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Genome of the pincer wasp Gonatopus
flavifemur reveals unique venom evolution
and a dual adaptation to parasitism and
predation
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Abstract

Background: Hymenoptera comprise extremely diverse insect species with extensive variation in their life histories.
The Dryinidae, a family of solitary wasps of Hymenoptera, have evolved innovations that allow them to hunt using
venom and a pair of chelae developed from the fore legs that can grasp prey. Dryinidae larvae are also parasitoids
of Auchenorrhyncha, a group including common pests such as planthoppers and leafhoppers. Both of these traits
make them effective and valuable for pest control, but little is yet known about the genetic basis of its dual
adaptation to parasitism and predation.

Results: We sequenced and assembled a high-quality genome of the dryinid wasp Gonatopus flavifemur, which at
636.5 Mb is larger than most hymenopterans. The expansion of transposable elements, especially DNA transposons,
is a major contributor to the genome size enlargement. Our genome-wide screens reveal a number of positively
selected genes and rapidly evolving proteins involved in energy production and motor activity, which may
contribute to the predatory adaptation of dryinid wasp. We further show that three female-biased, reproductive-
associated yellow genes, in response to the prey feeding behavior, are significantly elevated in adult females, which
may facilitate the egg production. Venom is a powerful weapon for dryinid wasp during parasitism and predation.
We therefore analyze the transcriptomes of venom glands and describe specific expansions in venom Idgf-like
genes and neprilysin-like genes. Furthermore, we find the LWS2-opsin gene is exclusively expressed in male G.
flavifemur, which may contribute to partner searching and mating.

Conclusions: Our results provide new insights into the genome evolution, predatory adaptation, venom evolution,
and sex-biased genes in G. flavifemur, and present genomic resources for future in-depth comparative analyses of
hymenopterans that may benefit pest control.
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Background

Hymenoptera are an extremely diverse insect order with
a variety of life history traits, including phytophagy,
parasitism, predation, pollination, and eusociality, pro-
viding an ideal model for studying the evolutionary
origin and transition of some key traits [1, 2]. Dryinidae
are a family within Chrysidoidea, which have several in-
triguing biological properties [3, 4]. These wasps are
both parasitoids and predators of Auchenorrhyncha
hosts (e.g., planthoppers) belonging to the order Hemip-
tera. Female wasps lay eggs on the hosts, and their
young offspring develop outside the hosts (ectoparasi-
tioid) (Fig. 1c). Also, female wasps catch and feed on the
hosts. The protein-rich diets might be beneficial for egg
production [4]. However, male wasps do not hunt or
feed on hosts. The parasitoid wasps with both predatory
and parasitoid behaviors are rare in Hymenoptera. Add-
itionally, no other wasps with predatory behavior are
found in Chrysidoidea [5]. Thus, the origin of predatory
behavior in Dryinidae is likely an independent trait gain-
ing event in the evolution of Hymenoptera. Moreover,
Dryinidae are highly sexual dimorphic. The adult fe-
males are ant-like wasps and often wingless, whereas the
adult males are winged [3] (Fig. 1a, b). Particularly, the
fore legs of adult females evolved to be a pair of robust

Page 2 of 24

chelae, which are useful in prey capturing [3, 4] (Fig. 1d,
d’). Therefore, dryinid wasp is also known as pincer
wasp. The female adults have evolved a mimicry of ant-
like body, which allows them to attack their hosts easily,
as ants usually feed on the honeydew produced by
Auchenorrhyncha insects [4]. Interestingly, these female-
specific features seem to be related to their predatory
behavior. However, very little is known about the genetic
basis and evolutionary history of Dryinidae’s adaptation
to their special parasitoid-predatory life.

Dryinidae provides a promising model to study the
origin of predatory behavior and sexual dimorphism.
Gonatopus flavifemur is a common parasitoid of the no-
torious rice pest, the brown planthopper Nilaparvata
lugens [6-8]. Its unique predatory and parasitoid behav-
iors make this species very effective for the biological
control of pests [9, 10]. Here, we report the genomic re-
sources of G. flavifemur, representing the first genome
sequence of the family Dryinidae. This 636.5 Mb genome
assembly is much larger than most hymenopterans, due
to the massive expansion of transposable element se-
quences. Analysis of the G. flavifemur genome highlights
several positively selected genes and rapidly evolving
proteins likely involved in major aspects of predatory
adaptation. Gene expression changes in female adults

N

A B

Cc

D

\ =

Afemale G. flavifemur attacking its host
Nilaparvata lugens (a pest of rice)

E

Nanopore long reads
(107x coverage,

N50 read length 41.8 Kb,

Max read length 291.5 Kb)

A winged male G. flavifemur

Correcting nanopore reads
by NextDenovo v1.1.1

Corrected reads

Assembling genome
by Wtdbg2 v2.3

Base pairs

Primary contigs

Polishing genome using long reads
by NextPolish v1.0.5

[Error—corrected contigs (version1)j

p—|

(Error—corrected contigs (version2)j

Removing contaminating bacterial contigs
by Wheeler et al. 2013
Final assembly

lllumina short reads
(68 coverage)

Polishing genome using short reads
by NextPolish v1.0.5

(Total length 636.5 Mb,
Contig N50 length 35.1 Mb,
Max contig length 81.2 Mb)

Larvae of G. flavifemur on its host

Fig. 1 Assembly of the genome of G. flavifemur. a A female G. flavifemur attacking its host, the brown planthopper Nilaparvata lugens. b A
winged male G. flavifemur. ¢ Larvae of G. flavifemur on its host. d, d’ The fore leg and chela of female G. flavifemur. Scale bars: 300 um. e An
overview of the genome assembly strategy. f Comparison of assembly contiguity among six hymenopterans. N(x) % graphs show contig or
scaffold sizes (y-axis), in which x percent of the assembly consists of contigs/scaffolds of at least that size. g Comparison of the completeness of
genome assemblies, as a percentage of 1367 insect genes from insecta_odb10

The fore leg and chela of female G. flavifemur

G

Gonatopus
flavifemur

N90

Polistes
dominula
Apis
mellifera
Solenopsis
invicta
Athalia
rosae

Pteromalus
puparum

95 96 97 98 99 100

%BUSCOs mmm Complete
Fragmented
. Missing




Yang et al. BMC Biology (2021) 19:145

after feeding on the preys are featured. Due to the im-
portance of venom to the wasps, we also provide insights
into the venom-associated genes, and describe specific
expansions in venom Idgf-like genes and neprilysin-like
genes. Finally, we identify many sex-biased genes which
may be related to sexual dimorphism. In sum, our find-
ings provide insights into the genome size evolution,
parasitoid-predatory adaptation, venom evolution, and
sexual dimorphism. In addition, this genome underpins
further research of G. flavifemur and greatly facilitates
future analyses of the trait evolution in Hymenoptera.

Results
Sequencing, assembly, and annotation
We generated Nanopore long reads (107X genome
coverage) and Illumina short reads (58X genome cover-
age) from 50 male pupae for genome assembly (Fig. le;
Additional file 1: Supplementary Table 1 — 4). The gen-
ome sizes of G. flavifemur estimated by flow cytometry
and K-mer analysis were about 601.4 and 603.4 Mb, re-
spectively (Additional file 1: Supplementary Table 5,
Additional file 2: Supplementary Figure 1 — 2). After fil-
tering out the bacterial contaminating contigs (1.7 Mb)
(see Additional file 3 for details about the removal of
bacterial contaminating contigs) [11-26], we obtained a
636.5 Mb high-contiguity genome assembly of G. flavife-
mur, with a contig N50 of 35.1 Mb. The maximum con-
tig length reaches 81.2 Mb (Fig. 1le). We compared this
genome assembly to other five high-quality genome as-
semblies in Hymenoptera, showing that our assembly
has a higher contig N50 value (Fig. 1f). Although Hi-C
or other technologies were not applied to improve our
assembly to super-scaffold level, we found that the con-
tig N50 value of our assembly is higher than the scaffold
N50 values of two chromosome-level genomes in Hy-
menoptera (Apis mellifera and Pteromalus puparum)
[13, 27]. Such very long contigs we obtained reflect the
power of Nanopore long-read sequencing technology
and related long-read-aware strategies in assembling a
high-contiguity genome. Additionally, the appearance of
very long contigs might be due to the larger genome size
of G. flavifemur, which is 2.8 times the length of A. mel-
lifera (255 Mb) and 1.9 times the length of P. puparum
(338 Mb). Moreover, the haploid chromosome number
of Gonatopus wasps is four [28]. Based on this informa-
tion, the average chromosome length of G. flavifemur is
159.1 Mb, which is much larger than the maximum con-
tig length of our assembly (81.2 Mb). Thus, the Nano-
pore long-read sequencing and assembly strategy, the
large genome size, and low chromosome number explain
the very long contigs obtained in our assembly.

