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Wheat inositol pyrophosphate kinase
TaVIH2-3B modulates cell-wall composition
and drought tolerance in Arabidopsis
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Abstract

Background: Inositol pyrophosphates (PP-InsPs) are high-energy derivatives of inositol, involved in different
signalling and regulatory responses of eukaryotic cells. Distinct PP-InsPs species are characterized by the presence
of phosphate at a variable number of the 6-carbon inositol ring backbone, and two distinct classes of inositol
phosphate kinases responsible for their synthesis have been identified in Arabidopsis, namely [TPKinase (inositol
1,34 trisphosphate 5/6 kinase) and PP-IP5Kinase (diphosphoinositol pentakisphosphate kinases). Plant PP-IP5Ks are
capable of synthesizing InsPg and were previously shown to control defense against pathogens and phosphate
response signals. However, other potential roles of plant PP-IP5Ks, especially towards abiotic stress, remain poorly
understood.

Results: Here, we characterized the physiological functions of two Triticum aestivum L. (hexaploid wheat) PPIP5K
homologs, TaVIHT and TaVIH2. We demonstrate that wheat VIH proteins can utilize InsP; as the substrate to
produce InsPg, a process that requires the functional VIH-kinase domains. At the transcriptional level, both TaVIH1
and TaVIH2 are expressed in different wheat tissues, including developing grains, but show selective response to
abiotic stresses during drought-mimic experiments. Ectopic overexpression of TaVIH2-3B in Arabidopsis confers
tolerance to drought stress and rescues the sensitivity of Atvih2 mutants. RNAseq analysis of TaVIH2-3B-expressing
transgenic lines of Arabidopsis shows genome-wide reprogramming with remarkable effects on genes involved in
cell-wall biosynthesis, which is supported by the observation of enhanced accumulation of polysaccharides
(arabinogalactan, cellulose, and arabinoxylan) in the transgenic plants.

Conclusions: Overall, this work identifies a novel function of VIH proteins, implicating them in modulation of the

expression of cell-wall homeostasis genes, and tolerance to water-deficit stress. This work suggests that plant VIH

enzymes may be linked to drought tolerance and opens up the possibility of future research into using plant VIH-
derived products to generate drought-resistant plants.

Keywords: Inositol pyrophosphate kinase, Wheat, Drought stress, Phytic acid, Transcriptome, Cell wall

* Correspondence: pandeyak@nabi.res.in; pandeyak1974@gmail.com

fAnuj Shukla and Mandeep Kaur contributed equally to this work.

'National Agri-Food Biotechnology Institute (Department of Biotechnology),
Sector 81, Knowledge City, S.A.S. Nagar, Mohali-140306, Punjab, India

Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12915-021-01198-8&domain=pdf
http://orcid.org/0000-0003-1064-139X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:pandeyak@nabi.res.in
mailto:pandeyak1974@gmail.com

Shukla et al. BVIC Biology (2021) 19:261

Background

Inositol phosphates (InsPs) are a well-known family of
eukaryotic water-soluble signalling molecules that are
conserved mainly in their function [1, 2]. This family is
characterized by the presence of phosphate either at the
single or all the 6-carbon inositol ring backbone. The
full phosphorylated InsPs (InsPs; myo-inositol-hexaki-
sphosphate, phytic acid) species can be again phosphory-
lated to generate high-energy Inositol pyrophosphates
(PP-InsPs) [3-5]. PP-InsPs are essential members of the
inositol polyphosphate family, with an array of pyro-
phosphate chains present at specific positions [6, 7]. The
two major members of InsPs, i.e., InsP; and InsPg, are
present in very low abundance in cells and are synthe-
sized by two classes of enzymes. The first class of en-
zyme, inositol hexakisphosphate kinases (IP6Ks),
phosphorylates one of the precursors InsPg to form PP-
InsP5 [3, 8]. The second class of enzyme, diphosphoino-
sitol pentakisphosphate kinases (PP-IP5Ks), phosphory-
lates InsP- to form InsPg /1,5PP-IP, [5, 9, 10].

During the past two decades, three isoforms of IP6Ks
(IP6K1, IP6K2, and IP6K3) and two PP-IP5K (PP-IP5K1
and PP-IP5K2) were identified in humans and mouse
[11, 12]. In yeast, a single IP6K (also referred to as Kcsl)
and a PP-IP5K (also known as Vipl) are involved in the
synthesis of the respective forms of InsP; and InsPg [5,
10]. These high-energy pyrophosphates participate in
cellular activities such as DNA recombination, vacuolar
morphology, cell-wall integrity, gene expression, pseudo-
hyphal growth, and phosphate homeostasis as demon-
strated in yeast, mice, and humans [13-19].

Earlier, the presence of high anionic forms of InsPg4
was predicted in plant species such as barley and potato
[20, 21]. However, the quest to identify the plant genes
encoding for these inositol pyrophosphate kinases
remained elusive till the identification of two plant VIP
genes from Arabidopsis and are present in all available
plant genomes [5, 17]. In plants, VIP-homolog, also re-
ferred to as VIH proteins, contains bifunctional domains
including “rimK” or ATP-grasp superfamily domain at
the N-terminal and histidine acid-phosphatase domain
at a C-terminus as in yeast [5, 22-24]. Furthermore,
these VIH proteins displayed PP-IP5K-like activity in-
volving in plant defense response mediated through jas-
monate levels [22].

Recent evidence about genetic interaction studies im-
plies that deletion of the VIH1 and VIH2 in Arabidopsis
thaliana affects plant growth and is an integral part of
the phosphate (Pi) response pathway [23]. The enzym-
atic properties of Arabidopsis VIH1 and VIH2 suggest
that both could utilize PP-InsP5 as a substrate, akin to
the human PP-IP5K2 activity [9, 23]. Additionally, these
VIH proteins were functionally active and could rescue
invasive growth through hyphae formation in yeast
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viplA mutants [25]. The new line of evidence also sug-
gested that the generated InsPg could bind the
eukaryotic SPX domain and thereby regulate the activity
of the phosphate starvation responsel (PHR1), a central
regulator of phosphate (Pi) starvation [17, 23]. The con-
served role of VIH kinases in synthesizing PP-InsPx are
essential for their role in Pi homeostasis as demonstrated
in yeast, humans, and plants [17, 24, 26]. Thus, the role
of plant VIH and PP-InsPs need further investigation to
explore their additional molecular functions.

