antibodies have variable sequences and the
mutations in their complementarity determining
regions have a clear functional role. We obtained in
this way a uniform set of globular proteins.

3 For each protein entry, we retrieved the DNA
sequence from the EMBL webserver [94, 95].

4 To check the protein-DNA mapping, we aligned the
translated DNA sequences with the protein
sequences from the PDB using CLUSTALW [96].
We kept only the DNA sequences which yield at least
95% sequence identity with the PDB sequences.

With this procedure, we obtained 21,540 X-ray struc-
tures amounting to 5,368,279 residues in total. The list of
organisms to which these proteins belong, the total pro-
tein number per organism and the average ��G of all
possible single-site mutations are listed in Additional file
1: Tables S10-S13. The code for generating and analyzing
the data is available in our GitHub repository [97].

Large-scale in silico mutagenesis experiments
We estimated the folding free energy changes (��G)
caused by all possible single-site mutations introduced
in all collected structures, using the unbiased version of
our in-house predictor PoPMuSiC, called PoPMuSiCsym

[35, 36]. The set of mutations so obtained is called
MPoP. It contains 101,997,301 mutations among which
100,149,646 have a known wild-type codon. Note that
mutations from or to stop codons are not taken into
account.
The model structure of PoPMuSiCsym consists of a lin-

ear combination of energy terms estimated using different
types of statistical potentials. These have been derived
from frequencies of sequence-structure associations in
sets of protein X-ray structures, transformed into folding
free energies using the Boltzmann law. The coefficients of
the linear combinations are sigmoid functions of the RSA
of the mutated residues. The PoPMuSiC model is based
on the assumptions that the structure of the native state
is only slightly modified upon mutations and that the sta-
bility of the reference state mimicking an unfolded state
remains unchanged.
We refer to [35, 36] for further technical details about

the PoPMuSiCsym predictor.

PoPMuSiCsym and its generalization properties
The question of how much predictions of a data-driven
computational tool such as PoPMuSiCsym are not over-
fitted or overly biased toward the training set is a long-
standing issue in computational biology, often called



Schwersensky et al. BMC Biology          (2020) 18:146 Page 15 of 17

the generalization problem [98]. Extensive tests assess-
ing PoPMuSiCsym’s generalization properties have been
performed during its validation phase, such as N-fold
cross-validation and application to independent test sets
[35, 36]. To avoid overestimating the performance, we
carefully checked that there was no similarity between the
folds and between training and test sets.
Another source of prediction biases can be hidden in the

content of the training set. For example, training sets are
usually strongly enriched in destabilizing mutations, with
the consequence that most predictors are biased toward
these mutations. We carefully checked that PoPMuSiCsym

does not show this bias [35] by training it on three sets
of mutations: a set with a majority of stabilizing muta-
tions, a set with a majority of destabilizing mutations and
a set with an equal number of stabilizing and destabiliz-
ing mutations. These three PoPMuSiCsym versions gave
very similar predictions when applied on test sets, which
demonstrates their independence on the training set.
We would like to emphasize that the good general-

ization capacity of PoPMuSiCsym is one of its strengths,
which is not achieved by all stability predictors [36]. Nev-
ertheless, it is important to acknowledge that it is never
possible to completely rule out the presence of hidden
biases at the residue and protein levels. However, biases
related to the genetic code, the codon usage and the codon
bias are highly unlikely as PoPMuSiCsym does not use
any of these features in its model construction and train-
ing. It is indeed based only on the proteins’ amino acid
sequence and structure. Our results at the codon and
nucleobase levels can thus not be attributed to statistical
biases or overfitting, which is what makes them evenmore
interesting.

Experimentally characterized stability changes
We also considered the set of 2,648mutations of which the
��G folding free energy change upon single-site muta-
tions has been experimentally measured. This set, that
we call MExp, was manually curated as described in [99]
and was further annotated according to the previously
described pipeline. It has been used to train the PoP-
MuSiC predictors. The list of mutations of MExp can be
found in the supplementary material of [99].
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