Genome assessment using Benchmarking Universal
Single-Copy Orthologs (BUSCO) indicated 99.3% of the
insect gene set are present and complete (Fig. 1g). This
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BUSCO score is similar to other high-quality genomes.
In addition, our analyses showed that 97.84% of Illumina
whole-genome sequencing reads and 95.60% of RNA-seq
reads could be properly mapped to the genome assembly
respectively (Additional file 1: Supplementary Table 6).
Thus, both BUSCO result and mapping quality indicated
that our genome assembly is highly accurate and nearly
complete. We annotated protein-coding genes by com-
bining the evidence from homology alignments, de novo
predictions and gene expressions. Totally, 23,100
protein-coding genes were identified in the genome.
Comparing to a total number of 24,388 genes predicted
in Nasonia vitripennis, our annotation is similar, but
slightly larger than other hymenopterans. Moreover, we
further identified several gene families that are import-
ant and popular in insect studies, including 66 cyto-
chrome P450s, 17 glutathione S-transferases (GSTs), 35
ATP-binding cassette transporters (ABCs), 10 gustatory
receptors (GRs), 20 ionotropic receptors (IRs), 43 olfac-
tory receptors (ORs), 8 odorant binding proteins (OBPs),
8 sensory neuron membrane proteins (SNMPs), and 6
chemosensory proteins (CSPs) (Additional file 1: Supple-
mentary Table 7). The gene numbers of detoxification-
related gene families (P450, GST, ABC) in G. flavifemur
are comparable to other hymenopteran insects we
tested. However, in contrast to the detoxification genes,
G. flavifemur has fewer chemosensory genes (OR, GR,
OBP) than other hymenopteran insects, which may be
explained by its relatively narrow host range (the main
host is the brown planthopper, N. lugens) and unitary
living environment (rice fields).

Phylogenomics

We chose 13 representative hymenopteran insects (in-
cluding G. flavifemur) for phylogenomic analyses and
the following comparative genomics analyses because of
their high genome qualities, popularities, and evolution-
ary positions. Our phylogenomic analyses were based on
2992 single-copy genes, which were firstly identified by
OrthoFinder from the genomes of 13 hymenopterans
(one sawfly, one parasitic wood wasp, two braconid
wasps, three chalcid wasps, one paper wasp, two ants,
two bees, and one dryinid wasp). The amino acid se-
quences of the single-copy gene set were aligned and
concatenated, followed by a phylogenetic tree construc-
tion. In this analysis, dryinid wasp G. flavifemur (from
the superfamily Chrysidoidea) was placed as the sister
group to all other Aculeate members (paper wasp, ants,
and bees) after their common ancestor diverged from
the infraorder Parasitoida (Fig. 2a, Additional file 2: Sup-
plementary Figure 3a). In addition, we conducted
coalescent-based analyses using ASTRAL by considering
gene trees from the single-copy gene set individually,
and obtained the same topology (Additional file 2:
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Supplementary Figure 3B). G. flavifemur diverged from
other aculeates approximately 171.6 million years ago,
during the Jurassic period (Fig. 2a). Our results indicate
that the superfamily Chrysidoidea (including dryinid
wasp) represents an early branch of the Aculeate, and
this phylogenetic position is also supported by previous
studies using transcriptome data and ultra-conserved el-
ements [1, 2]. Filling the gap of the genomic sequences
of this key phylogenetic position will greatly facilitate fu-
ture comparative studies in Hymenoptera evolution.

Genome size and transposable element

The hymenopteran genomes are moderate in size (80%
are between 180 and 340 Mb) based on current sequen-
cing projects [29]. However, there are a few exceptions
[30], for example, the orchid bee Euglossa dilemma (3.3
Gb) [31] and the gall wasp Belonocnema treatae (1.5 Gb)
(NCBI RefSeq assembly accession: GCF_010883055.1).

The genome size of dryinid wasp G. flavifemur is 636.5
Mb, representing a relatively large genome in Hymenop-
tera. The expansion of repetitive sequences (e.g., trans-
posable elements, TEs) is one of the most important
factors to enlarge the genome size, and this
phenomenon has been reported in many insects [30,
32-34]. Unsurprisingly, G. flavifemur genome contains
massive repeat sequences, comprising approximately
60.7% of the whole genome. TEs account for around
59.9% (381.7Mb) of the G. flavifemur genome, with
DNA transposons being the most abundant TE group
(40.3%; 256.3 Mb) (Fig. 2b). Based on the phylogeny of
Hymenoptera, we noticed that TE content is strongly
correlated with genome size (Fig. 2e; adj.r” = 0.88, p =
2.5e-06, Pearson’s test corrected by the phylogeny),
while gene region length shows weak correlation with
genome size (Fig. 2d; adj.r* = 0.17, p = 0.16, Pearson’s
test). This result suggested that TE is a strong factor to
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drive genome size enlargement in the evolution of Hy-
menoptera. This pattern is supported by a previous
study focused on aculeates [35]. The basal hymenop-
teran insect Athalia rosae (155.8 Mb) has a moderate
genome size and a low TE content (4.6%), which may
imply the ancestral state of hymenopteran genome. Dur-
ing the evolution of Hymenoptera, TE expansion likely
happened independently after species divergence, result-
ing in genome size enlargement. In addition to the TE
expansion of G. flavifemur, we found another obvious
example, P. puparum, which also has abundant ex-
panded TEs (about 40.1%) in its genome [13]. To figure
out the contribution of each TE class to the genome size
enlargement in Hymenoptera, we compared genome size
differences with the content differences of each type of
TE. The results showed that the expansion of DNA
transposons to a large extent contributes to the genome
size enlargement in Hymenoptera (Fig. 3a; adj.r* = 0.77,
p = 8.0e-05, Pearson’s test corrected by the phylogeny).
We also detected moderate positive correlations between
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the content of long terminal repeat retrotransposons
(LTRs) (adj.r* = 0.35, p = 0.035, Pearson’s test corrected
by the phylogeny), long interspersed nuclear elements
(LINEs) and short interspersed nuclear elements (SINEs)
(adj.r* = 0.53, p = 0.0043, Pearson’s test corrected by the
phylogeny), miniature inverted-repeat transposable ele-
ments (MITEs) (adj.r® = 0.40, p = 0.021, Pearson’s test
corrected by the phylogeny), and the genome size. This
result suggested that the expansions of other TEs (LTRs,
LINEs, SINEs, and MITEs) also contribute to genome
size evolution in Hymenoptera.

In G. flavifemur, 40.3% of the genome consists of
DNA transposons, whereas the DNA transposons con-
tents in other hymenopteran insects are much lower (0.2
to 13%) (Additional file 1: Supplementary Table 8). The
DNA transposon expansion might be largely responsible
for the genome size increase in G. flavifemur. To further
investigate the main contributors of TE expansion, we
identified four most abundant superfamilies of DNA
transposons in the G. flavifemur genome: CACTA
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content of top four superfamilies of DNA transposons among five Hymenoptera species. ¢ Violin plots showing each DNA transposon'’s frequency
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(18.3%, Superfamily code: DTC), hAT (13.4%, Superfam-
ily code: DTA), Mutator (9.1%, Superfamily code: DTM),
and Helitron (1.9%, Superfamily code: DHH) (Fig. 3b;
Additional file 1: Supplementary Table 9). Although P.
puparum has the highest Helitron content among five
hymenopterans, the contents of CACTA, hAT, and Mu-
tator superfamilies in the G. flavifemur genome were
much higher than that in other genomes. We also found
the divergence levels of these TE superfamilies are gen-
erally lower than 20% among five hymenopteran insects,
suggesting that they may be recently active in the ge-
nomes (Fig. 3c). Compared with the other four genomes,
G. flavifemur lacks shared patterns in terms of TE diver-
gences. In addition, the closest relative of G. flavifemur
that has been sequenced is Gomniozus legneri (family
Bethylidae, superfamily Chrysidoidea), with a small gen-
ome (140.1 Mb) and low TE content (7.8%; Additional
file 1: Supplementary Table 8) [36]. However, the gen-
ome of G. legneri was poorly assembled with a scaffold
N50 of 167.3 kb, so this genome was not included in
other analyses of the paper [36]. Thus, we concluded
that the expansion of DNA transposons, mainly from
CACTA, hAT, and Mutator superfamilies, occurred in
G. flavifemur has predominantly enlarged its genome,
after G. flavifemur diverged from G. legneri about 162
million years ago [1].

Gene content comparison

We identified 12,696 orthogroups (OGs) using OrthoFinder
among G. flavifemur and the 12 other hymenopteran in-
sects used in our analyses. Of these, 4608 OGs (5281 G. fla-
vifemur genes) are present in all hymenopteran insects
analyzed in this study. The G. flavifemur genome contains
727 Aculeate-specific genes, which is more than other acu-
leates. GO enrichment analysis revealed that these
Aculeate-specific genes are enriched in DNA integration,
DNA recombination, cellular aromatic compound meta-
bolic process, and nitrogen compound metabolic process (p
<0.05, false discovery rate adjusted, FDR-adjusted; Add-
itional file 1: Supplementary Table 10). A total of 8453
genes from the G. flavifemur genome were species-specific
and among which, 2516 showed BLAST hits against the
NCBI nr database, suggesting that they may have homologs
outside the phylogenetic context of our comparative gen-
omics study. The rest of 5937 genes were inferred as
species-specific and/or orphan in G. flavifermur. These 5937
genes were enriched in GO terms related to serine hydro-
lase activity and phosphorus-nitrogen bonds hydrolase ac-
tivity (p < 0.05, FDR-adjusted; Additional file 1:
Supplementary Table 11).