In summary, to date, the studies could reveal the func-
tion of plant VIH only in pathogen defense and Pi-
limiting conditions. Still, no other role has been investi-
gated or reported for these genes in Arabidopsis or other
crop plants. Hexaploid wheat, an important crop around
the globe and its productivity, can be affected when ex-
posed to abiotic stress [27]. In the current study, we
have identified two functionally active VIH genes from
hexaploid wheat (Triticum aestivum L.), capable of util-
izing InsP; as a substrate to generate InsPg. We have
performed expression studies, physiological investiga-
tions accompanied by forward and reversed genetic ap-
proaches. Our work shows that wheat VIH2 could
impart tolerance to drought in transgenic Arabidopsis.
Further, we observed that the drought tolerance was
dependent upon distinct transcriptomic re-arrangements
in addition to alterations in the composition of plant cell
wall. Together, our study provides novel insight into the
possible function of plant VIH towards stress tolerance.

Results

Phylogeny and spatio-temporal characterization of VIH
genes in wheat tissue

Our efforts to identify potential wheat VIH-like se-
quences revealed two genes with three homoeologues
each referred to as TaVIH1 and TaVIH2 showing, 98.8%
sequence identity with each other. TaVIHI and TaVIH2
were mapped to chromosomes 3 and 4, respectively.
Both the wheat VIH genes were present on all the three
genome-homoeologs (A, B, and D). The Kyte-Doolittle
hydropathy plots indicated that wheat VIH proteins were
devoid of any transmembrane regions (Additional file 1:
Fig. S1A and Additional file 2: Table. S1). Phylogenetic
analysis clustered plant VIH homologs together with
TaVIH proteins close to Oryza sativa (~90%) in the
monocot-specific clade (Fig. 1A). TaVIH2 is closer to
AtVIHland AtVIH2 in the phylogenetic tree with an
identity of 72% and 33% with ScVIP1, respectively.
TaVIH1 reveal a high identity of 78% with Arabidopsis
(AtVIH) proteins and 35% with yeast (ScVIP1) proteins
but present in different clad of the tree (Fig. 1A). Among
themselves, wheat VIH1 (TaVIH-1) and VIH2 (TaVIH-
2) show 70% sequence identity at the protein level (Add-
itional file 3: Fig. S2). Amino acid sequence alignment of
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Fig. 1 Neighborhood-Joining phylogenetic tree and expression analysis of wheat genes encoding VIH. A Neighborhood-Joining phylogenetic
tree of PP-InsPs proteins. The full-length amino acid sequences of VIH proteins from various taxonomic groups were used for the construction of
phylogeny using MEGA7.0. The number represents the bootstraps values (1000 replicates). For construction of evolutionary history was inferred
by Minimum Evolution method using 14 amino acid sequences spanning from all the wheat VIH homoeologs (TaVIH1 and TaVIH2), rice
(0s01t04777700; Os03t0689100), Arabidopsis thaliana (NP_568308; NP_186780), human (HsVIP1-NP_001124330 and HsVIP2-NP_001263206), yeast
(VIP1-NP_013514) and Dictyostelium discoideum (DDBXP638433). B TaVIH1 and TaVIH2 in different tissues of a wheat plant. The cDNA was
prepared from 2 ug of DNA-free RNA isolated from root, stem, leaf, and flag leaf tissues of a 14 DAA plant as a template. C Quantitative
expression analysis of TaVIH genes at different seed maturation stages (7, 14, 21, and 28 days after anthesis and; D Expression in the tissue of 14
DAA seed (aleurone, Al; endosperm, En; embryo, Em; glumes, Gl and rachis, Ra. For gRT-PCR, cDNA was prepared from 2 ug of DNA-free RNA
isolated from respective tissues. TaARF was used as an internal control for the normalization of Ct values. Standard deviation was calculated along
with its level of significance at p < 0.05 (¥) with respect to the first tissue
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wheat VIH protein sequences suggested the presence of
conserved dual-domain architecture with two distinct
domains consisting of N-terminal rimK/ATP GRASP
fold and a C-terminal histidine acid-phosphatase (HAP)
of PP-IP5K/VIP1 family (Additional file 1: Fig. S1B).

Transcript accumulation of TaVIH genes showed simi-
lar expression profiles for both genes, with the highest
expression in leaf tissues followed by flag leaf and root
and slightest expression in the stem of wheat (Fig. 1B).
These findings suggest that both VIH genes are prefer-
entially expressed in leaf (Fig. 1B). The highest expres-
sion of both VIH genes was observed at late stages of
grain filling with high transcript accumulation at 28
DAA stage (Fig. 1C). Similar levels of transcript accumu-
lation were found in the remaining grain tissues, viz. em-
bryo, glumes, and rachis, suggesting a ubiquitous
expression in these tissues (Fig. 1D). The expression pro-
file in different grain tissues also revealed higher expres-
sion of TaVIH2 genes in the aleurone layer and
endosperm tissue which is ~ 2-fold higher than TaVIH1
(Fig. 1D). Thus, our analysis shows differential expres-
sion patterns of VIH in different wheat tissue.

