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Abstract

Background: Custom genes have become a common resource in recombinant biology over the last 20 years due
to the plummeting cost of DNA synthesis. These genes are often “optimized” to non-native sequences for
overexpression in a non-native host by substituting synonymous codons within the coding DNA sequence (CDS). A
handful of studies have compared native and optimized CDSs, reporting different levels of soluble product due to
the accumulation of misfolded aggregates, variable activity of enzymes, and (at least one report of) a change in
substrate specificity. No study, to the best of our knowledge, has performed a practical comparison of CDSs
generated from different codon optimization algorithms or reported the corresponding protein yields.

Results: In our efforts to understand what factors constitute an optimized CDS, we identified that there is little
consensus among codon-optimization algorithms, a roughly equivalent chance that an algorithm-optimized CDS
will increase or diminish recombinant yields as compared to the native DNA, a near ubiquitous use of a codon
database that was last updated in 2007, and a high variability of output CDSs by some algorithms. We present a
case study, using KRas4B, to demonstrate that a median codon frequency may be a better predictor of soluble
yields than the more commonly utilized CAI metric.

Conclusions: We present a method for visualizing, analyzing, and comparing algorithm-optimized DNA sequences for
recombinant protein expression. We encourage researchers to consider if DNA optimization is right for their experiments,
and work towards improving the reproducibility of published recombinant work by publishing non-native CDSs.
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Background
Structure-based drug design and high-throughput com-
pound screening typically requires hundreds of milli-
grams of soluble, high-purity protein. A recent analysis
of three structure-based consortia highlighted the chal-
lenges in generating sufficient protein to enable struc-
tural studies, with an estimated > 70% failure rate of
cloned targets resulting in a purified product and only
3% success rate in leading to the submission of PDB
structures [1]. Many protein targets are generated
through heterologous expression of recombinant pro-
teins. Bacterial hosts, specifically Escherichia coli, are the

most commonly used expression system over eukaryotic
systems because they are more economical, have easily
manipulated genetics, and offer faster growth rates to
achieve high cellular densities. The popularity of E. coli
is reflected in the RCSB (Research Collaboratory for
Structural Bioinformatics), with 73 ± 3% of human pro-
teins being made in E. coli since 2000 (Fig. 1), and in the
development of several new commercial expression
strains over the last decade [2].
The biological principles for recombinant protein ex-

pression are well established; however, the ability to dis-
tinguish protein targets that express well from those that
express poorly is still considered a “black box” process
that often requires screening many conditions to obtain
a soluble product. Among the numerous components
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that contribute to recombinant expression, there is em-
pirical evidence that manipulation of the following vari-
ables can improve yields of soluble protein product: the
bacterial strain [2]; expression media [3, 4]; genetic fu-
sion of the target protein to a purification tag, carrier
protein, or chaperone [5, 6]; and altering of the coding
DNA sequence (CDS) [5, 7]. Reconfiguring the CDS
from the native sequence to one optimized for expres-
sion in a particular host system has become almost com-
monplace over the last 20 years. Most commercial
vendors offer a custom optimization algorithm and sev-
eral online servers exist (Table 1 in reference [1]).

Despite the general acceptance of working with syn-
thetic CDSs, there is little guidance for what defines an
optimized sequence. Differently optimized DNAs are re-
ported to influence recombinant protein activity [14],
which aligns well with observations of aberrant effects
from “silent” mutations that change substrate specificity
or induce disease [15]. Some empirical rules and guide-
lines for optimizing CDSs have been published [16, 17],
but appear to be anecdotal and most impactful in unicel-
lular expression systems [18]. For the purpose of this
work, we define an optimized CDS as one that produces
the maximal expression of soluble protein in order to

Fig. 1 Normalized histogram of structures from the RCSB Protein Databank (PDB) for recombinant proteins from Homo sapiens by mammalian
(black), insect (gray), and E. coli (white) expression systems

Table 1 Descriptions of codon usage databases for either the generic class or B strain of E. coli. Each annotation describes the
source of the genetic data, the total number of coding DNA sequences (CDS) extracted from the gene source(s), and the number of
codons extracted from genes used to construct each database

Author or database E. coli strain Gene source # CDS # codons

Sharp and Li [8] a Generic GenBank 27 6240

15 9223

57 25,010

58 22,612

Kazusa database [9] Generic GenBank 8087 2,330,943

B GenBank 11 3771

HIVE-CUT database [10] Generic GenBank and RefSeq 68,262,063 20,219,118,236

B GenBank and RefSeq 13,042 3,953,593

GtRNAdb [11, 12] Generic GenBank and RefSeq 5011 1,538,003

GenScriptb Proprietary Undefined Undefined Undefined

Dong et al. [13] W1485 (K12) N/A Total RNA Undefined
aAuthors divided their dataset into four groups that represent genes that exhibit “very high expression,” “high levels of expression,” “moderate codon bias,” or
“low codon bias” that are represented from the top down, respectively
bwww.genscript.com
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enable investigation of the biological function of the
molecule. The goal of the work presented here is to iden-
tify inconsistencies between several commonly used and
publicly available codon optimization algorithms, to out-
line parameters that researchers should consider when en-
hancing CDSs for recombinant protein expression, and to
encourage researchers to publish the DNAs used in their
work as supporting information, in publicly available data-
bases (e.g., DNASU, SGDB) [19, 20], or in a vector reposi-
tory (e.g., Addgene). None of these efforts are common
practice and such inconsistencies could minimize the
challenges often encountered when attempting to repro-
duce published results. We also stress that we make no
claims of the quality of DNA products from commercial
vendors and expect commercial and public optimization
algorithms to evolve over time.