Gene selection and gene family evolution in G. flavifemur
Unlike most of the parasitoid wasps in the infraorder
Parasitoida (e.g., braconid wasps and chalcid wasps), the
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dryinid wasps (only female wasps) are usually both para-
sitoids and predators on their hosts [8]. As parasitoids,
females lay eggs on the live hosts, and their larvae hatch
and feed on the host. As predators, females catch the
hosts and feed on the hemolymph and tissues directly
[8]. The hosts of dryinid wasps are from the suborder
Auchenorrhyncha (order Hemiptera), most of which are
planthoppers and leathoppers. They are among the ex-
tremely agile insects, and adept at jumping and flying.
To increase the success rate of parasitism and predation,
female wasps are morphologically distinct from the
males, including elongated and very mobile prothorax, a
pair of chelae-like fore legs, and an ant-like, wingless
body [4]. Predation behavior is universal in aculeate in-
sects, such as ants, vespids, spider wasps, and dryinid
wasps [5]. However, the predation mode of the dryinid
wasps is different from most aculeates. Female dryinid
wasp hunts and feeds directly on hosts (i.e., adult
predacious feeding), while many aculeates paralyze their
prey and transport it to their nests for larval feeding (i.e.,
provisioning predators) [5]. As a member of superfamily
Chrysidoidea, dryinid wasp (family Dryinidae) represents
the only case of predation, suggesting an independent
origin of predatory behavior in Dryinidae. To gain
insight into the genomic basis of the G. flavifemur-spe-
cific evolutionary traits, including the origin of preda-
tion, we performed genome-wide selection analysis and
gene family evolutionary analysis to screen for gene
changes that occurred in the G. flavifemur genome.

First, 2992 single-copy genes were used for screening
the signatures of positive selection on the terminal
branch of G. flavifemur in the phylogeny in Fig. 2a.
Here, two tests (aBSREL model in HyPhy and branch-
site model in PAML) were used (p < 0.05, FDR-adjusted)
to define the significance of each candidate gene. Only
those genes showing positive selection signals in both
methods were used for the following study. In total, our
strict screening criteria identified 183 genes that have
evidence of positive selection in the G. flavifemur gen-
ome (Additional file 1: Supplementary Table 12). We did
not observe any significantly enriched GO terms for
these positively selected genes, suggesting that the func-
tions of these genes might be diverse (p > 0.05, FDR-
adjusted). We found some positively selected genes are
related to mitochondrial functions, including NDUFB3,
NDUFA9, mtTFBI, Mygl, and PTCD3 [37-40] (Add-
itional file 1: Supplementary Table 12). Among them,
two genes (NDUFB3 and NDUFAY) are in the mitochon-
drial electron transport chain (Complex I), which trans-
fers electrons from NADH to ubiquinone [37]. Given
the critical role of mitochondria in cellular respiration
and energy production, these mitochondrial-related
positively selected genes might function in providing en-
ergy for G. flavifemur’s hunting. In addition, a number



Yang et al. BMC Biology (2021) 19:145

of positively selected genes are involved in actin cyto-
skeleton, muscle contraction, and motor activity, includ-
ing TLN1 [41], TBCE [42], ScgB [43], SPG11 [44], ALS2
[45], TWFI [46, 47], and SIM [48] (Additional file 1:
Supplementary Table 12). These may also contribute to
the predation behavior of G. flavifemur. Interestingly,
our positively selected gene set includes a Piwi-like
AGO3 gene, which belongs to the piRNA pathway. This
AGO3 protein interacts with piRNA and plays a central
role during meiosis by repressing TEs and preventing
their mobilization, which is essential for germline integ-
rity [49-52]. Our results above have indicated that TEs
massively expanded in the G. flavifemur genome and
some TEs may still be active. Thus, we hypothesize that
this selected AGO3 of G. flavifemur might have func-
tions on repressing TEs in the germline.

Additionally, we performed a rank-based branch
length comparison method to study the protein evolu-
tionary rates of the G. flavifemur branch. Amino acid
substitutions provide strong evidence to fast or slow
evolution when the divergence time is very long and the
synonymous substitutions may be saturated. This
method was used to identify rapidly evolving proteins in
the Trichogramma wasp genome [14]. In this analysis,
we reconstructed the phylogenetic tree of each of the
2992 single-copy proteins, and then for each protein, we
extracted the total branch length and the terminal
branch length of G. flavifemur. The total branch length
represents the general protein evolution pattern of each
protein, while the terminal branch length of G. flavife-
mur represents the protein evolution rate after G. flavife-
mur diverged from other species. Here, we first assigned
ranks to proteins (from 1 to 2992) based on their total
branch lengths (i.e., total branch length rank). Then, we
assigned ranks to proteins (from 1 to 2992) based on
their branch lengths of G. flavifemur branches (ie., G.
flavifemur branch length rank). We next binned proteins
into groups of 300 based on their total branch length
rank, which could avoid overrepresentation among any
protein categories based on general evolutionary rates.
In each bin, we selected the proteins with the top 10%
largest discrepancy in rank between the G. flavifemur
branch length rank and the total branch length rank, as
rapidly evolving proteins (i.e., we chose the proteins with
the top 10% largest values of the G. flavifemur branch
length rank minus the total branch length rank) (Add-
itional file 2: Supplementary Figure 4). We found that
the rapidly evolving protein set is largely divergent from
the positively selected gene set, with only 18 genes over-
lapped. In these rapidly evolving proteins, we found add-
itional proteins involved in respiratory electron transport
chain, which are ETFRF1 and NDUFB7 [37, 53]. Fur-
thermore, additional proteins which may contribute to
motor activities were found, including profilin [54],
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cGMP-dependent protein kinase (cGK) [55], and two-
pore potassium channel protein sup-9 [56]. Four proteins
from the 20S core proteasome complex were identified as
rapidly evolving proteins, suggesting a potentially import-
ant role of proteasomes in G. flavifemur. One of these four
genes is also in the positively selected gene set. In
addition, three ABC transporter proteins (related to de-
toxification), one visual system homeobox 2 protein (re-
lated to visual perception), and one cryptochrome-1
protein (related to circadian rhythm) were identified. To-
gether, our searches for positively selected genes and rap-
idly evolving proteins revealed several genes or proteins
involved in energy production and motor activity, which
suggests that altered genes or proteins may contribute to
the adaptation of predatory behavior in G. flavifemur.

We next investigated the gene family expansions and
contractions in the G. flavifemur genome. A total of 434
gene families were expanded in G. flavifemur comparing
to the common ancestor of the Aculeate, including
chitinase-like proteins (glycosyl hydrolase family 18),
neprilysins (zinc-dependent metalloproteases), trypsins,
venom carboxylesterases, esterases, G-protein-coupled
receptors, and several transcription factors (Fig. 2a). The
significantly enriched GO terms included digestion and
regulation of skeletal muscle adaptation, which may also
associate with the predation behavior (p <0.05, FDR-
adjusted; Additional file 1: Supplementary Table 13).
The GTF2IRD (general transcription factor II-I repeat
domain-containing protein) genes were expanded in G.
flavifemur, and they may contribute to slow-twitch fiber
type specificity during myogenesis and regenerating
muscles [57]. Interestingly, we found a number of ex-
panded genes from chitinase-like gene family (glycosyl
hydrolase family 18) and neprilysin family were much
more highly expressed in the venom gland of G. flavife-
mur than in carcass (i.e., adult female tissues minus the
venom gland), adult male, pupa, and larva, suggesting
that they might be venom genes and play important
roles in parasitoid-host interactions. See below for the
detailed analyses about the chitinase/chitinase-like gene
family and the neprilysin family.

Venom gland-associated genes of G. flavifemur

Among most of the hymenopteran insects, venom plays
essential roles in their life. For example, parasitoid wasps
use venom to manipulate the metabolism and immunity,
and gene expression of the host to establish a suitable
environment for wasp larvae [58—64], while some preda-
tory hymenopterans (e.g., vespid wasps and ants) use
venom for prey capture and defense [63, 65, 66]. The
venom components of several parasitoid wasps and
predatory hymenopterans have so far been reported [61,
65-70]. However, little is known about the venom com-
ponents and their functions of G. flavifemur, which acts
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as both parasitoid and predator on its host. We
hypothesize that the venom of G. flaviferur might have
similar functions with the venoms of both parasitoid
wasps and predatory wasps, and it is expected to play a
key role in both altering host’s metabolism and immun-
ity (like many parasitoid wasps’ venom), as well as para-
lyzing the host temporarily (like many predatory wasps’
venom).