Wheat inositol pyrophosphate kinase demonstrates PP-
IPsK activity

Yeast complementation assay of wheat VIH genes was
performed using yeast growth assay on SD-Ura plates
supplemented with 0, 2.5, and 5 mM 6-azuracil. The ex-
pression of both TaVIH1-4D and TaVIH2-3B in yeast
was confirmed by western blotting (Additional file 4: Fig.
S3A). The wild type strain BY4741 showed an unre-
stricted growth phenotype, whereas viplA transformed
with empty pYES2 vector showed growth sensitivity at
2.5 and 5 mM concentrations of 6-azauracil [22] (Add-
itional file 4: Fig. S3A). To our surprise, the mutant
strain transformed with pYES2-TaVIH1-4D could not
revive growth defect on selection plates, whereas the
pYES2-TaVIH2-3B could rescue the growth phenotype
of the vipIA strain. Previous studies show that under
stress conditions, unlike wild type yeast, vipIA mutant
does not form pseudo-hyphae [25]. The complemented
viplA strain with pYES2-TaVIH2-3B could also rescue
this phenotype during stress by showing hyphae forma-
tion (Additional file 4: Fig. S3B) Overall, our data sug-
gest that TaVIH2 derived from the B genome can
complement the growth defects of the vip1A strain.

In vitro kinase assay was performed using the pure
protein of VIH-kinase domain (KD) (Additional file 5:
Fig. S4). Firstly, we generated InsP; substrate using
mouse IP6K1 enzyme using InsPgs. The synthesized InsP-
was confirmed by TBE-PAGE gel (Additional file 6: Fig.
S5A), and the gel eluted product was also subjected to
MALDI-ToF (Additional file 6: Fig. S5B). The relative lu-
minescence units (RLU) were recorded for TaVIH1-KD
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and TaVIH2-KD using mIP6K1 generated InsP; as a
substrate (Fig. 2A). The RLU value represents the ADP
formed during the kinase reaction. Our assays show a
significant increase in the RLU for both the TaVIH pro-
teins in the presence of InsP; substrate. Among them,
the wheat VIH2 showed a high fold luminescence re-
sponse compared to the VIH1 protein (Fig. 2A). This
kinase activity was diminished in VIH post-heat-
denaturation (D-VIH), and the activity was not signifi-
cantly different when compared to either enzyme-
control (Ec) or substrate control (InsP-,) reactions. This
conversion of ATP to ADP can be used as an indirect
measurement biosynthesis of InsPsg.

The InsPg product generated by the above reactions
was confirmed by resolving the reaction products by
TBE-PAGE analysis [28]. To visualize the products on a
gel, we used a higher concentration of InsP, substrate.
As a control, we used ScVIP1-KD generated InsPg using
InsP; as a substrate (Fig. 2B; lane5). The TaVIH proteins
were incubated with InsP, as a substrate for two-time
points (1 and 2 h), and the products were resolved by
PAGE. Our experiments suggest that InsPg was synthe-
sized only by TaVIH2-KD when InsP; was provided as a
substrate (Fig. 2B). During this period of incubation, no
detectable levels of the product were seen for the
TaVIH1-KD reactions. In contrast, upon a longer incu-
bation with substrates (~9 h), we observed that InsPg
was generated by both VIH1 and VIH2 proteins (Add-
itional file 6 : Fig. S5C), suggesting that TaVIH1 may
have a lower enzyme activity compared with TaVIH2.
To further confirm the nature of generated phosphory-
lated inositol molecules, MALDI-ToF- MS was per-
formed. The analysis of the InsPg band (generated by
TaVIH2-KD) was done in the m/z range of 500 to 1000,
which reveals a significant peak of 820.47 m/z (Add-
itional file 6: Fig. S5D). The minor peak represents the
theoretical mass of InsPg and the prominent peak corre-
sponding to the InsPg-acetonitrile adduct. These enzym-
atic and analytical experiments confirm that TaVIH2
protein is functionally active and capable of using InsP,
as a substrate under in vitro conditions and may possess
PP-IP;K like activity.

Expression of 35S: TaVIH2-3B transgenic Arabidopsis
display robust growth

The biological functions of TaVIH2 were analyzed by
overexpressing the ¢cDNA of TaVIH2-3B in Columbia
(Col-0) Arabidopsis thaliana. In total, seven transgenic
lines were pre-selected based on TaVIH2 expression that
was analyzed by western analysis (Fig. 3A). Further, four
transgenic lines (#Line2-3, #Line 4-2, #Line 5-2, and
#Line 6-1) were selected for characterization. We ob-
served that at the vegetative stage, TaVIH2-3B trans-
genic Arabidopsis showed robust growth. Plants (14-
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Fig. 2 Enzymatic activity and analysis of the PP-InsP on PAGE. A The relative luminescence units for all reactions performed were recorded using
Spectramax optical reader. The kinase reactions were performed using 50 ng of TaVIH1-KD and TaVIH2-KD purified proteins for 30 min, followed
by steps mentioned in the ADP-GLO kit. B Visualization of PP-InsP products on the PAGE gel (33%). The in vitro kinase reactions were performed
using 30 ng of ScVIP1-KD, TaVIH1-KD, and TaVIH2-KD purified proteins for 1 and 2 h at 28 C. The reactions were then resolved on the gels (TBE-

PAGE). The photo was taken after staining by Toluidine Blue

day-old seedlings) showed enhanced rosette area cover
and increased number of leaves as compared to the con-
trols (Col-0 and Col-0(Ev)-empty vector) (Fig. 3B-D).
These transgenic Arabidopsis also displayed enhanced
branching with an overall increase in the length of the
main shoot axis and leaf size as compared to the con-
trols (Fig. 4A, B). Primary and secondary shoot numbers
were also enhanced in the transgenic Arabidopsis (Fig.
4D). In general, no significant differences during the
flowering stage was observed, yet the increased number
of (20-24) secondary shoots were evident when

compared with control plants (12—15 shoots) (Fig. 4D,
E). These results suggest that the expression of TaVIH2-
3B in Arabidopsis impacts the overall growth of the
plant.

