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Genome annotation with long RNA reads
reveals new patterns of gene expression
and improves single-cell analyses in an ant
brain
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Abstract

Background: Functional genomic analyses rely on high-quality genome assemblies and annotations. Highly
contiguous genome assemblies have become available for a variety of species, but accurate and complete
annotation of gene models, inclusive of alternative splice isoforms and transcription start and termination sites,
remains difficult with traditional approaches.

Results: Here, we utilized full-length isoform sequencing (Iso-Seq), a long-read RNA sequencing technology, to
obtain a comprehensive annotation of the transcriptome of the ant Harpegnathos saltator. The improved genome
annotations include additional splice isoforms and extended 3′ untranslated regions for more than 4000 genes.
Reanalysis of RNA-seq experiments using these annotations revealed several genes with caste-specific differential
expression and tissue- or caste-specific splicing patterns that were missed in previous analyses. The extended 3′
untranslated regions afforded great improvements in the analysis of existing single-cell RNA-seq data, resulting in
the recovery of the transcriptomes of 18% more cells. The deeper single-cell transcriptomes obtained with these
new annotations allowed us to identify additional markers for several cell types in the ant brain, as well as genes
differentially expressed across castes in specific cell types.

Conclusions: Our results demonstrate that Iso-Seq is an efficient and effective approach to improve genome
annotations and maximize the amount of information that can be obtained from existing and future genomic
datasets in Harpegnathos and other organisms.

Keywords: Iso-Seq, Long-read RNA-seq, Harpegnathos saltator, Ants, Genome annotation, 3′ UTR annotation, Single-
cell sequencing, Alternative splicing

Background
Improved sequencing technologies have enabled studies
in previously inaccessible organisms, but annotations re-
main the bottleneck to thorough genomic and

epigenomic analyses. Specifically, gene annotations of
many non-model organisms suffer from the limitations
imposed by their reliance on traditional, short-read
RNA-seq coupled with gene prediction software [1–3].
This approach can identify splice junctions but cannot
capture complex combinations of exons that define full
transcript isoforms. Furthermore, local fluctuations of
RNA sequencing coverage can make it difficult to
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identify the 5′ and 3′ untranslated regions (UTRs),
resulting in inaccurate transcription start sites (TSSs)
and transcription termination sites (TTSs) [4]. Inaccur-
ate annotation of the 3′ end of genes is especially prob-
lematic for the analysis of droplet-based single-cell RNA
sequencing data, such as those obtained with the widely
used 10x Genomics 3′ gene expression platform [5] or
Drop-seq [6], both of which have a strong 3′ bias due to
the capture of transcripts using an oligo-dT sequence
[7].
Just as long-read sequencing of DNA has led to better

genome assemblies [8, 9], long-read sequencing of RNA
molecules can be used to address the limitations of
short-read-based annotation. PacBio Single Molecule
Real-Time (SMRT) sequencing for RNA, called Iso-Seq,
produces full-length transcript sequences, resolving is-
sues of isoform reconstruction and accurate identifica-
tion of the end of transcripts. Iso-Seq has been used in
many settings and organisms to reveal alternative polya-
denylation sites [10], provide insight into alternative spli-
cing [11], and identify tissue-specific transcriptional
isoforms [12]. The genome of the ant Harpegnathos
saltator was first sequenced in 2010 [13], was improved
using Pacific Biosciences (PacBio) long-read DNA se-
quencing in 2018 [9], and was re-annotated by NCBI
(NCBI Release 102, released in 2018 [14];). While long-
read DNA sequencing technology was utilized to great
effect to improve the reference Harpegnathos genome
assembly, existing gene annotations still suffered from
the shortcomings listed above, imposed by their reliance
on traditional, short-read RNA-seq coupled with gene
prediction software.
Harpegnathos is a promising model system to study

the epigenetic regulation of brain and behavioral plasti-
city. Similar to colonies of other social insects, Harpeg-
nathos colonies are founded by a mated reproductive
female (“queen”) and contain many non-reproductive in-
dividuals (“workers”) that carry out all tasks necessary
for colony survival. As in most social insect species [15],
Harpegnathos queens and workers differ greatly in re-
productive physiology, social status and behavior, and
lifespan, despite possessing the same genomic instruc-
tions. In addition, Harpegnathos ants display a rare form
of phenotypic plasticity: workers retain the ability to
convert to reproductive individuals called “gamergates”
throughout their adult life [16, 17]. In the absence of a
dominant reproductive, Harpegnathos workers partici-
pate in a ritual dueling tournament, whereby winners
become gamergates that activate their ovaries and ac-
quire a queen-like social status [18, 19]. Workers that
become gamergates lay eggs, cease activities associated
with the worker caste [20], and acquire a longer lifespan
[21]. Previous works identified changes in brain tran-
scriptomes [20] and cell type proportions [22] following

this behavioral transition, establishing Harpegnathos as a
powerful model for studying the epigenetic regulation of
brain and behavioral plasticity.
Here, we use Iso-Seq long-read RNA sequencing to

further improve the genomic infrastructure for genomic
and epigenomic studies in Harpegnathos by generating
more comprehensive annotations of splice isoforms and
gene boundaries. These new annotations resulted in
greatly improved analyses of bulk and single-cell RNA-
seq, which revealed new caste-specific genes and splicing
events and extended the reach of our single-cell atlas of
the Harpegnathos brain.

Results
Using Iso-Seq to update Harpegnathos gene annotation
We previously generated a single-cell RNA-seq atlas of
the Harpegnathos brain during the worker–gamergate
transition and discovered extensive changes in cell type
composition in glia and neurons [22]. While inspecting
these sequencing data [23], we noticed that in many
cases, even when using the latest NCBI annotation
(NCBI Release 102; hereafter referred to as HSAL50),
the single-cell RNA-seq reads mapped outside gene
model boundaries, typically donwstream of the anno-
tated TTS, resulting in decreased coverage and informa-
tion loss. As an example we show the case of the Ref1
gene (Fig. 1A, red box), resulting in decreased coverage
and information loss. Motivated by examples such as
this and by a desire to obtain a more comprehensive
catalog of splicing isoforms, we sought to improve the
Harpegnathos gene annotations using PacBio Iso-Seq
long RNA reads.
To maximize library complexity, we sequenced two

separate polyA+ Iso-Seq libraries: one from a pool of
Harpegnathos brains from different castes, and one from
a mixture of ovary and fat body tissues. After processing
the raw PacBio subreads (Additional File 1: Fig. S1A and
Fig. 1B), we obtained 34,867 and 33,520 full-length
“polished” reads with median length of 2034 bp and
2137 bp for the brain sample and the fat body/ovary
sample, respectively (Fig. 1C). After aligning the polished
Iso-Seq reads to the Harpegnathos genome, we com-
pared gene coverage with that of previously obtained
short-read RNA-seq in matching tissues [9, 24]. More
than half of the genes detectable (RPKMs > 0.5) in our
collection of deep short-read RNA-seq were also covered
by Iso-Seq reads (Fig. 1D). As expected, genes detected
by Iso-Seq tended to be more highly expressed (Add-
itional File 1: Fig. S1B). From the mapped reads, we col-
lapsed redundant transcript models, generated predicted
isoforms for each of the Iso-Seq libraries, and used these
isoforms to refine the existing HSAL50 annotation. We
further improved these models by manually adding 89
genes and reviewing all merged genes (Additional File 1:
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Fig. S1C and Additional File 2: Table S1–3) and desig-
nated this upgraded annotation as HSAL51.
Overall, HSAL51 contained 13,957 gene models that

corresponded unambiguously to HSAL50 genes, 392

new genes either predicted from Iso-Seq signal or added
manually (Additional File 2: Table S1–2), and 57 gene
models that merged two or more HSAL50 gene models
into a single one in HSAL51 (Additional File 1: Fig. S1D