Results
Analysis of codon bias and published codon usage tables
Synthetic DNA sequences enable biomedical researchers
to manipulate genetic sequences on a scale from a single
nucleotide to megabase genomes [21, 22]. The cost of
synthetic DNA has dramatically decreased over the last
several decades and often replaces traditional cloning
methods, like PCR amplification of native cDNA, for
heterologous expression of recombinant proteins. This
shift has led to the rise of artificial sequences that use
codon degeneracy to alter the DNA with synonymous

codons that are more frequently used in the expression
host. Known as codon bias [16], this approach stems
from the observation that genes with high expression
levels typically contain few rare codons, whereas low ex-
pressing genes have a broader distribution of rare and
frequent codons. Sharp and Li originally proposed a sys-
tem where synonymous codons were normalized for
each amino acid and used to calculate the relative syn-
onymous codon usage (RCSU) based on their codon
usage to one another within a gene [8]. This is a normal-
ized scale of 0 (codon never used) up to 100 (codon used
100% of the time) that represents the distribution of syn-
onymous codons for a particular amino acid. They then
classified the 157 available genes (65,547 codons) from
Genbank into four classes (Table 1): 27 “very highly
expressed” genes, 15 “highly expressed” genes, 57 genes
with “moderate codon bias”, and 58 genes with “low
codon bias”. We present the codon-specific data as a
heat map, rather than table format, for visualization of
the tRNA codon relative to each amino acid (Fig. 2a).
Note that two amino acids, methionine (M; ATG) and
tryptophan (W; TGG), have only one tRNA codon and
retain a value of 100 across the heat map. All other
amino acids have multiple codons representing them.
For example, there are three codons for isoleucine (I)
with one codon (ATA) being underrepresented in all
classes (< 5%) and two codons (ATT and ATC) steadily
transition from well separated in highly expressing

Fig. 2 Heat map of the relative codon frequencies for E. coli grouped by amino acid. a Values from Sharp and Li (1986). The authors binned their
datasets (see Table 1) into four groups as shown in the figure. An “X” represents no available data for the codon. b Codon distributions for
various codon usage databases or datasets described in Table 1. Data for Dong et al. are from the growth rate at 2.5 h−1
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proteins (16% and 84%, respectively) to roughly equiva-
lent usages in lower expressing proteins (55% and 41%,
respectively). Many amino acids share similar trends,
with one codon dominating the others in highly express-
ing proteins, but explanations for this phenomenon re-
main speculative.
This RCSU scale led to the development of the Codon

Adaptation Index (CAI) metric that serves as a measure
of the codon bias of a CDS relative to highly expressed
genes (e.g., ribosomal proteins, transcription factors)
[23]. Mathematically, CAI represents the geometric
mean of the RCSU value for each codon within the gene
relative to that of the most commonly used synonymous
codon (highest possible RCSU value). Other algorithms
have been developed over time [24, 25] and their merits
are discussed elsewhere [26], but CAI remains the most
widely used metric for representing codon bias. Despite
several reports showing no correlation between the CAI
and protein expression levels [27, 28], many commercial
synthetic DNA vendors still openly employ this method
for calculating codon bias. We note that some modern
algorithms appear to generalize codon usage without
any clear definition of genes used to assign bias by ex-
pression levels, which was the original basis of CAI de-
fined by Sharp and Li [26]. Codon bias, however, is
considered only one facet of these complex algorithms
that include any combination of an ever-growing list of
variables that include, but are not limited to minimizing
restriction enzyme sites, %GC content, repeating se-
quences, codon-pair bias [29], 5′ mRNA structure or
stability [30, 31], and internal ribosome binding sites
[32]. As we will show in this work, the optimization al-
gorithms from academic and commercial entities pro-
duce drastically different DNAs by using varying levels
of these and occasionally other parameters, yet the com-
mon considerations are based on tRNA frequency tables.
The original codon usage tables proposed by Sharp

and Li were based on a small number (< 200) of E. coli
genes that were available through the GenBank database
at the time [8]. Modern day access to a wide array of
genomic data, cataloged in GenBank and RefSeq, has ex-
panded the scope of codon usage to many millions of
CDSs for organism-specific codon usage tables. The
Kazusa database is the most commonly cited source for
organism-specific codon frequency data in the literature
[16, 33–36] and by commercial DNA vendors [37–39].
This database compiled the CDS from GenBank and was
one of the more comprehensive databases for codon
usage when created in 2000; however, it has not been
updated since 2007 [9]. We therefore asked whether
there were more updated databases for comparison with
the Kazusa dataset and focused on E. coli, because of the
widespread application to recombinant protein work
(Fig. 1). A handful of databases were found in the