In order to gain insights into the putative venom
gland-associated genes (VGGs) of G. flavifemur, we ana-
lyzed the RNA-seq datasets derived from venom gland
and carcass (i.e., adult female tissues minus the venom
gland) respectively. The venom gland is a highly special-
ized organ, which produces the venom components. We
found that there is only a small set of genes highly
expressed in the venom gland. For example, only 157
and 474 genes account for 80% and 90% of expression in
the venom gland of G. flavifemur; however, 979 and
2297 genes account for 80% and 90% of expression in
adult female (Additional file 2: Supplementary Figure
5A). This pattern could also be found in the venom
gland of many other parasitoid wasps [61]. Based on the
transcriptome data, we used three major criteria to iden-
tify VGGs in G. flavifemur, (1) VGGs must be among
the top500 expressed genes (ranked by the median
FPKM values) in the venom gland transcriptome; (2)
VGGs must be significantly highly expressed in the
venom gland relative to the carcass (g < 0.05); (3) VGGs
must remain low expression levels in the carcass (me-
dian FPKM < 50). In total, 154 VGGs were identified in
G. flavifemur (Additional file 1: Supplementary Table
14). These 154 VGGs have significantly higher expres-
sion levels in the venom gland and low expression levels
in other developmental stages (p < 2.2e-16, Wilcoxon
rank-sum test; Additional file 2: Supplementary Figure
5B). Among these 154 VGGs, 32 genes have predicted
signal peptides (Additional file 1: Supplementary Table
14), which indicates the presence of secretory signals
and is considered as one of the characteristics of venom
proteins in previous studies [68, 69]. However, signal
peptide may not be necessary for a venom protein, since
evidence has shown that some RNA-seq supported pro-
teins (encoded by venom gland highly expressed genes)
without signal peptides can also be detected in venom
proteomes [61, 68]. Moreover, venom-related extracellu-
lar vesicles (i.e., venosome) were found in some wasps,
which may directly transport venom proteins to their
targets in hosts, even if they do not contain signal pep-
tides [71]. The VGGs contain a broad range of func-
tional components, such as proteases and peptidases (46
genes, 29.9%), protease inhibitor (1 gene, 0.7%), lipases
(10 genes, 6.5%), chitinase-like genes (29 genes, 18.8%),
and oxidoreductases (3 genes, 1.9%) (Additional file 2:
Supplementary Figure 5C). Some of them are known
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venom proteins of other parasitoid wasps, including
serine proteases, serpins (protease inhibitors), phospholi-
pases, and major royal jelly proteins [67, 68].

Notably, a number of chitinase-like genes (29 genes, 8
genes with predicted signal peptides) were found to be
specifically highly expressed in the venom gland of G.
flavifemur (the mean FPKM in the venom gland is
4228.5, while the mean FPKM in the carcass is 5.4).
Such a large number of venom-expressed chitinase-like
genes was not reported in any other wasps, and might
play an important role during the parasitism and hunt-
ing of G. flavifemur. It could occur due to the gene du-
plications after a single venom gene recruitment, or
many independent venom gene recruitment events after
gene duplications, or a complex evolutionary history that
includes both cases above. Additionally, the venom gene
recruitment of chitinase-like genes might be due to the
lateral gene transfer (LGT), and it has been reported in
some parasitoids in Chalcidoidea [72]. However, we did
not find any evidence to support the hypothesis that
some of these highly expressed chitinase-like genes in
the venom gland were laterally transferred from bacteria
or fungi.

Because of the abundant chitinase-like genes and
clotting-related proteases (8 genes) in the venom gland,
the GO enrichment analysis showed that the VGGs are
enriched in carbohydrate metabolic process, imaginal
disc development, coagulation, wound healing, proteoly-
sis, cuticle development (p < 0.05, FDR-adjusted; Add-
itional file 1: Supplementary Table 15 and Additional file
2: Supplementary Figure 5D). It seems that the venom of
G. flavifemur might regulate the host’s cuticle develop-
ment and prevent the host from dying due to excessive
hemolymph loss. Parasitized hosts will be alive until the
mature wasp larvae leave the hosts for cocooning and
pupation [4]. Therefore, it is reasonable to hypothesize
that G. flavifemur venom might be involved in the
wound healing process to ensure the host is alive.

There are total 26 neprilysin-like genes (M13 pepti-
dases) in the VGGs, and 7 of them contain predicted sig-
nal peptides (Additional file 1: Supplementary Table 14).
Neprilysin is a zinc-dependent metalloprotease with a
broad range of physiological targets, including natri-
uretic, vasodilatory, and neuro peptides [73]. Venom
neprilysins have been reported in many venomous ani-
mals, such as jellyfishes, snakes, spiders, and solitary
hunting wasps Eumenes decorates and Ampulex com-
pressa [70, 74-78]. The functions of venom neprilysins
are related to neurotoxicity which can paralyze the prey
immediately [79, 80]. Such high abundant venom
neprilysin-like genes may imply that paralysis might be
one of the major functions of the venom of G. flavifemur.
Moreover, we found a hemolymph lipopolysaccharide-
binding protein gene in the VGG set, which may play a
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role in bacterial clearance and protect parasitoid larvae
from the influence of bacteria [81]. The hemipteran hosts
of G. flavifemur usually carry some intracellular symbionts
[82]. It would be interesting to study if this venom
lipopolysaccharide-binding protein could target the host’s
bacterial symbionts.

Expansion and venom expression of chitinase-like genes
in G. flavifemur
To gain more insights into the expansion of the chitinase-
like gene family (glycoside hydrolase 18 family, GH18) in
G. flavifemur, we searched GH18 domain-containing pro-
teins in 17 insect genomes, which includes 13 hymenop-
teran genomes (including G. flavifemur), 1 lepidoptera
genome (Bombyx mori), 1 coleopteran genome (7ribolium
castaneum), 1 diptera genome (Drosophila melanogaster),
and 1 hemipteran genome (Acyrthosiphon pisum). The
four non-hymenopteran genomes we analyzed here allow
us to determine the ancestral state of chitinase-like gene
family of Hymenoptera. In total, 260 GH18 domain-
containing proteins were found and 61 of them were in
the G. flavifemur genome, representing the most abundant
one when compared to the other 16 genomes. Maximum
likelihood phylogenetic analysis indicated that the
chitinase-like genes in group 4 (7 genes) and group 5 (47
genes) were expanded in the G. flavifemur genome,
whereas the gene counts in other chitinase groups among
17 insect genomes were highly conserved (Fig. 4a, b).
Group 5 chitinase-like proteins are also annotated as
imaginal disc growth factors (IDGFs), which are a small
family of chitinase-related secretory proteins found in
many insects [83—87]. They lack chitinase activity due to
an amino acid substitution of a key glutamate residue
(E) in a conserved active site motif [88]. However, a few
examples in T. castaneum and parasitoid wasp Micropli-
tis mediator and Cotesia chilonis show that although
IDGFs retain the glutamate residue in the active site
motif, a D to A substitution in the same motif (from
DxxDxDxE to DxxDxAxE) also results in the loss of
function of IDGFs (Additional file 2: Supplementary Fig-
ure 6) [88]. In G. flavifemur, we identified 47 Idgf genes.
This number is much higher than any other insects we
surveyed, including G. legneri, the closest relative of G.
Sflavifemur (Additional file 1: Supplementary Table 16).
Phylogenetic analysis showed that Idgf genes were largely
expanded in the G. flavifemur genome, and 44 of total
47 Idgf genes were clustered together (Fig. 4b). We
found a well-supported (87% of rapid bootstraps) insect
conserved Idgf clade, which contains three G. flavifermur
Idgf genes. In total, 44 Idgf paralogs in the G. flavifemur
genome clustered together to form a G. flavifermur-spe-
cific clade instead of clustered with the Idgf ortholog in
insect conserved Idgf clade, suggesting a rapidly evolu-
tionary history of these paralogs (Fig. 4b). Gene
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distribution analysis revealed many Idgf gene tandem ar-
rays (with 2 or more Idgf genes) in the G. flavifemur
genome, indicating the tandem duplications of Idgf
genes. The largest tandem array contains 6 Idgf genes
(Fig. 4c). Gene expression patterns showed that the three
G. flavifemur Idgf genes in insect conserved Idgf clade
expressed widely across development, while many Idgf
genes in G. flavifemur-specific clade display strong
venom-gland biased expression patterns and lowly ex-
press in adult male, pupa, and larva (Fig. 4c). Due to the
low pairwise identity, with only 27.22% on average, we
concluded that the cross-mapping events among these
genes are neglectable during RNA-seq analysis. Interest-
ingly, we observed an Idgf tandem array, which includes
four genes. Three of them are insect conserved Idgfs (no
venom expression) while the last one is G. flavifermur-
specific. Moreover, this G. flavifemur-specific Idgf dis-
played a strong venom-gland biased expression pattern.
Among 47 Idgf genes, 28 were assigned as VGGs in our
analysis (Fig. 4b, c). Gene family expansion and venom
recruitment of Idgf genes in G. flavifemur implied that
these genes may have important functions as venom
components, although only 12 of 28 venom gland-
associated Idgf genes have predicted signal peptides.
Venom IDGF proteins are unusual in hymenopterans
and have been reported in only two additional parasitoid
wasps, M. mediator and Chelonus inanitus [89, 90].
These venom IDGF proteins (MmV234 and Ci-48b)
were clustered with other hymenopteran IDGFs in the
insect conserved Idgf clade (Fig. 4b).