Fig. 1 Iso-Seq improves gene models in Harpegnathos. A A gene with an incomplete 3′ UTR in the current annotation that precludes accurate
quantification of single-cell RNA-seq signal. Pooled single-cell RNA-seq from worker (n = 6) and gamergate (n = 5) brains [22] is shown. Scale
represents counts per million. Red box indicates reads not assigned to the gene model. B Pipeline used for genome annotation. Iso-Seq reads
from brains and fat body/ovary were processed and collapsed. The resulting Iso-Seq-based annotation was combined with the existing HSAL50
to produce an updated annotation, HSAL51. C Size distribution of polished, full-length Iso-Seq reads in brain and fat body/ovary. Vertical lines
indicate median. D Number of genes detected in each Iso-Seq sample compared to short-read RNA-seq. E Example of a HSAL51 gene model
derived from merging two incorrectly separated gene models in HSAL50. Coverage from short-read RNA-seq (blue) and Iso-Seq (orange) is
shown in counts per million. Individual Iso-Seq reads from are also shown (gray). Below, the conserved domains on each relevant HSAL50 and
HSAL51 gene are shown along with the conserved domains on Drosophila Mocs1. A subset of the HSAL51 Mocs1 isoforms are shown. F Same
locus as in A, now including the updated HSAL51 annotation for Ref1, and showing RNA-seq and Iso-Seq coverage along with dT-seq and raw
Iso-Seq reads. Scales represent counts per million. A subset of HSAL51 isoforms is shown and newly annotated TTSs are indicated by arrows
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and Additional File 2: Table S3). An example of a
merged gene was the combination of two adjacent
HSAL50 genes, each of which contained one of the two
known Drosophila melanogaster MOCS1 protein do-
mains; the resulting merged gene model for Mocs1 in
HSAL51 encodes a protein with a domain structure
identical to its ortholog in Drosophila (Fig. 1E). Return-
ing to the example of Ref1 (Fig. 1A), Iso-Seq reads indi-
cated the existence of at least two isoforms with TTS
downstream of the one annotated in HSAL50, which
captured the single-cell sequencing signal missed with
the old annotation (Fig. 1F, arrows). For additional veri-
fication of the TTSs predicted in our new annotation,
we devised a custom RNA-seq protocol that compares
short reads obtained with an anchored oligo-dT primer
with random hexamers to remove signal from internal
A-stretches and identifies the position of the polyA tail
on mature mRNAs (“dT-seq,” Additional File 1: Fig.
S1E–F, see methods). In the case of Ref1, dT-seq signal
analyses confirmed the existence of the new termination
sites (Fig. 1F).
Thus, using long-read sequencing, we updated the

Harpegnathos gene annotation and recovered gene
models that were split incorrectly in the HSAL50 assem-
bly or that did not have a correctly annotated 3′ UTRs.

Comprehensive annotation of transcriptional isoforms
with Iso-Seq
Since its development in 2013 [25], Iso-Seq has been
performed on a genome-wide scale in a range of plants
and animal species to improve the annotation of tran-
scriptional isoforms [11, 26–28]. The ability of Iso-Seq
to sequence RNA molecules in their entirety confers an
advantage in detecting splicing patterns compared to the
typical short-read annotation strategy of relying on reads
that cover a limited span across splice junctions. Indeed,
HSAL51 contained a greater number of annotated tran-
scripts with distinct splicing patterns (i.e., beyond simple
extension of 5′ or 3′ UTRs) (Fig. 2A). In addition, gene
models in HSAL51 exhibited more instances of all seven
types of alternative splicing [29]: skipped exon (SE), mu-
tually exclusive exons (ME), alternative 5′ splice site
(A5), alternative 3′ splice site (A3), retained introns (RI),
alternative first exon (AF), and alternative last exon (AL)
(Fig. 2B). Examples of genes with newly annotated alter-
native splicing events are presented in Additional File 3:
Fig. S2A–C.
Next, we identified genes whose relative transcript ex-

pression varies between tissues (also called differential
transcript usage, or DTU) [30] using previously pub-
lished bulk RNA-seq data from 6 Harpegnathos tissues:
non-visual brain, ovary, fat body, retina, optic lobe, and
antenna [9, 31]. Most genes (80%) exhibiting DTU in
HSAL50 between at least two tissues were also detected

in HSAL51, but the number of genes displaying DTU in-
creased by 681 in the new annotation (Fig. 2C). For ex-
ample, a newly annotated isoform (isoform 14) of the
myeloid leukemia factor (Mlf) gene accounted for 80% of
transcripts produced in the brain (Fig. 2D). This isoform
contained exon 6 but not exon 5 of Mlf (Fig. 2E, F) and
was not identified with short reads alone, highlighting the
power of Iso-Seq in untangling complicated exon struc-
tures, especially in cases of mutually exclusive exons. Once
annotated, short reads spanning the alternative splice
junctions could be properly assigned to this isoform
resulting in the identification of brain-specific DTU.
In addition to genes with DTU between tissues, we

identified several genes with caste-specific transcript
usage in the brain using previously published RNA-seq
from Harpegnathos [24]. One notable gene with caste-
biased isoforms between workers and gamergates was
insulin-like-peptide 2 (Ilp2; LOC105188195), a gene
similar to canonical insulin whose absolute transcript
levels are higher in the brains or heads of reproductive
individuals compared to those of non-reproductives in
many ant species [32]. In general, insulin signaling has
been identified as a key pathway regulating caste identity
in social insects [33]. In addition to the higher gene-level
Ilp2 expression in brains of Harpegnathos gamergates
compared to workers (Additional File 3: Fig. S2D), iso-
forms 3 and 33 were used at different levels between the
castes (Fig. 2G), with the upstream first exon being used
more frequently in gamergates compared to workers
(Fig. 2H). While these alternative splicing events appear
to only affect the 5′ UTR, they might still have import-
ant consequences on insulin signaling, for example by
regulating translation of the resulting mRNA, as ob-
served in mammals [34, 35]. Upon reanalysis of pub-
lished data [32, 36–38], two other ant species, the
carpenter ant Camponotus planatus (Formicinae) and
the giant ant Dinoponera quadriceps (Ponerinae), also
displayed caste-biased selection of the first exon in
brains (Additional File 3: Fig. S2E–F). In both species, as
in Harpegnathos, the reproductive caste was more likely
than the non-reproductive caste to use the upstream
first exon, suggesting that alternative splicing of Ilp2
mRNA might be an evolutionary conserved mechanism
for the caste-specific regulation of the insulin pathway.
Together, these analyses demonstrate that an Iso-Seq-

enriched genomic annotation captures a greater complexity
in the transcriptome which, in turn, can provide a compre-
hensive view of alternative splicing events between different
biological samples—in this case tissues and castes.

Extended 5′ and 3′ gene boundaries increase sensitivity of
bulk RNA-seq
In addition to a more comprehensive view of transcrip-
tional isoforms originating from alternative splicing, the
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long reads of Iso-Seq are expected to contain more
complete UTRs in 3′ and, to some extent, 5′, resulting
in more accurate annotation of TTSs and TSSs, respect-
ively, extending the mappable regions of the gene
models. Consistent with these expectations, for 45% of
all gene models, the exons annotated in HSAL51 cov-
ered a larger (median extension, + 20%) sequence than
in HSAL50, whereas only 5% resulted in smaller gene
models and even those were minimally impacted (me-
dian contraction, − 2%) (Fig. 3A, B). This remarkable
growth in annotated exonic space was largely due to the

extension of 3′ UTR using newly annotated TTSs (5338
transcripts among 4269 genes) and, to a smaller degree,
to the extension of 5′ UTRs using newly annotated TSSs
(2878 transcripts) (Fig. 3C). Transcripts were typically
extended by more base pairs at the TTS compared to
the TSS (Fig. 3D), with median extension length of 251
nt and 31 nt, respectively.
To confirm that these 3′ UTR extensions originated

from the annotation of bona fide TTSs, we analyzed the
position of polyA tails, as determined by dT-seq (see
Additional File 1: Fig. S1E), relative to the HSAL50 and