literature (Table 1). The GtRNAdb database provides
comprehensive, organism-specific codon usage tables,
but the primary focus is providing a web-based resource
for the non-coding tRNA genes [11, 12]. Additionally,
proprietary codon usage tables exist from several com-
mercial sources (e.g., GenScript), but are difficult to
tabulate in a meaningful way as the underlying data are
restricted. We determined that the HIVE-CUT database
was the most comprehensive resource, with > 8000-fold
more CDS than the Kazusa database, and is regularly
updated via GenBank and RefSeq [10]. Visualization of
these E. coli codon usage tables shows that the Kazusa
database for generic E. coli frequencies has a more
muted tone than other datasets when comparing amino
acids with more than two codons (Fig. 2b). This equiva-
lence within the Kazusa dataset signifies underrepresen-
tation of the codon bias that is observed by most other
datasets. For example, CCG (proline) and ACC (threo-
nine) are the most highly represented codons within
their respective sets for all but the Kazusa and Dong da-
tabases. The table from Dong et al. represents an outlier
dataset because the RCSU values represent the total ex-
tracted cellular RNA in E. coli instead of only CDSs [13].
Moreover, there is a direct contrast between the Kazusa
datasets for the generic and the underrepresented B
strain of E. coli. The B strain is the most commonly used
bacterial strain for recombinant protein expression.
Based on this analysis, we propose that researchers

and commercial vendors use the more updated
organism-specific codon usage tables from databases like
HIVE-CUT instead of Kazusa. This switch is especially
pertinent if one’s motivation for using the Kazusa data-
base is using a large genetic database for a comprehen-
sive representation of organism-specific genes. We will
use the HIVE-CUT tables for our analysis in this work.

Significant variability observed between optimization
algorithms
The concept of codon optimizing a CDS for a particular
expression system is generally understood to influence
protein expression levels. This task is traditionally ac-
complished by substituting rare codons with more fre-
quently used synonymous codons to maximize CAI
values (see above). Such changes theoretically enable fas-
ter translation rates and higher recombinant protein
levels while minimizing the chance of depleting tRNA
pools that can lead to cellular stress. Various reports,
summarized in Table 2, demonstrate that differently op-
timized CDSs can increase expression levels 2-fold over
the native sequence for ~ 25% of evaluated targets [40,
41]. These studies can be classified into categories where
the authors compare the following: native and optimized
CDSs of up to 100 different genes [40, 41, 44], randomly
substituting synonymous codons in a single gene [27],
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weighting various coding factors (e.g., translational
speed, mRNA structure) [42, 43], or methodically testing
up to 20 different optimized DNAs [28]. Most of these
studies, however, report optimization routines that use
CAI through various commercial vendors. More recent
optimization strategies suggest that preserving evolu-
tionarily conserved clusters of rare codons could influ-
ence protein folding or other maturation events (e.g.,
post-translational modification, chaperone recruitment)
in the native host [45, 46]. “Codon harmonization,” in
particular, attempts to match the codon frequency distri-
bution throughout the native CDS with that of the ex-
pression host [47]. As we will show below,
harmonization does not appear to be a driving force in
present-day optimization algorithms, but remains an in-
teresting concept that should be explored further.
While hypothesis-driven codon optimization has pro-

vided great insight into the complexity of protein expres-
sion, we find that the vast majority of published efforts
default to various commercial algorithms that offer sub-
sequent synthesis of custom DNAs. We found no pub-
lished studies that compare commonly used commercial
or academic codon optimization algorithms. This deficit
led us to ask the question: what are the apparent in-
equalities of commonly used codon optimization algo-
rithms? Our efforts focused on a single gene, KRas4B, as
a case study because the native CDS contains a signifi-
cant number of rare codons (median codon frequency =
0.34), it is a therapeutically important target implicated
in a wide variety of cancers [48], codon usage has been

tied to expression levels in bacteria and mammalian cells
[44, 49, 50], and there are several reports publishing
their CDS with purified yield (enabling correlation of
CDS with recombinant product). Moreover, there is an
interesting report that investigates the expression levels
of KRas4B and the HRas homolog, which natively differ
by > 100-fold [49]. These proteins have ~ 85% amino
acid identity with only 10% of codons conserved in the
native CDS. The researchers showed that conversion of
the shared amino acid codons of KRas4B cDNA to those
of HRas increased recombinant KRas4B levels ~100× in
HEK cells [50]. This conversion also shifted the CAI of
KRas4B from 0.69 to 0.87. Recall that a CAI of 1.0 indi-
cates that the codons used for each amino acid are the
most abundant.
The native CDS of KRas4B has been expressed to rea-

sonable levels in BL21 strains of E. coli (Table 3). No
yields were reported for the aforementioned study in
HEK cells [50], but we note the native KRas4B levels
were presumably very low (below milligram levels per
liter of biomass) because they were detected by Western
blotting. It is well known that the ratios for synonymous
codons differ greatly between organisms, and we investi-
gate these changes in two ways (Fig. 3): violin plots to
visualize the distribution of tabulated RCSU values for
all codons used within each CDS and a heat map that
represents localized clusters of rare codons using the
%MinMax algorithm [34]. These analyses are not com-
monly employed in protein science and are worth dis-
cussing. The violin plots presented here illustrate the