An additional gene from the group 4 chitinase subfam-
ily was also highly expressed in the venom gland and
very lowly expressed across development (Fig. 4c). This
gene is located in a tandem array of group 4 chitinase
genes, showing a tandem duplication event. Together,
our observations imply that the expanded Idgf and group
4 chitinase genes with venom-gland high expressions
might have important functions in G. flavifemur-host
interaction. Further studies are needed to investigate the
function of these venom chitinase-like genes.

Expansion and convergent venom recruitment of
neprilysin-like genes in G. flavifemur

In the G. flavifemur genome, we identified 66 neprilysin-
like genes (containing Peptidase_M13 domain), which is
much more abundant than any other insects in this
study, ranging from 5 to 42 (Additional file 1: Supple-
mentary Table 17). Phylogenetic analysis further con-
firmed that neprilysin-like genes were largely expanded
in the G. flavifemur genome, and 41 neprilysin-like
genes were clustered together to form a G. flavifermur-
specific clade (Fig. 5a, b). Notably, this G. flavifemur-spe-
cific clade includes 23 of total 26 venom gland-
associated neprilysin-like genes defined by the venom
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Fig. 4 Chitinase-like genes in the G. flavifemur genome. a The maximum likelihood phylogenetic tree of chitinase-like proteins in G. flavifemur
and other 16 insect species. The tree was built using IQ-TREE and branch support was assessed by 1000 ultrafast bootstrap replicates. Different
groups of chitinase-like genes are indicated according to the descriptions in Arakane and Muthukrishnan [88]. b The maximum likelihood
phylogenetic tree of imaginal disc growth factors (IDGFs) built by IQ-TREE. The branch support was assessed by 1000 ultrafast bootstrap
replicates. The G. flavifemur-specific clade of IDGFs was shown. Two additional venom IDGFs from two parasitoid wasps Microplitis mediator and
Chelonus inanitus were labeled in blue. ¢ The expression pattern of chitinase-like genes in G. flavifemur across development and different tissues.
Signal peptide (SP), VGGs (venom gland-associated genes), active site motif (DxxDxDxE), chitin biding domain (CBD) and tandem array

gland transcriptomes (Fig. 5b). Neprilysin is a zinc-
dependent metalloprotease and is predicted to
metabolize regulatory peptides in prey’s nervous system
and paralyze the prey as a venom protein [79, 80]. The
expansion and venom high expression of these
neprilysin-like genes suggest that the G. flavifemur
venom might have a powerful paralyzing effect on the
host. Additionally, we identified a large expansion of the
Orussus abietinus neprilysin-like genes (Fig. 5a). O.

abietinus is an ectoparasitoid of xylobiontic larvae of
beetles or wood wasps [35]. In phylogeny, O. abietinus
represents the closest relative of Apocrita, which may
have a similar lifestyle with the parasitoid ancestor [2]. It
is worth investigating whether the expanded neprilysin-
like genes are also highly expressed in the venom of O.
abietinus.

Venom neprilysins have been reported in many ven-
omous animals, such as jellyfishes, snakes, and
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Fig. 5 Neprilysin-like genes in the G. flavifemur genome. a The maximum likelihood phylogenetic tree of neprilysin-like proteins in G. flavifemur
and other 16 insect species. The tree was built using IQ-TREE and branch support was assessed by 1000 ultrafast bootstrap replicates. b The
phylogenetic tree of neprilysin-like genes in the G. flavifemur-specific clade and their expression pattern in venom gland, adult female tissues
minus the venom gland (i.e,, carcass), adult female, adult male, pupa, and larva. SP, signal peptide; VGGs, venom gland-associated genes. ¢ Venom
recruitment of neprilysin-like genes in Hymenoptera. Totally, the venom components of 31 hymenopterans were exanimated (15 in Parasitoida

neprilysin-like genes were shown

and 16 in Aculeate). The ectoparasitoid wood wasp O. abietinus and the non-venom basal hymenopteran A. rosae were also included. The
phylogeny of these hymenopterans was obtained from previous studies [2, 91]. Others animals, such as snakes, spiders, which carry venom

centipedes and spiders, suggesting many convergent
venom recruitments [74, 76, 78, 80]. We next asked
whether the neprilysin-like genes are present in the
venoms of other species in Hymenoptera by convergent
recruitments. To this end, we examined the reported
venom components of 30 additional hymenopterans (15
in Parasitoida and 15 in Aculeate) to search venom
neprilysin-like genes (Fig. 5¢). In total, including G. flavi-
femur, we found venom neprilysin-like genes in 13
wasps (9 in Parasitoida and 4 in Aculeate). In Parasi-
toida, venom neprilysin-like genes were found in a chal-
cid wasp Pachycrepoideus vindemmiae, and 3 figitid
wasps Leptopilina boulardi, L. heterotoma, and Ganaspis
sp., 4 braconid wasps M. mediator, M. demolitor, Micro-
ctonus hyperodae, Aphidius ervi, and an ichneumonid
wasp Hyposoter didymator. In Aculeate, we found add-
itional venom neprilysin-like genes in a bethylid wasp
Scleroderma guani, a solitary hunting wasp Eumenes
decorates and an emerald cockroach wasp Ampulex com-
pressa. We then summarized the presence or absence of
the venom neprilysin-like genes in total 31 hymenop-
terans and mapped the information to their phylogeny.
Our results show that the recruitments of venom
neprilysin-like genes are mainly scattered throughout
the Hymenoptera phylogeny. This indicates that most
recruitment events of venom neprilysin-like gene oc-
curred independently during the radiation of Hymenop-
tera (i.e., convergent venom recruitments).

Gene expression changes in female adults after feeding
on the preys

Some female insects, such as blood-feeding mosquitoes,
need to feed on proteins to trigger egg development
[92]. A previous study reported that female dryinid
wasps often consumed the first host captured in the day
[5]. We then hypothesized that the hunting and prey
feeding behaviors of G. flavifemur female adults may be
beneficial to reproduction. To test our hypothesis, we
analyzed the transcriptome data derived from the prey-
feeding females (protein-rich diet) and sucrose-feeding
females to characterize differential expressed genes be-
tween these two treatments. In total, 24 genes were sig-
nificantly upregulated in the prey-feeding females when
compared to the sucrose-feeding females (fold change >

4 and g <0.05; Additional file 1: Supplementary Table
18). We observed that 3 yellow genes were significantly
activated (5.44—8.09-fold higher expression) after feeding
on the preys (Fig. 6). Compared with other insect yellow
genes, phylogenetic analysis suggested that these 3 acti-
vated yellow genes belong to subfamily yellow-g, yellow-
g2, and yellow-h, respectively (Additional file 1: Supple-
mentary Table 19). Yellow genes are common within ar-
thropods and are homologous with major royal jelly
protein encoding genes [93, 94]. In some well-studied in-
sects, such as fruit fly, mosquito, and silkworm, some
members of the yellow gene family are associated with
reproductive maturation [95-97]. In G. flavifemur, ana-
lyses of transcriptome data of male and female adults
showed that the 3 upregulated yellow genes in the prey-
feeding females are extremely female-biased genes, with
266.98-1656.33-fold higher expression in the female
adults than in the male adults (g <0.05; Additional file
1: Supplementary Table 19). Therefore, our finding indi-
cates that 3 female-biased yellow genes are significantly
upregulated in females after feeding on the preys, and
these genes may be involved in the reproduction of G.
flavifemur. Other significantly upregulated genes in the
prey-feeding females including trypsin-1, lipase 3, neu-
tral ceramidase, takeout, and fatty acyl-CoA reductase
(Fig. 6 and Additional file 1: Supplementary Table 18).
We also identified 20 significantly downregulated genes
in the prey-feeding females when compared to the
sucrose-feeding females, which included maltase2,
growth arrest-specific protein 8, liver carboxylesterase,
and small heat shock protein C4 (fold change >4 and ¢
< 0.05; Additional file 1: Supplementary Table 20).

Sex-biased genes and male-biased opsin genes in G.
flavifemur

Due to the obvious sexual dimorphism of G. flavifemur,
we also investigated the sex-biased genes in this wasp by
comparing the RNA-seq data of adult males and females.
The 461 extremely female-biased genes (fold change >
16 and g < 0.05) were enriched in nucleosome assembly,
meiotic cell cycle process (p < 0.05, FDR-adjusted; Add-
itional file 1: Supplementary Table 21). However, the
362 extremely male-biased genes (fold change > 16 and
q <0.05) showed a striking enrichment of GO terms
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associated with sensory perception, detection of stimu-
lus, and cell-cell signaling (p < 0.05, FDR-adjusted; Add-
itional file 1: Supplementary Table 22). The significant
activation of the sensory perception system of the adult
males might be due to their short life (only about 2
days), while females usually live longer (about 20 days).
Within the short lifespan of males, they need to find fe-
males to mate in a limited time frame; thus, they are rea-
sonable to have a powerful sensory perception system.
We identified 7 olfactory receptor genes with higher ex-
pression (21.14-415.75-fold higher) in the males than in
the females. These genes might be related to locating
the females for mating. The adult male has wings; how-
ever, the adult female is a wingless, ant-like wasp. Thus,
as expected, a flightin gene that is involved in regulating
flight muscle contraction, was 161.87-fold highly upreg-
ulated in the adult male than in the females (Additional
file 1: Supplementary Table 23).