Fig. 2 Differential transcript usage in tissues and castes. A Number of splicing isoforms per gene in HSAL50 and HSAL51. B Number of genes
with select alternative splicing events (SE = skipped exon; ME =mutually exclusive exons; A5 = alternative 5′ splice site; A3 = alternative 3′ splice
site; RI = retained intron; AF = alternative first exon; AL = alternative last exon) in HSAL50 and HSAL51. C Number of genes with differential
transcript usage (adjusted P value (padj) < 10−5, maximum difference in proportion between isoforms (maxDprop) > 0.5, and fraction of
replication iterations that support a positive DTU classification (rep_dtu_freq_threshold) > 0.8) between at least two tissues out of brain, ovary, fat
body, retina, optic lobe, and antenna. Genes identified as differentially spliced in both HSAL50 and HSAL51 are represented in gray, while genes
identified in only one annotation are in red. D Tissue-specific isoform usage for Mlf (identified as DTU gene, padj < 10−10) according to HSAL50
(left) or HSAL51 (right) annotation. Proportions were calculated for each replicate, then averaged within condition. *, p < 0.05. E, F Genome
browser (E) and sashimi plot (F) view of Mlf showing tissue-specific alternative isoforms. Splice junction line widths are scaled to the number of
reads spanning the splice junction and the total number of reads mapped to Mlf for each tissue. G Caste-specific isoform usage in the brain for
Ilp2 (identified as DTU gene, padj < 10−10). Proportions were calculated for each replicate, then averaged within condition. *, p < 0.05. H Sashimi
plot for the Ilp2 gene. Splice junction line widths are scaled to the number of reads spanning the splice junction and the total number of reads
mapped to Ilp2 for each caste
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HSAL51 gene models. As expected, the dT-seq signal
accumulated at TTSs in both annotations, and it was
stronger at the TTSs of HSAL51 gene models as com-
pared to HSAL50 (Additional File 4: Fig. S3A), including
in a comparison of gene models with extended TTSs in
HSAL51 (Fig. 3E, F), demonstrating the accuracy of the
newly annotated downstream TTSs.
To evaluate the effect of the new annotation on RNA-

seq mapping rates, we calculated the mapping rate of
aligned reads using a newly generated dataset of Harpeg-
nathos worker brains, which were not used in the con-
struction of the HSAL50 (or HSAL51) annotations.

Significantly more reads mapped to annotated exons in
HSAL51 (Fig. 3G). This improvement in RNA-seq map-
ping rates had tangible benefits on the biological inter-
pretation of sequencing datasets, such as, for example,
the identification of additional differentially expressed
genes in pairwise comparisons. Reanalyzing the worker
vs. gamergate transcriptomes [20, 24] with the new an-
notation identified the egh gene as significantly upregu-
lated in workers (Fig. 3H). The Drosophila homolog of
this gene is involved in the sex-peptide response and is
implicated in the regulation of mating and egg-laying
[39], suggesting a biological explanation for its caste-

Fig. 3 Extensions at 5′ and 3′ ends of genes improve analysis. A Number of genes whose exons cover the same, more, or fewer base pairs in
HSAL51. B Fold-change in nucleotides covered by exons for each category in A. C Scheme depicting TSS or TTS extension (left) and the percent
of genes with no change, no match (no transcript with the same internal exon boundaries), TSS extension, TTS extension, or both TSS and TTS
extension (right). D Average number of nucleotides added to transcripts with TSS and/or TTS extension. E,F Metaplot (E) and heatmap (F) of dT-
seq coverage in a 0.2-kb window around TTSs of transcripts with TTS extended by at least 200 nucleotides. G Percent of RNA-seq reads from
worker brains mapping to features in HSAL50 or HSAL51. P value is from a paired Student’s t test. H Volcano plots of differential expression
between gamergate (n = 12) and worker (n = 11) for HSAL50 (left) and HSAL51 (right). Genes with a padj < 0.1 are highlighted in blue. An
example of a gene that is identified as differentially expressed in HSAL51 but not HSAL50 (egh) is highlighted in black. I Genome browser view of
egh shows RNA-seq reads aligned to the extended portion of egh, which is supported by Iso-Seq reads. A subset of HSAL51 isoforms is shown
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specific expression in Harpegnathos. Iso-Seq reads indi-
cated the existence of a longer gene model for egh
(Fig. 3I), which increased the number of reads mapping
to this gene (Additional File 4: Fig. S3B) and resulted in
its confident identification as caste-specific.
These results show that the addition of Iso-Seq infor-

mation extends the annotated gene models, allowing for
the extraction of more information from RNA-seq ex-
periments and resulting in higher sensitivity for differen-
tially expressed genes.

Iso-Seq-based annotation improves single-cell analyses
Given the 3′ bias of the most widely used techniques for
droplet-based single-cell sequencing, we reasoned that
these analyses would be improved by the more accurate
3′ UTR annotations found in HSAL51. Indeed, the map-
ping rate of 10x Genomics single-cell RNA-seq reads
from our previous worker–gamergates comparison [22,
23] increased in average by 44% (Fig. 4A). This resulted
in substantially increased counts for a large majority of
annotated genes, including several with important func-
tions in the brain (Fig. 4B, below diagonal). In all 11
samples analyzed, increased mapping rates resulted in
improvements for the total number of cells identified, as
well as the average unique molecular identifiers (UMIs)
and genes detected per cell (Fig. 4C). Overall, the total
number of cells passing quality thresholds increased by
18% from 20,729 using the HSAL50 annotation to
24,560 using HSAL51 (Fig. 4D, Additional File 5: Fig.
S4A), showing the importance of accurate 3′ UTR anno-
tations to extract the maximum amount of information
from single-cell RNA-seq data.
Markers for three major neuronal classes based on

neurotransmitter usage, VAChT (cholinergic), VGlut (gluta-
minergic), and Gad1 (GABAergic), were among the genes
that benefitted from the increased mapping rates (Fig. 4B),
resulting in an increased number of cells with observed ex-
pression of these genes (Fig. 4E, pie charts), and thus easier
identification of clusters with specific neurotransmitter ex-
pression, as visualized on UMAP projection of the HSAL51
data (Fig. 4E). These improvements were not confined to
genes associated with neurotransmitter usage; using
HSAL51, we recovered in total 288 previously undetected
marker genes with restricted, cell type-specific expression
(Additional File 5: Fig. S4B), likely missed in HSAL50 due
to reads that were not assigned to the incomplete old gene
models (Additional File 5: Fig. S4C).
In addition, we recovered 12 new markers for mush-

room body neurons (Additional File 5: Fig. S4D), which
are key to learning and memory in insects [40–42]. Some
of these markers were biased for mushroom body cells in
HSAL50 but did not pass statistical thresholds due to
overall low expression. Of these 12 newly identified mush-
room body markers in Harpegnathos, 10 were previously

described as mushroom body-specific genes in Drosophila
[43, 44] or honeybees [45] (Additional File 5: Fig. S4D). In
particular, two Harpegnathos genes with homology to
known mushroom body markers GluR1B and twin of eye-
less (toy) [44, 46–48] were barely detectable in HSAL50
but clearly mapped to mushroom body clusters in
HSAL51 (Fig. 4F and Additional File 5: Fig. S4D).
We previously showed that neuroprotective ensheath-

ing glia cells are expanded during the worker–gamergate
transition and lost at a faster rate in workers than in
gamergates during aging [22]. Despite the in-depth in-
vestigation of this cell type in our previous study, the up-
dated HSAL51 annotation allowed us to discover a new
marker gene, CG9259 (Fig. 4G), that was previously
missed because the near-entirety of the single-cell RNA-
seq reads fell within an extended 3′ UTR not annotated
in HSAL50 (Additional File 5: Fig. S4E). In Drosophila,
CG9259 encodes an ecdysteroid kinase-like protein [49],
suggesting that Harpegnathos ensheathing glia that ex-
press this gene might play an important role in the
caste-specific regulation of the key developmental hor-
mone ecdysone.
Finally, the increased single-cell transcriptome depth