Table 2 Summary of literature references comparing protein expression levels for native and optimized DNAs in bacterial systems

First author Optimization algorithma

(source)
Target(s) Number of

constructs
Conclusions

Burgess-
Brown [40]

Proprietary (Genscript, Sigma,
and MediGene)

Various 30 • 26% of targets show higher expression of soluble protein for
optimized over native CDS in E. coli

Kudla [27] CAI GFP 154 • Fluorescence levels span > 1000-fold across different CDSs
• No correlation between fluorescence levels and CAI
• Modest relationship between mRNA 2° structure and GFP
fluorescence

Welch [28] PLSR (DNA 2.0) φ29 DNA
polymerase

21 • > 100-fold difference in protein yield observed by differently
optimized DNAs

Maertens
[41]

CAI (GeneArt) Various 100 • 24% targets showed ≥ 2× yield for optimized CDS
• 20% targets showed lower expression for optimized CDS

Spencer [42] Undefined Firefly
Luciferase

7 • Optimization increased translation speeds ~ 2× with proportional
decrease in functional protein

• 2–2.5× yield and solubility increase when recoded for frequent
codons in Drosophila melanogaster

Trösemeier
[43]

CAI (GeneArt) COSEM ova
manA

5
11

• COSEM optimized sequences expressed ≥ 2× the native sequence
• “Ramp” inclusion was necessary for significant boost in protein
expression

Konczal [44] CAI (GeneWiz) KRas4B
RalA
Rac1

11
11
11

• “Deoptimization” with ≤ 4 rare codons improves solubility ≥ 4×
compared to native CDS

CAI Codon Adaptation Index, PLS partial least squares regression, COSEM Codon-Specific Elongation Model
aThe Kazusa database is reportedly used for codon frequency values by most commercial companies. The COSEM algorithm uses codon frequencies defined by
Dong et al. for E. coli with a doubling time of 2.5 h−1
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relative distribution of RCSU values within a CDS and
break the dataset into four sections (each 25% of the
total dataset) that are separated by two quartiles (dotted
lines) and the median (solid line). The shape of the vio-
lin plot represents a normalized distribution of the data,
where the widest region signifies the greatest number of
data points and the thinnest denotes a minimally popu-
lated area of the dataset. In the case of codon
optimization, the median/quartiles offer quantitative
metrics of changes in the RCSU frequencies while shape
changes offer qualitative indicators of shifts within the
dataset. The %MinMax analysis uses a sliding window to

identify regions within the CDS that are enriched with
either frequently (blue) or rarely (red) used codons for a
particular organism. Numerical scores range between +
100 and − 100 to represent regions that contain the most
frequently or least commonly used codons per amino
acid, respectively. A value of zero, illustrated as a white
region, indicates an even distribution of codon frequen-
cies. The underlying %MinMax patterns for codon usage
clusters are believed to impact the folding rates of the
nascent chain as it is translated by the ribosome [53, 54].
Figure 3a compares the codon profiles of the native

KRas4B CDS in Homo sapiens or E. coli. The violin plot

Table 3 Reported solubility and yield of KRas4B (1–169) from expression in E. coli

CDS N-terminal taga Solubilityb (%) Yield (mg/L) Reference

Native His6 N.R.e 11 [51]

His8-28mer-His8 41 5 [44]

GeneArt (n = 5) His6 38 23 ± 4 This work

DNA2.0 His6 N.R.e 15 [52]

GeneWiz (opt)c His8-28mer-His8 24 ± 3 15 ± 2 [44]

GeneWiz (KRasRARE)
d His8-28mer-His8 52 ± 22 27 ± 11 [44]

aAll N-terminal tags were reported to be followed by a TEV protease cleavage site except the GeneArt sequence that contains a dual Thrombin-TEV cleavage site
bSolubility measurements represent the normalized ratio of overexpressed protein for the total protein and soluble extract lanes observed in SDS-PAGE analysis
cAverage and standard deviation for reported values with 0.1–1.0 mM IPTG
dKRasRARE represents the average and standard deviation for reported values of the GeneWiz optimized sequence w/ either a single or multiple reintroduced rare
codons (I46, I84, R164, I84/R164, and I46/I84/R123/R164)
eN.R. not reported