Wheat VIH2-3B respond to drought-mimic stress

To investigate the promoter activities of TaVIHI and
TaVIH2, 5’ flanking regions (1 kb) of these genes were
cloned, and the comparative analysis revealed the pres-
ence of hormones and abiotic stress-responsive cis-
elements (Additional file 7: Fig. S6A). The presence of
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Fig. 3 Generation of VIH2-3B transgenic Arabidopsis and its characterization. A Western analysis and screening of Col-0 Arabidopsis transgenic
lines for TaVIH2-3B protein (~ 100 kDa) overexpressing lines. Multiple transgenic lines were screened, and Western was done using His-Antibody
using 20 pg of total protein. Coomassie Blue stain of the total protein (lower panel) was used as a loading control. B Representative picture of the
rosette area of the Transgenic Arabidopsis (#Line2, #Line4, #Line5, and #Line6) and controls. C Rosette area measurement (in cm?) using Image)

for 4 different transgenic lines along with the controls. Measurement was taken after 14 days of growth. D Number of Rosette leaves in
transgenic Arabidopsis and control lines. Three experimental replicates using 10 plants each were used to calculate the parameters

these elements suggested that wheat VIH could be regu-
lated by stress. Notably, we observed the presence of the
cis-elements that could respond to drought/dehydration,
P1BS (PHRI1 binding site), and GA-responsive domains.
(Additional file 7 : Fig. S6A). This motivated us to per-
form preliminary screening experiments using TaVIH-
promoters fused to -glucuronidase (GUS)-reporter gene
(pVIH1/2:GUS) in Arabidopsis (Col-0). A significant in-
crease in GUS reporter activity of pVIH2:GUS lines indi-
cated the ability of this promoter to sense the given

stress and drive GUS reporter expression. Interestingly,
the TaVIH2 promoter responded strongly to dehydra-
tion/drought stress and Pi starvation (Additional file 7 :
Fig. S6B). Subsequently, the GUS was expressed strongly
during the presence of 30% PEG (Fig. 5A). This suggests
the potential role of TaVIH2 during the drought re-
sponse. A weak expression of the TaVIH2 promoter was
observed in the presence of ABA and GA; (Additional
file 7 : Fig. S6B). Control (EV) seedlings showed no vis-
ible GUS staining. Based on our reporter assays, we
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speculate that TaVIH2 could have an essential role dur-
ing a drought stress response, which was investigated
further.

We tested the gene response to drought-like condi-
tions on plant physiology. Here, seedlings were exposed
to drought-like conditions using mannitol (125 mM) and
glycerol (10%) [29]. No significant difference in the root
growth pattern on the % MS plates was observed in all
the Arabidopsis seedlings (Fig. 5B). Inhibition of the root
growth was observed for the control Arabidopsis sug-
gesting their sensitivity to the presence of both the man-
nitol and glycerol (Fig. 5B). In contrast, TaVIH2-3B
overexpression in Arabidopsis was able to escape the
detrimental root growth (Fig. 5C). Finally, to check the
sensitivity of Arabidopsis vih2-3/vih2-4 and its rescue by
wheat VIH2, we screened the complemented mutant
lines with TaVIH2-3B and evaluated it during drought-
mimic conditions (Fig. 6A). Interestingly, both vih2-3
and vih2-4 showed high sensitivity towards drought-
mimicking conditions and this sensitivity was restored to
similar to Col0-(EV) when complemented with TaVIH2-
3B (Fig. 6B, C). These results corroborate the intriguing
aspects of TaVIH2 physiological function during
drought stress.

Wheat VIH2-3B imparts resistance to water-deficit stress
Studying the relative water loss helped us investigate the
direct involvement of TaVIH2-3B in conferring the
drought tolerance in the detached leaves. The rate of
water loss was very significant in the control plants com-
pared to the transgenic plants (Fig. 7A). This loss was
less in the transgenic Arabidopsis (40-46%) when com-
pared to control plants (16—18%) after 8 h of incubation
(Fig. 7A). Next, we measured relative leaf water content
(RWC%; Fig. 7B) for these plants. The RWC was high
(~65%) in transgenic plants as compared to the control
plants (~ 46%).

Further, drought stress experiments were carried out
for all the plants by exposing 7-day-old plants to 14 days
of water withholding (drought). These experiments were
carried out for the mutant, wild type, and overexpressing
plants together in the same pot for ensuring that they
are inter-rooted and exposed to the same soil moisture
conditions. After 14 days of drought, the relative soil
moisture content was observed to be as low as 35% in
the pots. This caused a dramatic withering of both con-
trol and transgenic Arabidopsis plants. However, when
the plants were re-watered, high survival rates (~ 65%)
were observed in the transgenic plants, whereas no or
very low (3%) survival efficiency was observed in control.
No survival was observed for the vih2-3 mutant plants
(Fig. 7C), indicating their sensitivity to drought condi-
tions. This indicates that the transgenic Arabidopsis
overexpressing TaVIH2 escapes the effect of drought
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and improves
tolerance.

survival rate by imparting drought

Transcriptomics data suggest that VIH2-3B stimulate
genes related to drought stress
In order to understand the basis of robust phenotype
and drought resistance observed in the transgenic Arabi-
dopsis plants when complemented with TaVIH2-3B, we
used the transcriptomics approach. Transcriptomics
changes in 25-day-old seedlings of control and two
transgenic plants (#Line4 and #Line6) were analyzed.
PCA of normalized expression abundances revealed a
high level of correlation among biological replicates (1 =
3) in each transgenic line. PCA also indicates a distinct
cluster for overexpressing transgenic lines and controls
(Additional file 8 : Fig. S7A). Based on an analysis in-
volving respective three biological replicates, a total of
626 and 261 genes were significantly up- and downregu-
lated (- 1 > Log FC > 1.0) in #Line4 while 797 and 273
genes were up- and downregulated in #Line6 transgenic
Arabidopsis lines compared to control plants (Additional
file 9 : Table S2). Overall, 605 genes were commonly dif-
ferentially altered in the two transgenic lines with re-
spect to the control plants (Col-O(Ev); Fig. 8A).
Interestingly, a high number of genes constitutively ac-
tivated in the transgenic Arabidopsis belong to the dehy-
dration response element-binding (DREB) protein,
including Integrase-type DNA-binding superfamily pro-
teins and glycine-rich proteins. Upon analysis of the GO
terms, the highest number of genes for “stress-related”
and “cell-wall-related activities” were enriched in the
biological process and cellular component categories
(Fig. 8B and Additional file 8 : Fig. S7B). Strikingly, mul-
tiple genes involved in cell-wall biosynthesis, modifica-
tion and degradation were also upregulated in the
transgenic plants (Fig. 9A). In addition to that, distinct
clusters of genes involved in abscisic acid (ABA) biosyn-
thesis were also significantly upregulated among the dif-
ferent lines of transgenic Arabidopsis (Fig. 9B). Notably,
drought-marker genes encoding 9-cis-epoxycarotenoid
dioxygenase (AtNCED6 and AtNCED?Y) involved in ABA
biosynthesis were also upregulated. Multiple DREB en-
coding genes and cytochrome P450 (CYPs)-related fam-
ily genes (CYP71A23, CYP94B3, CYP71B12, CYP96A2,
CYP702A1, CYP707A3, CYP82C2, CYP76G1, CYP705A4,
CYP71B10, CYP706A2, CYP81DI11) were also differen-
tially regulated in the transgenic Arabidopsis (Fig. 9C,
D). The expression response of these genes was also vali-
dated by using qRT-PCR analysis. Our expression data
strongly supported the transcriptome observation that
reflects the upregulation of multiple genes (Additional
file 10 : Fig. S8). These genes validate the abundance of
transcripts encoding for DREB, ABA biosynthesis, and
CYP sub-family genes in transgenic lines when
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compared to wild type. Overall, we conclude that a dis-
tinct cluster of genes involved in drought and ABA
stress were significantly upregulated in these transgenic
plants and thus may impart tolerance to stress.