afforded by HSAL51 allowed us to identify differential
gene expression between workers and gamergates
within specific cell types, with more genes overall
classified as caste-specific between single-cell clusters
in the HSAL51 analysis (Additional File 5: Fig. S4F).
As with the newly detected marker genes, many of
the 250 newly called differential genes had increased
counts in HSAL51 compared to HSAL50, suggesting
their new detection resulted from the increased map-
ping rates of the 3′-biased single-cell RNA-seq reads
(Additional File 5: Fig. S4G). For example, we identi-
fied CycG as a gene preferentially expressed in spe-
cific subtypes of gamergate cells as compared to their
counterparts in workers (Fig. 4H). This observation is
in agreement with previous studies reporting upregu-
lation of CycG in the reproductive caste of various
ant species [50], including Harpegnathos gamergates
(Additional File 5: Fig. S4H). CycG regulates the insu-
lin pathway [51, 52], which, as mentioned above, is
an important player in caste determination in social
insects [32, 33]. The identification of the cell types
that are the strongest drivers of CycG caste-biased
expression will help inform future studies of this
gene.
Thus, single-cell RNA-seq analyses were greatly im-

proved by the increased accuracy of 3′ UTR annotations
in HSAL51, resulting in 18% more single cells identified
computationally, a clustering of transcriptional types more
reflective of biological function, recovery of additional
cell-type markers, and higher sensitivity for differentially
expressed genes.
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Long noncoding RNAs in single-cell sequencing analysis
revealed by Iso-Seq
Protein-coding genes are often the focus of transcrip-
tomic studies, but many genes are transcribed into

noncoding RNAs with important regulatory roles [53–
55]. Similar to the case of protein-coding transcripts,
several gene models for various types of noncoding
RNAs, and in particular long noncoding RNAs

Fig. 4 Iso-Seq assemblies improve single-cell sequencing analysis. A % of single-cell RNA-seq reads mapped to exons in HSAL50 vs. HSAL51. P
value is from a paired Student’s t test. B UMI counts per gene in HSAL50 vs. HSAL51. Each dot is a gene. Genes of interest for subsequent
analyses are highlighted. C Number of cells (left), mean number of UMI (center), and mean number of genes (right) using HSAL50 and HSAL51
annotations. D UMAP visualization of single-cell transcriptomes analyzed with HSAL50 or HSAL51 annotations. E, F Heatmaps showing normalized
UMI counts for VAChT, VGlut1, and Gad1 (E) or toy and GluRIB (F) in HSAL50 and HSAL51 analyses. Pie graphs in E indicate the % of cells with
observed expression (> 0 UMI) of the gene. G Heatmaps showing CG9259 (left) and graph showing the % of UMIs mapping to CG9259 in each
cluster (right), in HSAL50 and HSAL51 annotations. H Violin plots for normalized UMIs for CycG in each cluster in HSAL50 and HSAL51 analyses,
comparing cells in gamergate vs. worker brains. *, adjusted P value < 0.05 by Wilcoxon-rank sum test with Bonferroni correction. All single-cell
data were reanalyzed from [22]
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(lncRNAs), were also extended in HSAL51 compared to
HSAL50 (Fig. 5A, Additional File 6: Fig. S5A), although
not to the same extent, possibly due to their overall
lower expression level.

Single-cell analyses using the updated gene models in
HSAL51 revealed 130 lncRNAs with more UMIs com-
pared to HSAL50 (Fig. 5B), suggesting that the new an-
notation might provide additional insight on the

Fig. 5 Single-cell characterization of lncRNA expression in the Harpegnathos brain. A Number of genes whose exons cover the same, more, or
fewer base pairs in HSAL51 compared to HSAL50, classified by biotype. B Scatter plot for UMI counts per gene in HSAL50 vs. HSAL51. LncRNAs
are highlighted in dark gray, and gene of interest mentioned in subsequent panels is shown in black or red. C Heatmap showing normalized UMI
counts of neuron-specific lncRNA LOC112589360 in HSAL50 and HSAL51 (top) and % of UMIs mapping to LOC11258930 in each cell type
(bottom). D % of UMIs mapping to ensheathing glia-specific lncRNA LOC112590028 in HSAL50 (top) and HSAL51 (bottom). E Heatmap with
normalized UMI counts of lncRNA LOC1125890028 (top) and protein-coding gene wdp (bottom). F Diagram showing relative positions of genes in
the vicinity of wdp in Drosophila, Harpegnathos, and Apis mellifera. Orthologous genes are the same color. G Heatmap showing normalized UMI
counts of wdp in single-cell RNA-seq from Drosophila brains [44]. All single-cell data were reanalyzed from [22]
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patterns of lncRNA expression in the Harpegnathos
brain. We recovered a set of lncRNAs with neuronal-
specific expression profiles, some of which could not be
detected using HSAL50 gene models (Additional File 6:
Fig. S5B). One example was LOC112589360, which had
over 20 times more mapping reads in HSAL51 com-
pared to HSAL50 (Fig. 5B), with a corresponding in-
crease in its calculated expression levels in neurons
(Fig. 5C), as well as the fraction of neurons where this
lncRNA could be detected, from 0.6% in HSAL50 to
10.1% in HSAL51 (Additional File 6: Fig. S5B).
In addition to these neuronal lncRNAs, we identified

several cell type-specific lncRNAs in ensheathing glia.
LOC112588339.LOC112588340 was merged from two
adjacent lncRNAs annotated in HSAL50, with Iso-Seq
reads clearly supporting the HSAL51 gene model (Add-
itional File 6: Fig. S5C). The new merged gene model
had negative coding potential as assessed by CPC and
PhyloCSF [56, 57] and was one of the strongest markers
of ensheathing glia (Additional File 6: Fig. S5D). Another
updated lncRNA, LOC112590028, was specific to en-
sheathing glia, but missed by previous analyses due to
low mapping rates in HSAL50 (Fig. 5D, E). The protein-
coding gene adjacent to this lncRNA, windpipe (wdp),
was also preferentially expressed in ensheathing glia
(Fig. 5E and Additional File 6: Fig. S5E), suggesting po-
tential co-regulation of the coding and noncoding tran-
script in cis as previously reported for other lncRNAs-
mRNA pairs [58]. Drosophila wdp encodes a transmem-
brane protein with known functions in the wing disc
[59] and the trachea [60], and it has also been implicated
in synaptic target recognition [61] and learning [62].
While the sequence of the lncRNA LOC112590028 itself
is not conserved, Drosophila has a lncRNA, CR44758 in
the same position as LOC112590028, between wdp and
Gp150 (Fig. 5F), suggesting that synteny of this locus,
and potentially its molecular regulation, have been main-
tained over 350 million years of divergent evolution
(Fig. 5F). In fact, wdp is also expressed specifically in
Drosophila ensheathing glia (Fig. 5G) [44], further sup-
porting a conserved regulation of this locus across dis-
tantly related insect species.
Thus, similar to protein-coding genes, lncRNA anno-

tations were also improved by the addition of Iso-Seq
data and this resulted in increased visibility of these
regulatory transcripts in single-cell analyses.

Discussion
Genomic resources are becoming increasingly common
for a wide range of species, beyond traditional model or-
ganisms, facilitating molecular analyses of an ever-
growing variety of biological phenomena. However, in
addition to high-quality genome assemblies, accurate
gene annotations are indispensable for genome-wide

studies. While we are not the first group to leverage long
reads to improve gene models, especially at the crucial
3′ region [26, 63], we report here that our new Harpeg-
nathos gene annotations, upgraded using Iso-Seq, re-
sulted in more accurate detection of alternative splicing
events, increased sensitivity of differential gene expres-
sion analyses, and, importantly, deeper single-cell
transcriptomes.