Fig. 3 Comparison of the DNA sequences of KRas4B as a function of the relative codon profiles. a Violin plot (top) and %MinMax heat map
(bottom) of the native CDS (a.a. 1–188) using the codon usage frequencies for H. sapiens or E. coli. b Violin (top) and %MinMax plots (bottom) for
KRas4B CDSs (a.a. 1–169) optimized for expression in E. coli. Statistical significance was determined with a Mann-Whitney-Wilcox rank-sum test: n.s.,
no significance; *p < 1E−02, **p < 1E−05
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shows a nominal change in the median codon frequency
(Δ ~ 0.05), but a considerable outward redistribution of
the quartiles away from the median when transitioning
to a bacterial expression host. Note that the widest por-
tion of the profile also shifts from the 25% quartile to
the 75% quartile, indicating a significant rearrangement
of the codon profile across expression hosts. The non-
normal distribution of these violin plots necessitates that
we use a non-parametric method to analyze the statis-
tical significance of this profile shift. We used the Mann-
Whitney-Wilcox rank-sum test to assess the similarity of
these native CDSs with a p value of 0.327. This value in-
dicates that there is little statistical significance between
expression hosts despite a striking rearrangement of the
%MinMax profile (lower panel) that shows an increased
abundance of rare codon clusters indicated by more red
regions in the E. coli profile. This abundance of rare
codon clusters is represented in the violin plot by an in-
crease in codons at or below a frequency of 0.2, although
we note that there is no accepted value for defining a
rare codon frequency.
Nine optimization algorithms were used to modify the

native KRas4B CDS for expression in E. coli (Fig. 3b).
Qualitative inspection of these violin plots reveals that
the widest portion of most datasets lie at or near the me-
dian, which is different than the relatively bimodal shape
of the native CDS in H. sapiens. Furthermore, none of
the bacterially-optimized sequences replicate the relative
codon or %MinMax profile of the native gene in H. sapi-
ens, indicating low harmonization of any optimized CDS
with the native DNA profile. Instead, we observe a
steady increase in the median codon frequency from
0.34 (native) up to 0.51 (COOL). Relative to the codon
frequency of the native DNA, the Mann-Whitney-
Wilcox rank-sum analysis of the optimized CDSs shows
that two are non-significantly (n.s.) optimized, four ex-
hibit a p value between 1.4E−03 and 7.7E−04, and three
are highly significant with a p < 1E−05 (GenScript, Gen-
eArt, COOL). The statistical significance of the Gen-
Script, GeneArt, and COOL DNAs can be largely
attributed to the ranked upward shift of the median
codon frequency that results from use of a more even
distribution of frequently-to-rarely used codon than
other DNAs. Clusters of rare codons are thought to dir-
ectly influence expression levels or patterns (e.g., transla-
tion rates) of the native CDS and consequently may
result in misfolded, insoluble, or poorly expressed pro-
tein [54]. Visualization of these rare clusters, using the
%MinMax algorithm, shows a diminishing trend of rare
codon clusters (red bands) to more evenly distributed
populations (white bands) and eventually at least one
case (COOL) of highly diminished rare codons. The only
algorithms that retained rare clusters were the two CDSs
(IDT, Twist) that showed no statistical significance for

relative codon frequency described above. We conclude
that optimization algorithms generally reduce the num-
ber and arrangement of rare codons.
Our research group has historically worked with a

KRas4B gene synthesized by GeneArt (Life Technolo-
gies), which is among the most deviated profiles from
the native sequence (Fig. 3). A literature search identi-
fied three references that report yields for KRas4B using
either the native or an optimized sequence in BL21(DE3)
E. coli. The general observation is that our yields from
the GeneArt DNA are up to 5-fold greater than the na-
tive CDS and show a modest gain (1.5×) over published
yields using optimized CDSs from GeneWiz and
DNA2.0 (Table 3). Konczal et al. report that, despite a 3-
fold increase in yield (Table 3), their codon-optimized
DNA (GeneWiz) produced lower levels of soluble pro-
tein (27%) than the native CDS (41%) [44]. Manipulation
of the T7 promoter and alternate start codons showed
minimal gains in the overall solubility and often reduced
the soluble yields to levels consistent with the native
CDS. Significant gains of soluble product were achieved
via reintroduction of up to four codons with their re-
spective “rare” (least abundant) codon (KRasRARE). Yield
gains of the KRasRARE CDSs were an average of sixfold
over the native CDS and within error of the product
from our GeneArt sequence. Expression of the GeneWiz
DNA in Rosetta2 E. coli, which overexpress rare codons
using the pRARE vector, returned the increased yields
from the KRasRARE CDS to levels consistent with the op-
timized DNA. Konczal et al. therefore concluded that
the rare codons were slowing translational kinetics to
produce more correctly folded (soluble) KRas4B.
We calculated several commonly used CDS metrics