VIH2 overexpression affects ABA levels and regulates
plant cell-wall composition

Multiple genes related to ABA biosynthesis were differ-
entially expressed in TaVIH2-3B overexpressing Arabi-
dopsis. To verify if the de novo gene expression response
to ABA-associated genes could be correlated with its

in vivo levels, ABA was quantified in their leaves. We
observed that the accumulation of ABA was significantly
higher (~ 3—4 fold) in transgenic Arabidopsis when com-
pared to the control plants (Fig. 10A). This average in-
crease of ABA in all the four transgenic lines was
statistically significant (p < 0.0001, Student’s ¢ test). Our
data confirmed the involvement of ABA in the drought
tolerance of transgenic lines.

Our results have revealed the function of TaVIH2-3B
in drought stress. To draw the commonality between
our gene expression in TaVIH2-3B overexpressing
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Arabidopsis and drought, we analyzed previously re-
ported RNAseq data SRA: SRP075287 (under drought
stress) for overlap of de-regulated genes. In total, 295
and 309 genes were commonly regulated in #Line4 and
#Line6 when compared with drought data (Fig. 10B and
Additional file 11 : Table S3). Most of the listed genes
that were commonly regulated belong to the category of

hormone metabolism, signalling, stress response,

development and cell-wall functions (Fig. 10C). Multiple
genes NCEDs, CYPs, and glycosyltransferases were
highly enriched in the dataset (Additional file 11 : Table
S3). These extended analyses support the notion that
TaVIH2-3B could impart activation of genes pertaining
to drought in transgenic plants that could impart basal
drought resistance. Since cell-wall plays a significant role
in imparting drought resistance, we, therefore, measured
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(See figure on previous page.)

Fig. 8 RNAseq analysis of Col-0 and #Line4 and 6. A Expression pattern (as Z-scores) of top 56 genes commonly upregulated among the
transgenic lines w.rt. Col-0(Ev) in 25-day-old seedlings. Heatmap depicts the relative expression in Col-0(Ev) and overexpressing lines of TaVIH2-3B
(3 biological replicates; rep1-3). B Heatmap representing a graphical summary of the Gene Ontology (GO) classification for DEGs in #Line4 and
#Line6 w.rt. Control plants. Increasing intensities of brown and blue colors represent the comparatively low and high expression for each gene,
as depicted by the color scale. Normalized expression counts were used to plotting the expression as Z-scores using heatmap. Two functions
from the gplots package in R. Significantly altered GO terms were identified using the Classification SuperViewer tool; the x-axis represents the
GO terms where bold terms represent significant alteration while the y-axis represents the normed frequency which when > 1 signifies over-
representation while < 1 signifies under-representation
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Speculative model for the working of VIH2 to impart drought resistance to plants

different cell-wall components of control and transgenic  experiments. Our extraction procedures for control
Arabidopsis. Using standard extraction methods resulted  plants show the ratio of 1:1.2 to 1.5 for arabinose/galact-
in comparable yields from all the tested plants, and the ose and arabinose/xylans. This validates our extraction
presence of starch was ruled out before performing procedures. Our analysis indicated a consistent increase
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in the accumulation of cellulose (from 1.3 to 2.5-fold) in
the transgenic lines that were the same among the bio-
logical replicates and multiple transgenic lines (Fig.
10D). Additionally, arabinoxylan (AX) and arabinogalac-
tan (AG) was also increased (1.8-2.2 and 1.47-1.5-fold)
in the transgenic lines as compared to the controls (Fig.
10D). To further validate the role of VIH proteins, the
Atvih2-3 mutant line was used for measuring the bio-
chemical composition of the shoot cell wall (Fig. 10D).
Our analysis showed a significant reduction of the AG,
AX, and cellulose content in this mutant line when com-
pared to transgenic lines (Fig. 10D). Our data demon-
strate that overexpression of wheat VIH2-3B resulted in
changes in the cell-wall composition, and these changes
could be linked to the enhanced drought response in
leaves.

Discussion

Recently, studies investigating inositol pyrophosphates
have gained much attention due to the presence of high-
energy pyrophosphate moieties speculated to regulate
metabolic homeostasis in organisms [22, 25, 30-32].
This study was performed to characterize and identify
the functional mechanism of VIH proteins involved in
the biosynthesis of PP-InsPx. We have characterized two
wheat inositol pyrophosphate kinase (TaVIH1 and
TaVIH2) encoding genes and demonstrated that homo-
eolog wheat VIH2-3B in Arabidopsis could enhance
growth and provide tolerance to drought stress. Our line
of evidence shows that this tolerance to drought is a re-
sult of the ability of VIH to modulate cell-wall- and
ABA-related genes resulting in the changes in the cell-
wall polysaccharide composition (AG, AX, and
cellulose).