Long RNA reads for more complete gene annotations
Often, genome annotations are constructed de novo
from short-read RNA-seq, with or without the guide of
an existing genome assembly [1–3]. While RNA-seq-
based annotations are typically sufficient to identify
protein-coding mRNAs and characterize their expression
levels in bulk RNA samples, they are limited in their
ability to fully annotate complete transcript isoforms, ex-
tended UTRs, and lncRNAs. Because of its ability to se-
quence long RNA molecules in a single read, Iso-Seq
overcomes these limitations and has already been used
to identify novel transcriptional isoforms in various ge-
nomes [12, 27] including the very well annotated human
genome [25]. Ideally, these more comprehensive isoform
maps can be used to detect genes with differential spli-
cing between biological conditions. In human cells, tar-
geted long-read sequencing was used to examine
splicing of neurexins [64], leading to the association of
aberrant splicing of NRXN1 with psychosis disorders
[65].
Incomplete annotations can impede proper analysis of

massively high-throughput single-cell RNA-seq, most of
which is heavily biased towards the 3′ end of the gene
due to oligo-dT capture by beads [7]. Thus, having a
correct annotation of the 3′ UTR and the TTS of genes
becomes crucial. Annotation of the 3′ ends of genes is
hampered by widespread occurrences of multiple polya-
denylation and cleavage sites [66, 67] and intrinsic limi-
tations of existing annotation methods [68]. Even in very
high-quality reference genomes, such as the human gen-
ome, reads from single-cell RNA-seq can fall past the
annotated 3′ UTR, resulting in information loss [69].
Notably, there is no reliable strategy that we are aware
of to integrate single-cell RNA-seq reads from widely
used droplet-based technologies into existing models to
improve 3′ UTR annotations. As these reads profile only
a short region at the most terminal 3′ end of a gene,
there is often no way to definitively link the reads to
their source gene, especially if the reads map far outside
an annotated termination site.
Previous studies have employed computational strat-

egies to improve the assignment of these reads to gene
models, including extending every 3′ UTR by 2 kb [70]
or mapping to non-overlapping windows on the genome
and assigning each window to a gene based on the
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proximity to an annotated TTS [71]. Although methods
exist that model 3′ UTR annotations based on deviation
in RNA-seq coverage [68, 72], here we employed an em-
pirical approach, based on long-read sequencing, to im-
prove the annotation of 3′ UTRs genome-wide (Fig. 1).

Splicing analysis with additional Iso-Seq information
Differential alternative splicing occurs between tissues
and biological conditions [73–75]. Specific isoform
usage, potentially mediated by varying RNA-binding
protein expression, is widespread and affects protein-
protein interaction networks [67, 76, 77]. Identification
of novel isoforms with Iso-Seq revealed genes with dif-
ferential splicing patterns between tissues, including one
gene with a newly annotated mutually exclusive exon
(Fig. 2).
Caste-specific alternative splicing has been observed in

social insects. Doublesex (dsx) is differentially spliced be-
tween queens and workers in the ants V. emeryi, S.
invicta, and W. auropunctata in addition to its differen-
tial splicing in non-social and social insects between
males and females [78–81]. While we did not find spli-
cing changes between worker and gamergate in dsx, we
identified caste-specific isoform usage in the brain for
Ilp2, a known factor in caste determination that is also
differentially expressed on the gene level in the brains of
many ant species including Harpegnathos [32]. Other
ants also seem to have caste-biased splicing of the first
exon, similar to Harpegnathos, suggesting a possible
conserved mechanism that will require more investiga-
tion to understand.

Bulk and single-cell RNA-seq analysis with refined gene
models
The integration of Iso-Seq into the annotation resulted
in improved gene models mostly due to an extension of
first and last exon, corresponding to the 5′ and 3′ UTR,
respectively (Fig. 3A–F). Many 3′ UTR extensions were
confirmed by the presence of dT-seq signal, designed to
capture the location of non-templated polyA tails. The
new annotation captured more information from RNA-
seq, with a median of 15% more reads. Increased map-
ping rates had immediate tangible effects on discovery,
as a reanalysis of existing RNA-seq data from the
worker–gamergate transition led to the identification of
7 new caste-specific genes in the brain. One of these,
egh, was previously implicated in reproductive behavior
in Drosophila [39], and therefore represents a high value
candidate for the dissection of the molecular regulation
of social behavior in ants.
The improvements for single-cell RNA-seq (Fig. 4)

were even more remarkable. Mapping existing single-cell
RNA-seq reads from gamergate and worker brains to
the new annotation improved the median percent of

reads mapped to exons from 47 to 66%. The increased
mapping resulted in 18% more cells passing the mini-
mum UMI and gene thresholds and the addition of 266
new cell type-specific genes to our single-cell atlas of the
Harpegnathos brain. The extraction of more information
from this existing dataset provided several new insights.
A number of biologically relevant genes had increased
UMI mapping in the new HSAL51 annotation that
translated to improved identification and visualization of
cells expressing these genes, including established mush-
room body markers toy and GluIRB, and the
neurotransmitter-associated markers VAChT, VGlut,
and Gad1. Using the new annotation, more genes were
classified as specific to the mushroom body or to a spe-
cific cell type. We identified CG9259 as a new protein-
coding gene specifically expressed in Harpegnathos en-
sheathing glia, a cell type previously linked to caste regu-
lation and aging [22]. Overall, our results indicate that
leveraging long reads to annotate 3′ UTRs with more
precision will increase the depth of existing and future
single-cell RNA-seq datasets, an important consideration
for many model systems, especially those with less
complete annotations.
The new annotation also improved analysis of

lncRNAs in the single-cell data set (Fig. 5) revealing a
lncRNA that is a marker of these ensheathing glia and is
expressed in a similar set of cells as its adjacent protein-
coding gene wdp. In single-cell analysis of the Drosoph-
ila brain, wdp expression is largely restricted to en-
sheathing glia, although the lncRNA syntenic to the
Harpegnathos ensheathing glia marker LOC112590028 is
not detected in this data set. Further work would be re-
quired to confirm the link between LOC112590028 and
wdp expression in Harpegnathos, but wdp expression
patterns in Drosophila suggest a conservation in the
regulation and, possibly, function of this gene.

Conclusions
The new Harpegnathos annotation, bolstered by Iso-Seq,
allowed us to uncover new patterns of differential alter-
native splicing, differentially expressed genes, and
markers of cell types in single-cell sequencing. The iden-
tification of new candidate genes involved in tissue-
specific and caste-specific regulation of gene expression
highlights the advantages of a more complete gene an-
notation. Future genomic studies in Harpegnathos will
undoubtedly benefit from these improved annotations,
which will help obtain new insights on the molecular
regulation of their remarkable phenotypic plasticity.
Beyond the implications for Harpegnathos genomics,

our analyses show that Iso-Seq is an effective strategy
for improving incomplete gene annotations, maximizing
the amount of information garnered from genome-wide
sequencing data.
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Methods
Ant colonies and husbandry
As previously described [22], Harpegnathos ants were
descended from a gamergate colony collected in Karna-
taka, India, in 1999 and bred in various laboratories. Ant
colonies were housed in plaster nests in a clean,
temperature- and humidity-controlled ant facility on a
12-h light/dark cycle. Ants were fed three times per
week with live crickets.

PacBio Iso-Seq
Non-visual brains and combined samples of fat body
and ovary were dissected from Harpegnathos ants. Each
sample contained tissues from ~ 8 ants from a variety of
ages (5 days, 30 days, or ~ 120 days old) from both
worker and gamergate castes. Brains were homogenized
in TRIzol by pipetting up and down. Chloroform was
added and tubes were shaken by hand before centrifuga-
tion at 12,000g for 15 min at 4 °C. The aqueous phase
was transferred to a new tube and the pellet was precipi-
tated using an equal volume of isopropanol and 1 μl gly-
coblue (Ambion #AM9516), with successive washes
using 70% and 80% ethanol. Liquid was removed, the
pellet was suspended in BTE, and DNA was removed by
incubating for 30 min at 37 °C with Turbo DNase
(Thermo Fisher). After the incubation, 1 mL of TRIzol
was added and all purification steps described above
were repeated before final suspension of the RNA in
BTE.
Total RNA was submitted to the University of Wash-

ington PacBio Sequencing Services (Seattle, WA) and
prepared for sequencing according to the Iso-Seq
method. Briefly, the samples were enriched for polyA+
RNA via pulldown (Dynabeads mRNA Purification Kit,
Thermo Fisher Scientific). The polyA+ RNA was con-
verted to cDNA (SMARTer PCR cDNA Synthesis Kit,
Clontech) and amplified with 14 (brain) or 12 (fat body/
ovary) cycles of PCR. The resulting cDNAs were con-
verted to SMRTbell libraries with the Template Prep Kit
version 1 (PacBio) which involves DNA damage repair,
end repair, ligation of barcoded hairpin adapters, and
exonuclease digestion of imperfect templates. The ma-
terial was then fractionated by size using AMPure XP
beads (PacBio): a 0.4× volume of beads was added to the
library to bind longer fragments to magnetic beads, then
the supernatant was removed and an additional 0.6× vol-
ume of AMPure XP beads (for an effective bead buffer
ratio of 1.0×) added to bind the shorter material. Each
set of beads was washed twice with ethanol (80% v/v in
water) and the DNA was eluted into PacBio EB. After
quantitation (Qubit, Thermo Fisher Scientific) and
measurement of size (Bioanalyzer, Agilent), the four
components (brain and fat body/ovary, each with frac-
tions 0.4× and 1.0×) were pooled in an equimolar

fashion for sequencing. The pool was sequenced on the
Sequel II platform (PacBio) on one SMRT Cell 8M
using chemistry version 1.0 and a 30-h movie time.