We next analyzed the opsin genes, which are import-
ant in insect visual perception [98]. Our comparison
among 12 hymenopteran insects showed that the ultra-
violet (UV)-sensitive opsin and the blue-sensitive opsin
are both kept as a single copy in all 12 hymenopterans.
The paper wasp Polistes dominula has three long-wave
sensitive (LWS) opsin genes, while the rest species have
two LWS-opsin copies (Fig. 7a). Comparative transcrip-
tome analysis among G. flavifemur, P. puparum, and N.
vitripennis revealed that Blue-opsin, UV-opsin, and
LWSI-opsin in the three wasps are male-biased genes,
with 1.89-4.02-fold higher expression in the males than
in the females (g <0.05; Fig. 7b). Surprisingly, LWS2-
opsin of G. flavifemur was 86.86-fold higher upregulated
in the males compared to females (g = 9.72e-106), while

the LWS2-opsin of P. puparum was only 2.89 higher
expressed in the males (g = 2.24e-06). In addition, the
LWS2-opsin of N. vitripennis did not show a male-biased
expression pattern (¢ = 0.305; Fig. 7b). Taken together,
our transcriptomic comparisons among G. flavifemur, P.
puparum, and N. vitripennis indicate a global male-
biased expression pattern of Blue-opsin, UV-opsin, and
LWS-opsin, except the LWS2-opsin of N. vitripennis, and
an extremely male-biased LWS2-opsin gene in G. flavife-
mur. The male-biased expression of these opsin genes
may contribute to partner searching and mating.

Discussion

Herein, by combining both Nanopore long-read sequen-
cing and Illumina short-read sequencing strategies, we
generated a high-quality reference genome of the pincer
wasp G. flavifemur, which is the first genome sequence
of the family Dryinidae. This species resides a key evolu-
tionary position in Hymenoptera, as the early branch of
the sting wasps (Aculeate), providing a valuable resource
to facilitate our understanding of Hymenoptera evolu-
tion. In addition, G. flavifemur has many unique bio-
logical characteristics, including parasitism, predation,
and sexual dimorphism.

In this study, our comparative genomics analysis
highlighted a number of positively selected genes and
rapidly evolving proteins involved in energy produc-
tion and motor activity, which may play roles in the
predatory adaptation of G. flavifemur. These findings
expand our understanding of the hunting behavior
evolution in Hymenoptera. By incorporating transcrip-
tomic data, we found that 3 yellow genes (yellow-g,
yellow-g2 and yellow-h) were significantly activated in
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female G. flavifemur after feeding on the preys. It has
been reported that some members of the yellow gene
family are associated with reproductive maturation.
For example, yellow-g and yellow-g2 play a female-
specific role in the egg development of Drosophila
and Aedes [95, 96]. Moreover, all the yellow genes of

silkworm Bombyx mori have a high transcription level in
both ovary and testis, suggesting their reproduction-re-
lated functions [97]. Therefore, our discovery bridges
the gap between the unique hunting behavior and re-
productive advantages in the parasitoid wasp G.
flavifemur.



Yang et al. BMC Biology (2021) 19:145

Venoms are key evolutionary innovations in most hy-
menopteran insects and have been used for predatory,
defensive, and reproductive purposes. Our comprehen-
sive study on the venom gland identified significant ex-
pansions and unique expression patterns of Idgf genes
and neprilysin-like genes. The functions of Idgf genes in
insects are diverse, and they have been proved to partici-
pate in cuticle formation, wing development, larval and
adult molting, immune response, antimicrobial response,
and hemolymph clotting [88, 99, 100]. In addition, IDGF
proteins are present in mosquito saliva and may contrib-
ute to the modulation of the mammalian host response
and enhancing mosquito-borne Zika virus infection
[101]. Here, we hypothesize that these IDGF proteins in
the venom of G. flavifemur might play various potential
roles, for example, regulating the development of the
hosts, participating in the wound healing of the hosts,
and immune-related functions against the hosts and bac-
teria. On the other hand, neprilysin specializes in the
role of metabolizing and regulating molecules in the
mammalian nervous systems; for example, it can inacti-
vate peptide transmitters and their modulators [79, 102].
The expansion and venom high expression of neprilysin-
like genes imply the G. flavifemur venom might have a
powerful paralyzing effect on the host, which is of sig-
nificant benefit to hunting and parasitism. Indeed, the
temporary paralyzing effect of dryinid wasp’s venom has
been reported before [3, 103], and our discovery of
neprilysin expansion could explain the molecular basis
of venom function. By comparing 31 hymenopterans,
our study further indicated that venom neprilysins are
prevalent in many hymenopterans and the recruitment
events of venom neprilysin-like gene occurred independ-
ently during the radiation of Hymenoptera (i.e., conver-
gent venom recruitments). However, this is only the tip
of the iceberg, and exploring the bigger picture of venom
neprilysin evolution in Hymenoptera requires further in-
depth studies and whole-genome sequencing.

The genome size of G. flavifemur is much larger than
most hymenopterans. The expansion of TEs, especially
from DNA transposons, is a major contributor to the
genome size enlargement in G. flavifemur. TE expan-
sions and insertions can cause a variety of changes in
the host genome, such as chromosomal rearrangements,
gene disruptions, and gene expression regulations, some
of which may be of benefit to adaptation [30, 104—107].
Several studies have shown that TE insertions play an
essential role in helping insects to increase their adapt-
ability, including raising the insecticide resistance and
enhancing the ability to adapt to climate changes [108,
109]. In addition, TE is an important factor in insect
antiviral immunity and aging regulation [110]. We there-
fore hypothesize that the expansion of TEs and the ac-
companied TE insertions might contribute to the
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adaptation of G. flavifemur. We envision further investi-
gations on how TE expansion benefits the adaptation of
G. flavifemur.

Conclusions

Parasitoid wasps in the family Dryinidae display several
interesting characteristics, such as the predatory behav-
ior of adult females and the distinct sexual dimorphism.
In this study, we present the genome of the dryinid wasp
G. flavifemur to understand the genetic basis of these
key innovations. Compared to other hymenopterans, our
findings highlight that the TEs, especially DNA transpo-
sons, have massively expanded in the G. flavifemur gen-
ome, resulting in the genome size enlargement. Our
genome-wide screens locate a number of positively se-
lected genes and rapidly evolving proteins involved in
energy production and motor activity, which may con-
tribute to the predatory adaptation of G. flavifermur. We
also show that 3 female-biased, reproductive-associated
yellow genes in adult females expressed significantly
higher after feeding on the preys, which may be benefi-
cial to the egg production. This may explain the advan-
tage of their unique predatory behavior. In addition, our
transcriptomic analyses and following gene family ana-
lyses reveal the unique venom characters of G. flavife-
mur, such as the expansions of venom Idgf-like genes
and neprilysin-like genes. Furthermore, we identify sex-
biased genes based on the differences of gene expression
between adult females and males, and observe an ex-
tremely male-biased LWS2-opsin gene in G. flavifemur.
These results advance our understanding of the genome
architecture, predatory adaptation, venom gene evolu-
tion, and sex-biased genes in G. flavifemur, and stimu-
late further comparative analyses of hymenopterans.

Methods

Insects

The dryinid wasps G. flavifemur were provided by Dr.
Qiang Fu from his laboratory. The wasp colony was
originated from about 50 wasps of a field population,
which was collected at Hangzhou, China, in 2018. The
colony of the hosts N. lugens was first collected from
rice fields at Hangzhou, China, in 2018. Both parasitoid
wasps and the hosts were maintained in the laboratory.
The N. lugens was reared continuously on a susceptible
rice variety (Taichung Native 1, TN1) under laboratory
conditions at 28 + 1°C, 65 + 5% relative humidity (RH),
3500 ~4000 Lux and a photoperiod of 16: 8h (light:
dark) [111]. The parasitoid wasps G. flavifemur were
reared on 4-5th instar brown planthoppers under the
same conditions. The details of samples for genome and
transcriptome sequencing are summarized in Additional
file 1: Supplementary Table 24.
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Genome sequencing

We applied the Nanopore and Illumina HiSeq X Ten
platforms to sequence the genome of G. flavifemur.
High-quality genomic DNA for de novo sequencing was
extracted from 50 haploid male pupae using the sodium
dodecyl sulfate (SDS)-based DNA extraction method
followed by purification with VAHTS DNA Clean Beads
(Vazyme, Cat. # N411-03) according to the standard
procedure provided by the manufacturer. The quality
and concentration were then assessed by 1% agarose gel
electrophoresis, NanoDrop™ One UV-Vis spectropho-
tometer (Thermo Fisher Scientific, USA) and Qubit® 3.0
Fluorometer (Invitrogen, USA). For long library prepar-
ation, qualified DNA was size-selected (> 10 kb) using
the BluePippin system (Sage Science, USA), then two
long libraries were processed according to the Ligation
Sequencing Kit (SQK-LSK109, Oxford Nanopore) proto-
col and sequenced on two flow-cells using the Pro-
methION sequencer (Oxford Nanopore). A short paired-
end library with an insert size of 350 bp was constructed
using a TruSeq Nano DNA HT Sample Preparation Kit
(Ilumina), and then sequenced on the HiSeq X Ten
platform.