Hexaploid bread wheat has one of the most complex
genomes comprising of three related sub-genomes that
have originated from three separate diploid ancestors,
thus forming an allohexaploid genome [33, 34]. There-
fore, to consider the appropriate homoeolog-transcript
for further studies, the Wheat-Exp expression database
was used to analyze VIH2-3B homoeolog expression in
different tissues and also during the developmental time
course (Additional file 12 : Fig. S9A). Plant VIHs are
known to be involved in defense response via a
jasmonate-dependent resistance in Arabidopsis [22].
Wheat VIH genes were also induced upon infection of
plants with pathogens (Additional file 12 : Fig. S9B and
C). Thus, the role of plant VIH genes during plant-
microbe interaction was found to be conserved. TaVIH
protein was an authentic kinase protein since its kinase
domain could catalyze phosphorylation and harbors
yeast VIP1-like activity, as demonstrated by its
utilization of InsP, as a substrate. In the past, AtVIH
proteins possess kinase activity that generates different
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isoforms of InsP; [22, 25]. Earlier, it was suggested that
Arabidopsis VIH2 executes Vipl/PP-IP5K but not Kcs1/
IP6K-like activities in yeast [22]. This observation con-
firms the conserved kinase activity among the plants
with high substrate affinity for InsP, [35]. Similarly, yeast
and human enzymes also show differential InsPs and
InsP; kinase activity [5, 36, 37]. We tested InsP, as a
substrate for wheat VIH proteins where TaVIH2 shows
more specificity towards InsP, that suggest PP-IP5K-like
activity generating InsPg (Fig. 2B). Intriguingly, our
time-dependent assays and the RLU value, which reflects
the conversion of InsP; to InsPg could account for the
different affinity of wheat VIH proteins (Fig. 2A, B).
Interestingly, AtVIH1 and AtVIH2 show a high identity
(89.8%) at the protein level, whereas specifically
TaVIH1-4D and TaVIH2-3B arising from two different
chromosomes show 72% identity. VIH protein alignment
of Arabidopsis and wheat suggest the presence of the
conserved residues required for protein-substrate (5-
InsP;) interactions (Additional file 3 : Fig. S2). Although
the conserved-catalytic residues remain same in both the
wheat VIH proteins, we could still see changes in the
protein sequences in the N-terminal ATP-grasp do-
mains. Wheat genome encodes a total of six VIH pro-
teins that remains to be tested if they could vary in the
affinity to utilize the respective substrates. These appar-
ent differences could be intriguing that requires further
biochemical investigations.

The presence of various cis-acting elements in the pro-
moter region plays an essential role in the transcrip-
tional regulation of genes in response to multiple
environmental factors. Our transcriptional activity of
TaVIH2-3B promoter and expression analysis links
TaVIH2-3B with Pi starvation response (Additional file
3 : Fig. S2). This function of inositol pyrophosphate ki-
nases in the regulation of Pi homeostasis seems to be
evolutionarily conserved [31, 37]. In Arabidopsis, it was
recently demonstrated that VIH-derived InsP8 is re-
quired to sense the cellular Pi status and binds to the
intracellular Pi sensor SPX1 to control Pi homeostasis in
plants [24]. We found that in addition to Pi homeostasis,
the TaVIH2-3B promoter also responds to drought
conditions.

Earlier, the double mutants of VIH genes in Arabidop-
sis show severe growth defects, implicating their unex-
plored role in overall growth and development [23]. We
hypothesize that the molecular and biochemical changes
in transgenic Arabidopsis provide the overall mechanical
strength to the plant cell and, in turn, tolerance to stress
conditions. These observations were also supported by
our transcriptome analysis of two independent TaVIH2-
3B overexpressing Arabidopsis lines that show consistent
high expression of cell wall, ABA, and DREB genes (Fig.
8 and Fig. 9B). Multiple genes were differentially
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regulated by TaVIH2-3B overexpression, suggesting that
increased protein levels of VIH2 could cause changes in
gene expression patterns. Classically, VIH proteins con-
tain evolutionarily conserved two distinct domains, in-
cluding an N-terminal rimK/ATP GRASP kinase and
phosphatase domain. It remains to be dissected if the
change in transcriptome response in these transgenic
Arabidopsis is due to the kinase or phosphatase domain.
Earlier, multiple inositol-1,3,4 triskisphosphate 5/6-kin-
ase (devoid of phosphatase domain) was also implicated
for their role in drought tolerance [38, 39]. This may
suggest that the tolerance for the drought could arise by
the presence of the functional kinase domain.

Multiple studies have implicated that an enhanced
level of ABA leads to drought tolerance [40—43]. The el-
evated levels of ABA in our transgenic plants could be
accounted for the high expression of genes involved in
cell-wall maintenance and biosynthesis. In yeast, the role
of inositol pyrophosphate kinase was also implicated in
vacuolar morphology and cell-wall integrity [14]. Plant
cell-wall-related remodelling and ABA-regulated signal-
ling is the primary response against abiotic stress, in-
cluding drought [41, 42, 44]. ABA-dependent increased
expression of NCEDs, CYPs, and DREBP have been re-
ported earlier in plants with their role implicated in
drought stress [40, 43, 45]. Our study shows a high basal
expression of genes encoding for DREBP and CYPs (Fig.
8C). The high constitutive expression of these gene fam-
ilies in our transgenic Arabidopsis could account for
their better adaptability for drought stress (Fig. 8A—C).
ABA is an important phytohormone regulating plant
growth, development, and stress responses [46, 47]. At
the mechanistic level, ABA could target downstream
genes that are able to support plant growth even under
non-stress condition [48]. In our case, high ABA levels
could be as a result of such homeostatic interaction with
other hormones, although this needs to be confirmed in
future. Additionally, the high expression of the subset of
NCEDs and DREB genes could also be accounted for
ABA-regulated signalling in transgenic Arabidopsis.
Similarly, overexpression of NCED could result in high
accumulation of ABA [49, 50]. Earlier, changes in cellu-
lar levels of InsP, and InsPg have been attributed to
guard cell signalling, ABA sensitivity, and resistance to
drought in maise mrp5 mutants [31, 51]. This suggests a
molecular link between TaVIH2, ABA levels, and
drought resistance. Resolving the in vivo levels of InsPx
is technically challenging for non-specialized labs. Our
current study is limited due to the lack of in vivo mea-
surements of InsPg in these transgenic lines. In vivo pro-
filing of InsPx by enrichment with TiO, is a powerful
tool that has been employed with plant tissue [23, 24,
52]. We are currently optimizing this method to detect
the InsPx generated in our transgenic lines. However,
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TaVIH2-3B showed the highest homology to AtVIH2
(70.6%) and both show PP-IP5K like activity. Therefore,
we speculate that these transgenic plants may possess
high levels of InsPs.