RNA-seq of Harpegnathos worker brains (Fig. 3G)
Brains from transitioning Harpegnathos ants were dis-
sected in phosphate-buffered saline, placed in TRIzol
(Invitrogen #15596026) and stored at − 70 ˚C until RNA
extraction. Each brain was processed separately. To ex-
tract RNA, thawed brains were homogenized in TRIzol
by pestle, and frozen and thawed again. Chloroform was
added, followed by vigorous vortexing and centrifugation
at 21,000g for 10–15min at 4 °C. The aqueous phase
was purified using RNA Clean and Concentrator kit
(Zymo Research #R1013) following the manufacturer’s
instructions. Extracted RNA was quantified using Nano-
Drop 2000 (Thermo Scientific) and RNA integrity was
checked using High Sensitivity RNA ScreenTape (Agi-
lent #5067-5579, 5067-5580, 5067-5581) on a TapeSta-
tion 2200 or 4200 (Agilent). 250–500 ng extracted RNA
was used to prepare libraries with NEBNext Ultra II Dir-
ectional RNA Library Prep Kit for Illumina (New Eng-
land Biolabs #E7760S) following the manufacturer’s
instructions. Libraries were quantified using Qubit
dsDNA High Sensitivity Assay Kit (Invitrogen #Q32854)
on a Qubit 2.0 fluorometer (Invitrogen) and fragment
size distribution was checked using High Sensitivity
D1000 ScreenTape (Agilent #5067-5584, 5067-5585,
5067-5587) on a TapeStation 2200 or 4200 (Aglient). Li-
braries were combined in two pools and sequenced in
two runs of a NextSeq 500 machine (Illumina) in High-
Output mode with a 2 × 150 bp configuration.

Iso-Seq data processing and annotation construction
Full-length Iso-Seq reads were classified from circular
consensus sequences using lima (Pacific Biosciences;
https://github.com/PacificBiosciences/barcoding) and re-
fined with isoseq3 (Pacific Biosciences; https://github.
com/PacificBiosciences/IsoSeq) with --require-polya to
filter for reads ending in a polyA tail. Full-length reads
(FLNC) were clustered using isoseq3 cluster and
polished using isoseq3 polish. FASTQ files output from
polishing step were mapped using the STARlong module
of STAR [82] to the Harpegnathos genome (GCF_
003227715.1) with parameters suggested for mapping
Iso-Seq reads to a genome provide by cDNA_Cupcake
(https://github.com/Magdoll/cDNA_Cupcake/wiki/Best-
practice-for-aligning-Iso-Seq-to-reference-genome:-
minimap2,-deSALT,-GMAP,-STAR,-BLAT). Redundant
transcript models were collapsed using TAMA Collapse
[83]. Transcript models were generated separately for
brain and fat body/ovary tissues and were merged to-
gether with the existing annotation produced by NCBI
(GCF_003227715.1) using TAMA Merge [83], with the
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no_cap option and prioritizing the brain Iso-Seq models
followed by the fat body/ovary Iso-Seq models and then
the existing annotation.
Several automatic and manual processing steps were

performed to refine this annotation (see Additional File 1:
Fig. S1C for an overview). The mitochondrial scaffold
and odorant receptor were annotated manually due to
the challenges of annotating these genes computationally
(see below, “Manual annotation of mitochondrial scaf-
fold and odorant receptor genes”). A list of the odorant
genes added and the genes from the previous annotation
that were replaced can be found in Additional File 2:
Table S1. Genes “merged” in the Iso-Seq annotation
(evidence suggests that two gene models should be one
gene model; see example in Fig. 1E) were manually
reviewed, with evidence from Iso-Seq, bulk RNA-seq,
and homology of the genes in question taken into ac-
count to ensure that genes were not spuriously merged.
Due to suspicions of transcript models with retained

introns representing pre-mRNAs sequenced by Iso-Seq,
new transcripts with retained introns found by SUPPA
[29] were subjected to further filtering. BLASTn was
used to find homologs for transcript models with and
without the retained intron, using a BLAST index cre-
ated from all transcripts from Drosophila melanogaster
(GCF_000001214.4), Apis mellifera (GCF_003254395.2),
Nasonia vitripennis (GCF_009193385.2), and Bombyx
mori (GCF_014905235.1) NCBI annotations. The query
cover for the pairs of transcripts with or without
retained introns was compared. If the transcript model
without the retained intron had higher query coverage,
the transcript with the retained intron was removed
from the annotation. Performing the homology search
with BLASTX or with additional Hymenoptera species
did not substantially affect these results.
From these final gene and transcript models, Transde-

coder [84] was run to find coding sequences. The lon-
gest ORFs were BLASTed (BLASTp) to a reference of
proteins from Drosophila melanogaster, Apis mellifera,
and Homo sapiens (GCF_000001405.39) with an e-value
cutoff of 10−5.

Manual annotation of mitochondrial scaffold and odorant
receptor genes
The scaffold NW_020230424.1 was identified as the
mitochondrial scaffold, as it contained the best BLAST
hits of Drosophila mitochondrial genes. Several single-
copy Drosophila genes had multiple hits on this scaffold
and many genes were annotated as pseudogenes, neces-
sitating a manual reannotation of these loci. We per-
formed BLAST of the NW_020230424.1 sequence
against itself and established that the positive strand of
the 3′ end of the scaffold aligns with the positive strand
of its 5′ end. This alignment pattern and the double

BLAST hits of the D. melanogaster genes are consistent
with NW_020230424.1 being an erroneous linear assem-
bly of ~ 2 iterations of the circular mtDNA sequence.
Furthermore, visual examination of aligned RNA-seq
reads revealed an abnormally high number of base mis-
matches and small indels in this scaffold. This suggests
that NW_020230424.1 may have not been optimally
polished when the genome was being assembled and ex-
plains why most genes contain frame shifts and/or pre-
mature stop codons and are annotated as pseudogenes.
Considering these assembly and annotation issues, we

removed existing gene models in NW_020230424.1 and
manually re-annotated coding genes in its 3′ half. We
identified regions that exhibited contiguous coverage in
bulk RNA-seq, looked for predicted ORFs in such re-
gions, and performed BLAST of their translations
against Drosophila mitochondrial proteins. We also took
into account gene order, as the mitochondrial genomes
of Drosophila and Harpegnathos are completely syntenic
[85]. In the instances where putative assembly errors
caused frame shifts and/or premature stops, we split the
genes into several fragments and added an alphabetical
index to the fragments’ names. For example, Drosophila
mt:Cyt-b corresponds to mt:Cyt-ba, mt:Cyt-bb, and mt:
Cyt-bc in Harpegnathos.
For the odorant receptors, we converted annotations

manually generated for previous versions of the Harpeg-
nathos genome [86] the current genome assembly. We
mapped the mRNAs of these old predictions to the
current genome assembly using exonerate v. 2.2.0 and
visually compared them to the HSAL50 annotations of
the corresponding loci [87]. Where necessary, we manu-
ally updated HSAL51 predictions taking into account
the exon-intron structure of the mapped annotations of
Zhou et al. [86] and bulk RNA-seq coverage.