that are used by various optimization algorithms to bet-
ter understand the relationship between the soluble
KRas4B protein yields and their sequences (Table 4).
Note that these parameters represent some, but not all,
variables considered for optimizing DNAs, and most
commercial vendors do not fully disclose their methods.
Hence, %GC and %GC3 are factors commonly employed
by many algorithms; however, neither value showed a
clear correlation of KRas4B CDSs with protein yield
(data not shown). CAI also showed poor correlation with
protein yield values from Table 3 (Fig. 4a), and remains
consistent with previous reports in other protein systems
(Table 2). Reasonably good correlations were observed
between the protein yield and the median codon fre-
quency of the KRas gene (Fig. 4b), although we are cau-
tious to not overemphasize this relationship as it could
vary by protein target. Nevertheless, these data agree
with previous reports (Table 2) that indicate CAI may be
a poor predictor of protein expression levels [27, 28].
Other metrics, such as median codon frequency, warrant
further investigation.
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Variable output generated from some algorithms
Our efforts to compare these algorithms led us to test
the reproducibility of each server. In principle, we ex-
pected that each algorithm should generate a single opti-
mized sequence from multiple inputs of the same native
sequence. While most algorithms did so, several servers
produced a different output over multiple submissions.
Specifically, we submitted the native CDS ten times for
three different proteins of increasing length, structural
complexity, and various functions: KRas4B (567 bp),
Beclin 1 (1350 bp), and PDE3A (3426 bp).
Three algorithms, in particular, produced strikingly vari-

able output sequences that were best visualized using the
%MinMax tool. Results from two algorithms are presented
in Fig. 5. Recall that the %MinMax tool represents the linear
CDS as a function of codon frequency to identify enriched
clusters of rare or frequently used codons. At first glance, it
is easy to see there is little consistency in the trends for the
optimized profiles of Algorithm 1 and low reproducibility of
those for Algorithm 2. We next quantified the pairwise di-
versity of the 10 optimized sequences of each protein for
each algorithm to test how often each algorithm selected a
particular codon at a specific position (Fig. 6). A value of
75%, for example, means that 75% of the algorithm-selected
codons were reproducibly chosen between optimized se-
quences. The lower limit of this analysis (33–40%; gray box)
represents the range identified for random reverse transla-
tion, whereby a set of control sequences were generated by
randomly selecting codons for a protein sequence without
bias from selection criteria.
Algorithm 1 has an average pairwise identity (35–39%)

that is consistent with random reverse translation and
raises questions about the validity of the routine. Algo-
rithms 2 and 3 exhibit a higher reproducibility for pair-
wise alignments (51–70%) and conserves some general

codon features throughout the optimized sequences;
however, none appear to harmonize well against the na-
tive CDS. Such variability raises concerns about how
these algorithms enhance DNA sequences and under-
scores the ambiguous definition of an optimized CDS.

Discussion
Codon-optimized synthetic DNA sequences have be-
come a normalized resource in recombinant protein
work, moving away from efforts with native cDNA. The
general hypothesis is that a CDS tailored for a particular
expression system will yield higher levels of recombinant
protein than a non-optimized cDNA. While there exist
many examples of improved expression levels for pro-
teins of various sizes and functions, manipulation of the
CDS is also reported to have a negative effect on protein
yields and solubility (Table 2). This observation led us to
investigate and develop a method for comparing the
relative inconsistencies between commonly used, pub-
licly available codon optimization algorithms.
The first step involved recognizing that many com-

monly used optimization algorithms enhance DNAs
around the CAI metric, which appears to have shifted
from using a handful of highly expressing genes in E. coli
to being replaced by organism-specific codon frequency
tables. We identified that the most widely used codon
frequency source comes from the outdated Kazusa data-
base [9] and showed that newer databases with more
comprehensive genetic libraries present different codon
biases (Table 1 and Fig. 2). To his end, we chose the
HIVE-CUT database to tabulate codon frequencies of
DNAs manipulated by nine different codon optimization
algorithms using the well-characterized KRas4B onco-
gene as a case study. Visualization of these distributions
through the use of violin plots or the %MinMax routine

Table 4 Variables that are considered for optimized DNA sequences applied to the KRas4B CDS: Median codon frequency, median
value for the violin plots shown in Fig. 3; mean frequency, average frequency for the violin plots shown in Fig. 3; CAI, Codon
Adaptation Index; %GC, average percent GC content in a DNA sequence; %GC3, average percent GC content in the third (wobble)
codon position; %Min window, percent of the DNA sequence that exists with a minimum below zero in the MinMax profile