Evaluation of genome size

The paired-end Illumina reads were firstly filtered by
fastp v0.20.0 [112]. Clean reads were used for esti-
mating the genome size and heterozygosity using
GenomeScope v1.0.0 [113] based on the 17-mer dis-
tribution analyzed by Jellyfish v2.3.0-1 [114]. The es-
timated genome size was further validated by flow
cytometry following the standard procedure reported
in He et al. [115]. Briefly, the heads of 20 adult
insects were completely homogenized in 500 pL ice-
cold Galbraith’s Buffer (45 mM MgCl,, 20 mM 3-N-
morpholinopropane sulfonic acid, 30 mM sodium
citrate, and 0.1% (vol/vol) Triton X-100; pH 7.0).
The homogenate was then filtered into a 1.5-mL
Eppendorf tube using 38-um nylon mesh. To remove
RNAs, RNase A (Takara, Japan) was added to the
homogenate (final concentration of 20 ug/mL) and
incubated at 25°C for 10 min. The precipitates were
collected by centrifuging at 1000g for 5min, and
then suspended with 400 pL phosphate buffer (pH
7.4) and stained with 50 pg/mL propidium iodide
stock solution in darkness at 4°C for 10 min. Each
sample was analyzed using the MoFlo™ XDP High
Speed Cell Sorter and Analyzer (Beckman Coulter,
CA, USA) under 488-nm wavelength. Summit Soft-
ware (Beckman Coulter, CA, USA) was used to ob-
tain the nuclei peaks. The genome size was then
estimated based on the outputs, using D. melanoga-
ster as a control (Additional file 2: Supplementary
Figure 2).
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Genome assembly and assessment

We firstly used NextDenovo v1.1.1 (https://github.com/
Nextomics/NextDenovo) to correct Nanopore reads with
-seed_cutoff = 10 k parameter. The corrected reads were
then assembled into primary contigs using wtdbg2 v2.3
[116]. Then, NextPolish v1.0.5 [117] was used to polish
the assembly with both Nanopore long reads (three iter-
ations) and Illumina reads (four iterations). Finally, we
removed the bacterial contaminating contigs using the
pipeline of Wheeler et al. [11]. Briefly, each contig was
firstly split into 1000 bp units, which were then searched
against a bacterial genome database provided in Olafson
et al. [15] using BLASTN v2.8.1 [16] (-evalue le-5).
Contigs were identified as likely bacterial contigs if the
proportion of bacterial matched units along their total
number of units was larger than 40%. BUSCO v5 [118]
was used to assess the genome assembly completeness
with the insect protein set (insecta_odbl0). We also
mapped the Illumina genomic reads and RNA-seq reads
to the genome assembly by BWA v0.7.17 [119] and
HISAT2 v2.2.1 [120] respectively. The mapping rates
were counted by SAMtools v1.10 [121].

Transcriptome sequencing and analysis

RNA-seq libraries (insert size of 250 bp) were prepared
from larva (7-day-old larvae, 10 individuals), pupa (10
individuals), female adult (1-day-old, 10 individuals),
male adult (1-day-old, 10 individuals), venom gland (5-
day-old female adult, 100 individuals), and carcass (5-
day-old female adult, remove venom gland, 10 individ-
uals). In addition, to investigate the gene expression
changes between prey-feeding females and none prey-
feeding females, six RNA-seq libraries (insert size of 250
bp) were prepared from the female adults (5-day-old)
reared on 20% sucrose water and brown planthoppers
(the preys), respectively. Three biological replicates were
prepared for each sample. The transcriptomes were se-
quenced using the Illumina HiSeq X Ten platform with
paired-end libraries. Raw reads from the RNA-seq were
filtered using Trimmomatic v0.38 [122]. The clean reads
were mapped to the genome assembly using HISAT2
v2.2.1 [120] and then assembled into transcripts using
StringTie v2.1.0 [123]. RSEM v1.3.3 [124] was used for
estimating the gene expression level, and DESeq2 pack-
age v1.30.1 [125] was used to perform the differential ex-
pression analyses.

Repeat annotation

We used the Extensive de novo TE Annotator (EDTA)
pipeline to construct TE libraries for each species [126].
Briefly, we firstly applied a series of structure-based TE
classification tools in the EDTA pipeline to identify each
type of TE (LTR_FINDER [127], LTRharvest [128] and
LTR_retriever [129] for LTR retrotransposons, TIR-
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Learner [130] and HelitronScanner [131] for DNA trans-
posons). Outputs from each program were filtered by
the EDTA pipeline (the filtering step was detailly de-
scribed in Ou et al. [126]). Next, RepeatModeler v2.0
[132] was used to identify non-LTR retrotransposons
and any unclassified TEs that were missed by the TE an-
notators above. Finally, all results were compiled into a
comprehensive non-redundant TE library for down-
stream analysis. RepeatMasker v4.0.7 [133] was then
used to search for known and novel TEs by mapping se-
quences against the de novo TE library and Repbase li-
brary v16.02 [134]. Tandem repeats were annotated
using Tandem Repeat Finder v4.09 [135]. The diver-
gences of each TE family were reported by RepeatMas-
ker and then converted to nucleotide distance measures
using the Jukes-Cantor nucleotide model to correct for
multiple hits. Final results were pooled into bins of sin-
gle unit distances, which recapitulates the history of TE
class proliferation.

Gene annotation

Three approaches, as incorporated in the EVidenceMo-
deler pipeline (EVM, v1.1.1) [136], were used to predict
the protein-coding genes: de novo gene prediction,
homology-based and RNA-seq-based approaches. For de
novo gene prediction, we utilized AUGUSTUS v3.1
[137] and SNAP v2006-07-28 [138] to analyze the
repeat-masked genome. For homology-based predic-
tions, the protein sequences of invertebrates were re-
trieved from NCBI Reference Sequence Database as
templates. Exonerate v2.2.0 (https://www.ebi.ac.uk/
about/vertebrate-genomics/software/exonerate) and
GenomeThreader v1.7.1 [139] were used to align the ref-
erence proteins to the genome assembly and predict
gene structures. For RNA-seq-based gene prediction, we
used the transcriptome assembled from RNA-seq align-
ments and identified the candidate coding region of each
transcript by TransDecoder v5.5.0 (https://github.com/
TransDecoder/TransDecoder). Finally, EVidenceModeler
v1.1.1 [136] was used to integrate the genes predicted by
the above three approaches and generate a consensus
gene set. Gene Ontology (GO) analysis was carried out
using the software Blast2GO v5.2 [140]. We next
mapped the gene set to Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways using BlastKOALA v2.2
[141] online service. We also searched the protein se-
quences in the SwissProt and TrEMBL databases using
BLASTP v2.8.1 [16] (-evalue 1le-5).

Comparative genomics

We comprehensively considered three factors of each
species for comparative genomics analyses and phyloge-
nomic analyses, including genome quality, popularity,
and evolutionary position. OrthoFinder v2.5.1 [20] was
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used to identify the orthologous and paralogous genes of
13 Hymenoptera genomes including O. abietinus (RefSeq
assembly accession: GCF_000612105.2), C. chilonis
(http://www.insect-genome.com/), Habrobracon hebetor
(Ye et al. [142]), Trichogramma pertiosum (RefSeq assem-
bly accession: GCF_000599845.2), Nasonia vitripennis
(OGS2.0, Rago et al. [143]), P. puparum (OGS1.0, Ye et al.
[13]), G. flavifemur (this study), P. dominula (RefSeq as-
sembly accession: GCF_001465965.1), Solenopsis invicta
(RefSeq assembly accession: GCF_000188075.2), Ooceraea
biroi (RefSeq assembly accession: GCF_003672135.1),
Megachile rotundata (RefSeq assembly accession: GCF_
000220905.1), A. mellifera (RefSeq assembly accession:
GCF_003254395.2), and A. rosae (RefSeq assembly acces-
sion: GCF_000344095.2). The basal hymenopteran A.
rosae was used as an outgroup.