dT-sequencing
Using previously isolated RNA [9] from worker tissues
(fat body, ovary, non-visual brain, and optic lobe) and
gamergate tissues (fat body, ovary, and non-visual brain),
a version of RNA-seq was performed to specifically cap-
ture 3′ ends of transcripts with a polyA tail, here called
“dT-seq” (see Additional File 1: Fig. S1E for overview).
RNA was fragmented by adding 4 μL of 5× 1st strand
buffer from SSIII RT kit (Invitrogen catalog #18080-044)
to RNA and incubating at 94 °C for 16 min, followed by
a ramp down to 4 °C. PolyA+ selection was performed
with OligodT25 dynabeads (Invitrogen catalog #610-02)
with 3 washes with Oligo-dT washing buffer and eluted
with BTE (10 mM bis-tris pH 6.7, 1 mM EDTA) contain-
ing either oligo-dT primer or random hexamer primers.
Library construction was completed following estab-
lished protocols [9] in parallel for the oligo-dT-primed
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and the random hexamer-primed samples. Libraries
were sequenced in paired-end mode on a NextSeq500.

dT-sequencing analysis
FASTQs from oligo-dT primed samples (“dT”) were fil-
tered to keep only reads with at least 5 Ts with one mis-
match at the 5′ end of the read, then trimmed using
prinseq [88] to remove tails from reads. These reads and
random hexamer reads (“hex”) were aligned to the Har-
pegnathos genome using STAR with default parameters,
except --alignIntronMax 50000.
Hex samples were used to filter out reads coming from

polyA tracts within a transcript (see Additional File 1:
Fig. S1E, bottom). Genomic coverage of the first read
(pair closest to polyA tail) was computed for both dT
and hex samples using GenomicRanges [89]. For each
“peak,” defined as a contiguous region of coverage with
at least one read, tentative summits were defined as any
position with coverage at least 90% of the highest read
total within the peak. The “summit” of each peak was
defined as the most downstream tentative summit. dT
peaks were sorted into three categories: (1) dT peaks
that did not overlap with a hex peak, (2) dT peaks whose
peak was upstream of a hex peak—see Additional File 1:
Fig. S1E, “discarded” box (3) dT peaks whose summit
was downstream or equal to the hex summit—see non-
discarded peaks in Additional File 1: Fig. S1E. Peaks in
categories (1) and (2) were discarded, leaving a list of dT
peaks that did not have hex signal downstream, indicat-
ing dT reads coming from polyA tails instead of internal
polyA stretches. Reads overlapping these peaks were
retained and used for further analysis and for any gen-
ome browser snapshots showing dT signal.
To verify that the retained dT reads were from the

end of transcripts (see Additional File 1: Fig. S1F),
aligned dT and hex reads were reduced to the first base
at the 5′ end of the read using GenomicRanges. dT
“peaks” were again detected using the strategy above and
categorized as 3′ UTR peaks or CDS peaks based on
their position within HSAL51 transcripts. Read coverage
for dT and hex reads were computed at each of these
peak sets.

Splicing
Isoform-level counts from Harpegnathos samples were
generated using kallisto [90] with HSAL50 or HSAL51
annotations with any single-exon transcripts removed.
For gamergate and worker brains [20] (single-end se-
quencing), kallisto quant was run with the parameters -b
30 --rf-stranded--single -l 200 -s 1. For tissue samples
(non-visual brain, ovary, fat body, antenna, retina, optic
lobe; paired-end) [9], kallisto quant was run with the pa-
rameters -b 30 --rf-stranded. Differential transcriptional
usage was tested with RATS [91] with the parameters p_

thresh = 0.05, dprop_thresh = 0.2, abund_thres = 5 (for
tissues) or p_thres = 0.01, dprop_thresh = 0.1, abund_
thresh = 1 (for gamergate/worker brains). The number of
genes with DTU using each annotation (Fig. 2C) was the
number of gene with an adjusted P value (padj) < 10−5,
maximum difference in proportion between isoforms
(maxDprop) > 0.5, and fraction of replication iterations
that support a positive DTU classification (rep_dtu_
freq_threshold) > 0.8 between any two tissues. Propor-
tions of transcript usage were calculated for each repli-
cate using TPMs computed with kallisto. Proportions for
each isoform were calculated by averaging replicates.

Analysis of extended transcripts and genes
Genes with additional exonic nts were identified by
comparing the total number of nts covered by exons of
the gene in HSAL50 and HSAL51.
Genes with extensions of their transcription start or

termination sites were identified by first finding pairs of
HSAL50 transcripts with a corresponding HSAL51 tran-
script with the same internal exon structures in the two
annotations (see Fig. 3C, left), defined by transcripts with
all exon boundaries the same except for the start and/or
termination sites. A small number of HSAL50 tran-
scripts had no matching transcript in the HSAL51 anno-
tation (light gray, “no internal matches” in Fig. 3C). The
start and termination sites of the remaining HSAL50
transcripts were compared to their paired HSAL51 tran-
scripts and sorted into categories of not extended, TSS
extended, TTS extended, and both TSS/TTS extended.

Bulk RNA-seq analysis
Bulk RNA-seq data for Harpegnathos from RNA newly
sequenced from worker brains (see above) or previously
published worker/gamergate brains [20, 24] or tissues [9,
31], was aligned to the genome using STAR with default
parameters except --alignIntronMax = 50000. Previously
published RNA-seq from brains of Camponotus planatus
(PRJNA472392) [32, 37] and Dinoponera quadriceps
(PRJNA255520) [36, 38] was aligned with the same pa-
rameters to the Camponotus floridanus (GCF_
003227725.1) and Dinoponera quadriceps (GCF_
001313825.1) genomes and annotations, respectively, as
no genome assembly or annotation has been published
for Camponotus planatus. Read counts or TPM (Add-
itional File 1: Fig. S1B, Additional File 3: Fig. S2D and
Additional File 5: Fig. S4H) were produced by an in-
house script using GenomicRanges summarizeOverlaps
(counting mode = union) [89] that counts the number of
reads overlapping each gene model. Differential expres-
sion analysis was performed using DESeq2 [92].
Single-cell tracks shown as examples were produced

by aligning previously published single-cell RNA sequen-
cing from Harpegnathos workers and gamergates [22,
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23] to the Harpegnathos genome aligned using STAR
with default parameters except --alignIntronMax =
50000 [82].

Genome browser screenshots
All genome browser screenshots were produced using
IGV v2.8.6. Bigwig tracks for visualization were pro-
duced using DeepTools [93]. Sashimi plots were pro-
duced using IGV v2.8.6, with a custom scaling of
splicing lines (line widths scaled to the total number of
reads mapped to the locus, with a constant scaling factor
used between sequencing from different castes for each
technology).

Single-cell analysis
Single-cell RNA sequencing from brains of Harpeg-
nathos workers and gamergates previously generated
with 10x Genomics [22, 23] was reanalyzed using Cell-
Ranger [5] with default parameters and either the
HSAL50 or HSAL51 annotations provided. CellRanger
was used to produce digital gene expression matrices for
all samples for both annotations. These matrices were
processed by Seurat v3 [94]. Cells with at least 200 genes
and 500 UMIs were retained, with genes required to be
expressed in at least 3 cells. UMIs were log-normalized
with a scale factor of 10,000, the top 2000 variable fea-
tures detected using the “vst” selection method, and data
were scaled so the mean of each gene across cells was 0
and variance was 1. As the samples were produced in
three separate batches, the experiment was regressed out
during this step. Cells were clustered using the variable
features previously detected.
Clustering and visualization were performed with

Seurat’s principal component analysis followed by Jack-
Straw to detect significant principal components. All
components were selected until a component had a P >
0.05. Cells were clustered with a resolution of 1 and
clusters were visualized using UMAP. Cell type for each
cluster was performed using previously established
markers [22].
For cluster-level pseudobulk expression analyses (“%

UMIs on gene”), the number of UMI for each gene from
all cells in each cluster for each sample were added to-
gether and normalized by the total number of UMI de-
tected in that sample and cluster.
To compare clusters from HSAL50 and HSAL51, clus-

ter groupings were produced by comparing the cells
present in each cluster, which largely stayed constant be-
tween analyses using the two annotations. In all cases,
one cluster from HSAL51 corresponded to one or two
clusters from HSAL50 (in two cases, one HSAL51 clus-
ter was split into two clusters in HSAL50).
Marker genes for each of these cluster groups (Add-

itional File 5: Fig. S4B and C) were defined using Seurat

FindAllMarkers with the parameters only.pos = TRUE,
min.pct = 0.25, logfc.threshold = 1. Only markers with a
padj less than 0.05 were retained. Differentially
expressed genes between castes within each cluster were
identified using Seurat FindMarkers, run within each
cluster with worker cells and gamergate cells provided
as the two identities and default parameters. Only genes
with a padj less than 0.01 were retained.