Vendor algorithm Median frequency Mean frequency CAI %GC %GC3 %Min window

Native DNA 0.339 0.370 0.61 37.7 30.2 65

IDT 0.373 0.391 0.68 45.1 50.0 27

Twist 0.373 0.399 0.70 51.5 67.0 17

DNA 2.0a 0.404 0.431 0.69 51.8 63.0 0

GeneWiz 0.418 0.446 0.79 54.0 73.6 7

Genscript 0.425 0.458 0.82 54.0 73.6 6

JCAT 0.429 0.470 0.84 46.4 50.0 0

OPTIMIZER 0.429 0.479 0.87 48.0 54.9 0

GeneArt 0.495 0.496 0.88 42.5 37.9 0

COOL 0.509 0.529 0.97 48.1 55.5 0
aReference [52]
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shows the relative enrichment or depletion of codon
populations throughout the gene (Fig. 3). Violin plots
specifically enable researchers with a new metric for
quickly assessing codon usage frequencies to identify the
relative bias across optimization algorithms. While the
%MinMax tool was originally developed for identifica-
tion of rare codon clusters [54], we find that pairing
these plots with violin plots of codon frequency furthers
evaluation of DNA optimization by mapping regions
that are commonly enriched or depleted throughout the
linear gene. Note that none of the optimized CDSs (Fig.
3b) replicate the distribution of the native DNA in H. sa-
piens (Fig. 3a). Instead, we observe that only two al-
gorithms, GeneArt and COOL, generate DNAs with
a significant increase in codons having a higher
usage frequency (Fig. 3b, upper panel) and deple-
tion of rare codon clusters throughout the gene
(Fig. 3b, lower panel). Comparison of three opti-
mized DNAs to the native CDS demonstrates that
the upward trend of the median codon frequency
correlates better with purified yields of bacterially
expressed KRas4B than the commonly used CAI
metric (Fig. 4).

Publishing optimized sequences as a community effort
Recall that there is currently little-to-no consensus for
what features define an optimized DNA sequence. We
therefore recommend that researchers publish their opti-
mized DNA sequences and report functional yields for
three simple reasons. First, there is sufficient evidence that
20–25% of optimized DNAs result in increased yields rela-
tive to the native CDS and at least one report of dimin-
ished yields from ~ 20% of optimizations (Table 2).
Researchers should therefore consider comparing expres-
sion levels of the native CDS with an optimized sequence.
Having the native sequence in hand can also save time
and resources by quickly transitioning into other expres-
sion systems, like insect or mammalian cell lines, without
needing reoptimization for usage in these systems. Second,

while most studies report the commercial vendor used to
synthesize their DNAs, we should not expect that the
optimization algorithms used in a publication will gener-
ate the same CDS upon resubmission. We demonstrated
that at least three algorithms produce different outputs from
the same input DNA upon replicate submissions (Figs. 5 and
6). This inconsistency is of particular concern when paired
with the roughly equivalent chance of improved or dimin-
ished yields discussed above. Lastly, publication of DNA se-
quences will only improve the reproducibility of protein
production, which is a well-documented problem in many
scientific fields [55]. Publishing these sequences is rare in an
age where Supplemental Information is supplied with most
scientific reports. Moreover, plasmid repositories (e.g.,
Addgene) and databases (e.g., DNASU, SGDB) have been de-
veloped for this purpose [19, 20].

Practical considerations
We have presented a new method for comparing differ-
ent codon-optimized CDSs, as each can result in widely
varied yields in the recombinant target protein. We rec-
ommend the following list of steps and considerations
when working with codon-optimized DNAs. First, col-
lect several organism-specific, codon-optimized DNAs
from several commercial and academic algorithms. We
anticipate that most publicly available algorithms will
evolve over time and should be evaluated for every new
target. Second, identify an updated source for quantify-
ing codon usage frequencies. The Kazusa database is the
most widely used source of organism-specific codon
usage tables but was last updated in 2007 [9]. We used
the HIVE-CUT database for the work presented here
[10], but realize that there may be better sources for
other applications. Third, assess the relative codon fre-
quency distribution of all optimized DNAs using violin plots
to identify shifts in the relative codon population and median
frequency, and the %MinMax tool to detect any enriched or
depleted regions of codon clusters. Fourth, select an opti-
mized DNA that aligns with a testable hypothesis. In the

Fig. 4 Relationship between soluble proteins yields of KRas4B (a.a. 1–169) with calculated values for a CAI or b median codon frequency of the
CDS. The trendline (solid) is shown with limits for 95% confidence intervals (dotted)
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Fig. 5 Heat map profiles of proteins optimized by the algorithm from either Algorithm 1 (left) or 2 (right). The codon usage profile of the native
sequence (N) was determined with frequencies from H. sapiens and the 10 replicates (numbered 1 through 10) were done with frequencies for
E. coli

Fig. 6 Percentage of codon identity for pairwise alignment of ten DNA sequences optimized by resubmission of the native DNA to a particular
optimization algorithm. DNA sequences were from 0.5–3.3 kb. The gray region represents the limits for a random reverse translation for the three
different protein sequences (n = 100 for each data set)
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KRas4B example presented here, we found that the highest
yields of soluble protein were obtained with DNA optimized
for a statistically significant increase in relative codon fre-
quency (p < 1E−05) and depletion of rare codon clusters.
Lastly, and most importantly, disseminate the optimized
DNAs used in any published work related to the construct,
either in the supporting materials that accompany a publica-
tion or plasmid repositories. This effort, at a minimum, will
aid reproducibility for preparing recombinant targets as even
small changes in a CDS can have large impacts on yields
[44]. Replicating optimized sequences from a published
source may also be difficult because algorithms likely change
over time or result in variable sequences (Figs. 5 and 6). The
sequences used in this work are presented in the supporting
information (Additional file 1, Table 4).