Atvih2-3 mutant lines lacking mRNA expression also
show alteration in the cell-wall composition despite its
typical growth as wild type Col-0 (Fig. 9D). Interestingly,
vihl and vih2 double mutants display severe growth de-
fect that was rescued by the gene complementation [23].
In our study, we complemented the vih2-3 Arabidopsis
mutant with the TaVIH2-3B that resulted in restoring
Col-0(Ev) like phenotype. This suggests that wheat
VIH2-3B could functionally complement Arabidopsis
vih2 mutants, and it is possible that the in vivo level of
InsPg is restored in these lines since both bear PPIP5K
activity.

Our overexpression data showing enhanced branching
and robust growth collectively reinforce the notion that
VIH are also involved in providing support for plant
growth. The vikh2 mutant in Arabidopsis is more suscep-
tible to infestation by caterpillar (Pieris rapae) and thrips
[22]. The resistance against herbivore pathogens such as
P. rapae could be gained by modulating the genes asso-
ciated with cell-wall modification [53]. Arabidopsis vih2
lines showed compositional changes in the cell-wall-
extracted polysaccharides, especially at the AG level.
The decreased resistance in vih2 mutants against herbi-
vores could be accounted for the defect in the signalling
pathway via COIl-dependent gene regulation and
changes in the structural composition of the cell wall.
Taken together, we propose a working model, where
wheat VIH participate in the drought resistance in plants
by modulating the changes in cell-wall gene expression,
enhanced ABA levels, and change in biochemical com-
position to provide more mechanical strength (Fig. 10E).
In future, it will be interesting to quantitate the level of
higher inositol pyrophosphates in these plants.

Conclusions

Herein, we explored additional roles offered by plant
VIH proteins. We employed genetic and biochemical
tools to characterize the wheat homoeolog VIH2-3B as
an active PP-IP5K. Our lines of evidence suggest that
the expression of VIH genes is perturbed during drought
conditions and could modulate the expression of genes
involved in cell-wall maintenance so as to relay resist-
ance to both mimic-drought and drought conditions.
Interestingly, the wheat VIH2 was able to complement
the vih2-3/2-4 which were also sensitive to mimic-
drought-like condition. In summary, our work provides
a glimpse into the emerging new role of plant VIH pro-
teins in cell-wall scaffolding functions to provide resist-
ance against drought stress. Future studies will be
required to dissect the casual effect of drought response
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that could be mediated at the protein level by the VIH2
or levels of InsPx species in these transgenic lines.

Methods

Plant materials and growth conditions

The experiments in this study were conducted using
Arabidopsis thaliana variety Col-0 ecotype and Bread
wheat (Triticum aestivum L.) variety “C-306" (Mishra
et al,, 20201). For the collection of the tissue materials,
the spikes tagged on the first day after anthesis (DAA)
post which samples were collected at 7, 14, 21, and 28
DAA stages and various tissues, including root, stem,
leaf, and flag leaf of 14 DAA stage. For seed tissue col-
lection, 14 DAA seed was used to separate different tis-
sues, including aleurone, endosperm, embryo, glumes,
and rachis as mentioned previously [54].

Identification and cloning of two wheat VIH genes

Two Arabidopsis (AT5G15070.2 and AT3G01310.2) and
the previously reported yeast VIP1 sequences were used
to perform Blastx analysis against the IWGSC (www.
wheatgenome.org/). The identified sequences were ana-
lyzed for the presence of the typical dual-domain struc-
ture. Furthermore, the Pfam domain identifiers of the
signature ATP-grasp kinase (PF08443) and histidine acid
phosphatase (PF00328) domains were used to identify
VIH proteins in the Ensembl database using the BioMart
application. The corresponding predicted homoeologous
transcripts were found and compared to the other VIH
sequences. DNA STAR Lasergene 11 Core Suite was
used to perform the multiple sequence alignment and
calculate the sequence similarity. Gene-specific primers
capable of amplifying the transcript from the specific
genome was designed after performing 5" and 3'-RACE
to ascertain the completed open reading frame (OREF).
Subsequently, full-length primers were designed to amp-
lify the VIH genes. The generated full-length sequence
information was further used for qRT-PCR-related
studies.

Hydropathy plot and IDR prediction

The hydropathy profile for proteins was calculated ac-
cording to Kyte and Doolittle, 1982. The positive values
indicate hydrophobic domains, and negative values rep-
resent hydrophilic regions of the amino acid residues.
To identify the % similarity with IDR boundaries,
MEFEDp2 (http://biomine.cs.vcu.edu/servers/MFDp2) was
used to predict the disorder content in the input se-
quence [55].