Mushroom body markers
For Additional File 5: Fig. S4D, mushroom markers in
the HSAL50 and HSAL51 analysis were found using
FindMarkers with the mushroom body clusters (defined
by mub) as one group and all other cells as another
group, with the parameters only.pos = T, min.pct = 0.25,
and logfc.threshold = 1.5. Markers detected in HSAL51
and not HSAL50 were classified as new mushroom body
markers and heatmaps of their expression in cells in
each cluster was plotted using Seurat DoHeatmap. Lists
of mushroom body-enriched genes found by comparing
Drosophila head to mushroom body transcriptomes (“D.
mel MB vs head”) [43] and mushroom body markers
from single-cell sequencing in Drosophila [44] and Apis
mellifera [45] were taken from supplemental information
of published work; for Apis mellifera, mushroom body
clusters were defined as the clusters with mub as a
marker gene.

Drosophila single-cell sequencing
For Fig. 5G, we utilized published single-cell RNA se-
quencing data from Drosophila [44, 95]. The x and y po-
sitions of each cell on the tSNE were specified by this
object, and the position of ensheathing glia indicated
was informed by the cluster identities defined in Davie
et al. The expression level of wdp was computed by nor-
malizing the expression levels provided; taking the log2
of UMIs normalized for the total UMI in each cell and
multiplied by a scaling factor of 10,000.

Synteny analysis of wdp locus
Corresponding genes between Drosophila, Apis melli-
fera, and Harpegnathos were found using a BLASTp
search; each Harpegnathos gene, excluding the lncRNA
LOC112590028, had a best match to the gene indicated
in the other two species.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12915-021-01188-w.

Additional file 1: Figure S1. Statistics and methods used to create and
evaluate the new Harpegnathos annotation. (A) Length distribution of all
raw Iso-Seq subreads. (B) Transcripts per million (TPM) from short-read
RNA-seq of genes with and without Iso-Seq coverage in brain and fat
body/ovary. (C) Pipeline for manual annotation following combination of
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Iso-Seq-based and RNA-seq-based annotations. (D) Relationship between
gene models in HSAL50 and HSAL51. (E) Schematic of the dT-seq ap-
proach. RNA was chemically fragmented. PolyA+ molecules were purified
and split into two reverse transcription reactions, one primed with an an-
chored oligo-dT primer and one with random hexamers. The resulting
cDNA was assembled into libraries and sequenced. The scheme at the
bottom shows that the expected read distribution in dT- and hexamer-
primed reactions differs for true polyA tails and internal A-stretches. This
information was used to discard peaks that did not correspond to bona
fide TTSs (red square). (F) Expected (top) and observed (bottom) signal at
dT peaks found in the CDS (let) or 3′ UTR (right) from oligo-dT primed li-
braries (”dT”, top) and random hexamer primed libraries (”hexamers”,
bottom).

Additional file 2: Table S1. Genes manually added to HSAL51. Table
S2. Genes computationally added to HSAL51. Table S3. Genes merged
in HSAL51.

Additional file 3: Figure S2. More comparisons of alternative splicing
in HSAL50 and HSAL51. (A–C) Examples of a transcript with newly
identified alternative splicing patterns of (A) mutually exclusive exons, (B)
a skipped exon, and (C) an alternative first exon. Boxes indicate regions
of the gene that is alternatively spliced. A subset of HSAL51 isoforms is
shown. (D) TPM of Ilp2 (LOC105188195) in worker (n = 11) and gamergate
(n = 12) brains. Padj is from DESeq2 differential expression analysis. (E)
Sashimi plot for the Ilp2 gene (LOC105257206) in Camponotus planatus
(RNA-seq from [32]; using Camponotus floridanus genome and
annotation) for worker (n = 5) and queen (n = 5) brains. Splice junction
line widths are scaled to the number of reads spanning the splice
junction and the total number of reads mapped to Ilp2 for each caste.
Red boxes indicate positions of first exon for each isoform. (F) Sashimi
plot for the Ilp2 gene (LOC106750697) in Dinoponera quadriceps (RNA-seq
from [36]) for worker (n = 6) and gamergate (n = 6) brains. Splice junction
line widths are scaled to the number of reads spanning the splice
junction and the total number of reads mapped to Ilp2 for each caste.
Red boxes indicate positions of first exon for the two major isoforms.

Additional file 4: Figure S3. Transcript extensions and RNA-seq ana-
lysis. (A) dT-seq coverage (see Additional File 1: Fig. S1E and methods)
coverage at all unique TTSs in HSAL50 (gray) and HSAL51 (blue). (B) Reads
mapping to egh in HSAL50 and HSAL51. P-value is from a paired Stu-
dent’s t-test.

Additional file 5: Figure S4. Additional single-cell analyses using
HSAL50 and HSAL51 annotations. (A) Heatmaps of markers for neurons
(nSyb), glia (bdl), mushroom body neurons (mub), and ensheathing glia
(Tsf1) in HSAL51 single-cell clustering. (B) Number of marker genes (padj
< 0.05, LFC > 1) for each cluster. Marker genes common to HSAL50 and
HSAL51 analyses are shown in black, while markers unique to HSAL50 are
in gray and markers unique to HSAL51 are in blue. (C) Scatter plot for
UMI counts in HSAL50 vs. HSAL51 with marker genes highlighted accord-
ing to (B). (D) Heatmap of newly identified mushroom body markers in
HSAL51 (padj < 0.05 and logFC > 1.5). Arrows denote mushroom body
clusters, as determined by mub expression (top row of heatmap). Classifi-
cation of each new marker in other data sets (fly MB vs head, [43]; fly
single-cell, [44]; honeybee single-cell, [45]) is indicated in heatmap to
right, with black boxes indicating marker was identified as mushroom
body-enriched (see methods). (E) Genome browser view showing CG9259
with RNA-seq, Iso-Seq, and single-cell coverage along with dT-seq and
raw Iso-Seq reads. Scales represents counts per million. A subset of
HSAL51 isoforms is shown. (F) Number of genes differentially expressed
(DE) within each cluster (padj < 0.01). Differentially expressed genes com-
mon to HSAL50 and HSAL51 analyses are shown in black, while genes
unique to HSAL50 are in gray and genes unique to HSAL51 are in blue.
(G) Scatter plot for UMI counts in HSAL50 vs. HSAL51 with differentially
expressed genes highlighted according to (F). (H) TPM of CycG in worker
(n = 11) and gamergate (n = 12) brains. Padj is from DESeq2.

Additional file 6: Figure S5. Additional single-cell analyses of lncRNA
expression . (A) Fold-change in nucleotides covered by exons of lncRNAs
for each category in Fig. 5A. (B) Examples of neuronal lncRNAs detected
in HSAL51 showing % of neurons, glia, and other cells expressing the in-
dicated genes in HSAL50 and HSAL51. (C) Genome browser view show-
ing RNA-seq signal, Iso-Seq signal, and raw Iso-Seq reads of a locus

containing two ensheathing glia marking lncRNAs which were merged
into one gene model in HSAL51. Scales for RNA-seq and Iso-Seq repre-
sent counts per million. (D) Heatmap showing normalized UMI counts of
the new merged lncRNA LOC112588339.LOC112588340 in HSAL51. (E) %
of UMIs mapping to wdp in HSAL51.
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