Conclusions
We constructed this report to enable researchers with a
set of tools and recommendations for evaluating the nu-
merous options for codon optimizing DNAs. The spe-
cific combination of violin plots and the %MinMax tool
[54] provide a straightforward visual alternative to the
CAI metric that is commonly employed by many popu-
lar algorithms. These tools are especially useful for
quickly identifying which algorithms may enrich or de-
plete rare codons (Fig. 3) and, upon replicate submis-
sions, which algorithms generate variable output
sequences (Figs. 5 and 6). Better transparency of the suc-
cessful CDSs, through publication of DNA sequences as
supplementary materials or by depositing them in re-
positories, will improve reproducibility across scientific
fields. We also recommend that the more comprehen-
sive HIVE-CUT database replace the Kazusa database
for organism-specific codon usage tables (Fig. 2 and
Table 1). Genomic data has significantly improved since
the last update of the Kazusa database in 2007 and we
believe that the field should transition to newer, more
representative codon usage datasets for the analyses pre-
sented in this work and codon optimization in general.

Methods
Sequences
Native CDSs for KRas4B (Accession: AF493917), Beclin 1
(Accession: NM_003766), and PDE3A (Accession: NM_
000921) were collected from the NCBI database. Commer-
cial or academic online servers were used to generate opti-
mized CDSs for E. coli. All native and optimized CDSs are
provided as Supplementary Data (Additional file 1, Tables 3
and 4).

Calculations
RCSU values were tabulated for six databases according
to Sharp and Li [8]. CAI calculations were done using
CAICal [56]. Codon frequencies for RCSU and CAI

calculations used tables for E. coli from the HIVE-CUT
database [10]. The %GC and %GC3 content of CDSs
was calculated using E-CAI server [57]. The reproduci-
bility of each server was quantified by first submitting
the native CDS as unique entries up to ten times, col-
lecting the optimized sequence from each entry, and cal-
culating pairwise alignments between optimized
sequences to determine the “% Codon Identity.” A set of
random reverse translation sequences, which assumes
no codon bias, was created from amino acid sequences
to determine the lower limit of the “% Codon Identity”
analysis. The %MinMax server was used to assess how
native and optimized CDSs distribute rare or commonly
used codons throughout the gene based on the HIVE-
CUT codon usage table for E. coli [54]. The generation
and statistical analysis of violin plots was done using
Prism 8 (GraphPad Software, Inc.).

Expression and purification of the GeneArt optimized
KRas4B CDS
The native CDS of KRas4B was codon-optimized for ex-
pression in E. coli (GeneArt, Life Technologies) and
cloned into a pET21b vector with a N-terminal His6-tag
for purification. The expression vector was transformed
into One Shot BL21(DE3) E. coli (ThermoFisher). Large
scale expression of KRas4B was performed by inoculat-
ing 1 L of TB with a starter culture (1:1000) and ampicil-
lin (100 μg/mL), growing the culture at 37 °C with
orbital shaking at 180 rpm to mid-log phase (A600 ~ 0.8),
cooling cultures to 18 °C for 30 min prior to inducing
overexpression with 0.5 mM IPTG, and allowing cultures
to continue growth at 18 °C for 16–18 h. Cultures were
harvested and stored at − 80 °C until purification.
Purification of KRas4B began by resuspending cells in lysis

buffer [50mM Tris-HCl (pH 8.0), 500mM NaCl, 20mM
imidazole, 10% glycerol, 0.5mM TCEP, 1× lysonase, 1x
Roche Protease Inhibitor (EDTA free)] and sonicating on
ice. Lysates were clarified via centrifugation and filtered
(0.2 μm) before loading onto a Ni2+-charged HisTrap col-
umn (GE Life Sciences). The column was washed with wash
buffer [50mM Tris-HCl (pH 8.0), 500mM NaCl, 10% gly-
cerol, 5mMMgCl2, 0.5mM TCEP] containing 20mM imid-
azole for 5 column volumes before eluting with an imidazole
gradient. Fractions containing the eluted KRas4B protein
were pooled and dialyzed overnight in wash buffer (1:1000)
in the presence of TEV protease. The digested product was
separated from TEV protease and uncleaved KRas4B by
passing the dialyzed sample over a Ni2+-charged HisTrap
column and collected as the flow through fraction. The
cleaved KRas4B product was concentrated and passed over a
Superdex 75 26/600 GL column (GE Life Sciences)
using an isocratic elution in SEC buffer [25 mM
HEPES (pH 7.4), 150 mM NaCl, 5 mM MgCl2, 10%
glycerol, 0.5 mM TCEP]. SDS-PAGE was used to
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assess the relative purity of the eluted fractions. The
mass of KRas4B (calculated mass, 19,303 Da; observed
mass, 19,302 Da) was confirmed by LC/MS. KRas4B
containing fractions were pooled, concentrated, quan-
tified using a Bradford assay, and stored at − 80 °C.
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