Phylogenetic analysis

A total of 2992 one-to-one orthogroups shared by the
13 Hymenoptera species were extracted for phylogenetic
analysis. The protein sequences in each orthogroup were
independently aligned by MAFFT v7 [21] and filtered by
trimAl v1.2 [22] with the default parameters. These se-
quences were concatenated to generate a supergene se-
quence, which was used for tree construction. The
phylogenetic tree was constructed by maximum likeli-
hood (ML) using IQ-TREE v2.1.2 [23] with the best
model (LG + I + G) estimated by ModelFinder [24].
Statistical support for the phylogenetic trees was
assessed by Ultrafast bootstrap [25] analysis using 1000
replicates. The standard concatenation approaches do
not model discordance among gene trees beyond differ-
ences in sequence evolution rates [144]. Many studies
have shown that incomplete lineage sorting (ILS) has the
potential to lead to incorrect topology, possibly due to
the estimation bias in a concatenated analysis where the
mixture of gene trees represents a model violation [145].
To overcome these limitations, ASTRAL-III [146], a
multispecies coalescent tool, was used to summarize all
the 2992 gene trees and measure branch supports as
local posterior probabilities. Both concatenation and
multispecies coalescent approach yield the same top-
ology species tree. The MCMCtree program in the
PAML package v4.9e [147] was used to estimate diver-
gence time based on protein sequences. Five calibration
time points based on a previous study were used, Orus-
soidea+Apocrita: 211-289 million years ago (mya),
Apocrita: 203-276 mya, Ichneumonoidea: 151-218 mya,
Chalcidoidea: 105-159 mya, Aculeata: 160—224 mya [2].

Correlation between genome size and TE content

Considering the phylogenetic relationships of the species
studied, we first used the R caper package v1.0.1
(https://CRAN.R-project.org/package = caper) to test the
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effect of the phylogeny on the correlation between gen-
ome size and TE content. We obtained a lambda param-
eter from 0 to 1 (0 indicates covariances between taxa
are negligible in these clades and thus those correlations
are not biased by the phylogeny, and 1 means the evolu-
tionary relationships among surveyed species induced a
bias in the correlation calculation) by fitting a linear
model on the data. We then computed corrected Pear-
son’s correlation between the genome size and the TE
content using the ape package v5.4-1 [148] in R if evolu-
tionary relationships induced a bias in the correlation
calculation.

Identification of positively selected genes

We used two packages, PAML v4.9 [147] and HyPhy
[149] to detect positive selection signals on the G. flavi-
femur branch. In total, 2992 single-copy gene families
were used for positive selection analyses. For PAML ana-
lysis, these single-copy genes were detected using the
optimized branch-site model. A likelihood ratio test
(LRT) was conducted to compare the null model (sites
under neutrally and under purifying selection) and the
alternative model (sites under positive selection on the
foreground branch). The p values were computed based
on chi-square statistics with a false discovery rate (FDR),
and genes with p-adjusted value less than 0.05 were
identified as positive selection genes. For HyPhy analysis,
the aBSREL algorithm [150] was used for positive selec-
tion signal searching. Genes with test p values <0.05
were considered to be under positive selection. Finally,
183 genes detected by both methods were treated as
candidates that underwent positive selection.

Identification of rapidly evolving proteins

Based on 2992 single-copy proteins, we used a rank-
based branch length comparison method to identify rap-
idly evolving proteins on G. flavifemur branch as used in
the Trichogramma genome [14]. In brief, a phylogenetic
tree of each single-copy orthogroup was reconstructed
using IQ-TREE v2.1.2 [23]. We then compared the rank
of total branch length and the rank of G. flavifemur
branch length. To avoid overrepresentation among any
protein category based on general evolutionary rates, we
next binned proteins into groups of 300 based on the
total branch length rank. Rapidly evolving proteins were
defined as proteins with the top 10% largest values of
the G. flavifemur branch length rank minus the total
branch length rank in each group.

Gene family expansion and contraction

We used CAFE v4.2.1 [151] to analysis the gene family
expansion and contraction. The results from OrthoFin-
der and a phylogenetic tree with divergence times were
used as inputs.
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Identification of venom gland-associated genes in G.
flavifemur

To identify the venom gland-associated genes, we firstly
calculated the expression level of each transcript in the
venom gland and the carcass (i.e., adult female tissues
minus the venom gland) using RSEM v1.3.1 [124]. To
qualify a gene as a venom gland-associated gene, it must
be (a) among the top 500 expressed genes in the venom
gland transcriptome, and (b) highly expressed in the
venom gland relative to the carcass (g <0.05), and (c)
not highly expressed in the carcass (median FPKM < 50).
The signal peptide of each venom associate gene was
predicted using the SignalP v5.0b [152].

Identification of genes involved in detoxification and
chemosensory

To identify genes involved in detoxification and chemo-
sensory, cytochrome P450s, glutathione S-transferases
(GSTs), ATP-binding cassette transporters (ABCs), gus-
tatory receptors (GRs), ionotropic receptors (IRs), olfac-
tory receptors (ORs), odorant binding proteins (OBPs),
sensory neuron membrane proteins (SNMPs), and che-
mosensory proteins (CSPs) protein sequences of well-
annotated insects retrieved from Uniprot were used as
queries to search against the predicted protein sequences
from G. flavifemur and other 12 hymenopteran genomes
mentioned in the comparative genomics section using
BLASTP v2.8.1 [15] (-evalue 1e-5). All candidate detoxi-
fication and chemosensory genes were further checked
for the presence of their characteristic domains to con-
firm their identity, P450s: PF00067, GSTs: PF00043 or
PF02798, ABCs: PF00005, GRs: PF08395 or PF06151,
IRs: PF00060, ORs: PF02949 or PF13853, OBPs:
PF01395, SNMPs: PF01130, CSPs: PF03392.

Chitinase-like genes

To annotate the GH-18 chitinase-like genes, a number
of well-annotated insect chitinase protein sequences
were used as queries in a BLASTP search (-evalue le-5)
against the proteins of 17 insect genomes including 13
hymenopteran genomes mentioned in the comparative
genomics section, Bombyx mori (RefSeq accession:
GCF_014905235.1), Tribolium castaneum (RefSeq acces-
sion:  GCF_000002335.3), Drosophila  melanogaster
(RefSeq accession: GCF_000001215.4), and Acyrthosi-
phon pisum (RefSeq accession: GCF_005508785.1). We
next checked the putative chitinase-like genes containing
the glycosyl hydrolase 18 (GH-18) domain using hidden
Markov models (HMM search) [153]. Finally, we manu-
ally confirmed the alignments of the GH18 domains and
removed the sequences if they were only partially
aligned. A HMM searching against the Pfam-A database
[154] was then performed using the candidate chitinase-
like proteins to identify additional domains (ie.,
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carbohydrate binding domains). Phylogenetic analysis of
the chitinase-like proteins was performed using max-
imum likelihood methods with LG + R5 model (all
chitinase-like proteins) and LG + G4 model (group 5
chitinase-like proteins) determined by ModelFinder [24]
in IQ-TREE v2.1.2 [23]. Statistical support for all phylo-
genetic trees was assessed by Ultrafast bootstrap [25]
analysis using 1000 replicates. Chitinase-like proteins
were classified into subgroups based on the domain
architecture and phylogenetic analysis as summarized in
Arakane and Muthukrishnan [88]. The conserved cata-
lytic domain in insect chitinase [86, 88, 155] was
searched using the candidate chitinase-like proteins of
G. flavifemur based on the multiple sequence alignment
generated by MAFFT v 7.471 [21] with L-INS-I model.

Neprilysin-like genes

To identify neprilysin-like genes, we retrieved the well-
annotated neprilysin sequences from UniProtKB/Swis-
sProt as queries. BLASTP (-evalue 1e-5) was performed
for protein searching in the 17 insect genomes described
in chitinase-like gene section. Each protein sequence ob-
tained was subsequently used for searching against
Pfam-A [154] database by HMMscan v3.3.2 [153] (--cut_
ga) to confirm the presence of the Peptidase_M13 do-
main. Candidate neprilysin-like proteins were manually
checked for the alignments of Peptidase_M13 domain.
To gain insights into the venom neprilysin-like genes of
other hymenopteran species, we annotated the
neprilysin-like genes in the venom genes of additional 30
hymenopteran insects (15 in Parasitoida and 15 in Acu-
leate) using the same method [35, 67-70, 75, 77, 89, 90,
156—164]. The phylogeny of the hymenopterans in Fig.
5c¢ was obtained from previous studies [2, 91]. Phylogen-
etic analysis of the neprilysin-like genes was performed
using maximum likelihood methods using LG + R9
model determined by ModelFinder [24] in IQ-TREE
v2.1.2 [23]. Statistical support for all phylogenetic trees
was assessed by Ultrafast bootstrap [25] analysis using
1000 replicates.

Identification of opsin genes

Amino acid sequences of opsin genes in A. mellifera, D.
melanogaster, and T. castaneum were obtained from
UniProt. They were used for searching the proteins
against 13 hymenopteran genomes using BLASTP v2.8.1
[16] (-evalue 1le-10). To discriminate opsins from other
G-protein-coupled receptors (GPCRs), we used a com-
bination of sequence similarity and motif analysis de-
scribed in Feuda et al. [98]. Briefly, an opsin gene should
have a top BLASTP hit with opsin in Uniprot and/or
contain a recognizable retinal-binding domain.
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Enrichment analysis

GO enrichment analyses were conducted by GOA-
TOOLS v1.0.6 [165], a python library for gene ontology
analysis.
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