Isolation of total RNA, cDNA synthesis, and quantitative
real-time PCR analysis

Total RNA from various tissues was extracted by a man-
ual method using TRIzol® Reagent (Invitrogen™). The
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integrity and concentration of RNA were measured, and
contamination of genomic DNA was removed by sub-
jecting the RNA samples to DNase treatment using
TURBO™ DNase (Ambion, Life Technologies). Two mi-
crograms of total RNA was used for cDNA preparation
using The Invitrogen SuperScript III First-Strand Syn-
thesis System SuperMix (Thermo Fisher Scientific) as
per the manufacturer’s guidelines. qRT-PCR was per-
formed using the QuantiTect SYBR Green RT-PCR Kit
(Qiagen, Germany). The gene-specific primers capable
of amplifying 150-250-bp region from all the three
homoeologous of two TaVIH genes were carefully de-
signed using Oligocalc software. Four technical repli-
cates for each set of primers and a minimum of two to
three experimental replicates were used to validate the
experiment. Gene-specific primer (with similar primer
efficiencies) used in the study are listed in Additional file
13 : Table S4. ADP-ribosylation factor gene (TaARF)
was used as an internal control in all the expression
studies. The Ct values obtained after the run were nor-
malized against the internal control, and relative expres-
sion was quantified using the 2788CT method [56].

For in silico expression for TaVIH genes, the RefSeq
IDs were used to extract expression values as TPMs
from the expVIP database. For different tissues and
stages, the expression values were used to build a heat-
map. In the case of abiotic and biotic stress conditions,
the expression values from the control and stressed con-
ditions were used to get fold change values, which were
then used to plot heatmaps using MeV software.

Construct preparation for expression vector and yeast
functional complementation

For complementation assays, pYES2, a galactose-
inducible yeast expression vector, was used. The func-
tional complementation of yeast by TaVIH proteins
(with C-myc tag) was studied using 6-azauracil-based
assay. The wild type BY4741 (MATa; his3D1; leu2DO;
met15D0; ura3D0) and viplA (BY4741; MATa; ura3A0;
leu2A0; his3A1; metl5A0; YLR410w:kanMX4) yeast
strains were used for the growth assays. The CDS corre-
sponding to the catalytic domain of ScVIP1 (1-535
amino acids) cloned into pYES2 expression vector was
used as a positive control. TaVIHI1/2, along with ScVIP1
and empty vector, were transformed individually into
wild type and mutant strains by the lithium acetate
method with slight modifications. The expression of
both TaVIH1-4D and TaVIH2-3B in yeast was con-
firmed by Western blotting using Anti C-myc antibody
(1:1000; raised in mice; Invitrogen, USA). For growth
assay, the wild type and mutant S. cerevisiae strains car-
rying different plasmids were allowed to grow overnight
in minimal media without uracil. The primary culture
was used to re-inoculate fresh media to an ODgy, of 0.1
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and grow until the culture attained an optical density of
0.6—0.8. The cell cultures were then adjusted to O.D of
1 and further serially diluted to the final concentrations
of 1:10, 1:100, and 1:1000. Ten microliters each of these
cell suspensions was used for spotting on SD(-Ura)
plates containing 2% galactose, 1% raffinose, and varying
concentrations of 6-azauracil (0, 2.5, and 5 mM). The
colony plates were incubated at 30 °C, and pictures were
taken after 4 days.

Protein expression of wheat VIH1 and VIH2, in vitro
kinase assays, PAGE analysis, and MADLI-ToF analysis

The TaVIH1-KD and TaVIH2-KD were cloned in pET-
28a and expressed in E. coli BL21 cells using 0.5 mM
IPTG and purified in lysis buffer having pH 7.4 contain-
ing 50 mM sodium phosphate, 300 mM NaCl, and pro-
tein  inhibitor = cocktail. =~ Post sonication and
centrifugation purification was done on the Cobalt resin
affinity chromatography column (Thermo Fisher Scien-
tific, Waltham, MA, USA). After column saturation
overnight at 4°C, it was washed with buffer containing
7.5 mM imidazole and subsequently eluted with buffer
containing 100 mM EDTA. The eluate was pooled and
concentrated using a concentrator having a molecular
weight cut-off of 10 kDa by spinning at conditions men-
tioned in the vivaspin concentrator’s manual. The con-
centrated enzyme preparation was washed thrice with
sodium phosphate buffer and finally concentrated in
Tris-HCI buffer, pH 7.4. Purified proteins were analyzed
by western blotting with mouse anti-HIS primary anti-
body and goat anti-mouse secondary antibody [HRP IgG
(H + L): 1:5000 dilutions; Invitrogen].

Kinase assays were performed using the ADP-Glo ™
Max Assay kit (Promega, USA) according to the manu-
facturer’s guidelines. This kit utilizes the luminescence-
based test for ADP quantification as a measure of kinase
activity. We prepared InsP; by using 100 ng of mouse
IP6K1 (mIP6K1) recombinant protein along with
100 uM of InsPg (Sigma, USA) in a buffer containing 20
mM HEPES (pH 7.5), 5 mM MgCl,, 10 mM ATP, and 1
mM DTT for 3h at 28°C. The resultant product was
first resolved by TBE-PAGE gel and then eluted from
the gel as described earlier [57] and was used for the re-
action. The concentration of the eluted InsP, was mea-
sured with ImageJ software by comparing with varying
InsPg concentrations in the TBE-PAGE gels [57]. For
ADP-Glo™ Max Assay kit 50 ng of respective protein
(VIH1 and VIH2) and 300 nM InsP; and 1uM of ATP
was used, and the assay was conducted by following the
manufacturer’s guidelines. Luminescence was measured
1 h after adding the ADP-Glo™ Max Detection Reagent,
using SpectraMax Mbe plate reader (Molecular Devices,
USA).
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For resolving the InsPx species generated by TaVIH1
and TaVIH2, separate kinase assays were performed in
20mM HEPES (pH 7.5), 5mM MgCl,, 10mM ATP,
100 uM InsP;, and 1 mM DTT and incubated along with
30 ng of respective proteins in a total volume of 100 pl.
ScVIP1 was taken as a control for the reaction. These re-
actions were incubated at 28 °C for 1, 2, or 9 h. The reac-
tion products were separated by TBE-PAGE and
visualized by Toluidine Blue staining. All the inositol
polyphosphates were resolved using 18 cm gel using
33.3% polyacrylamide gel in Tris-borate EDTA, as men-
tioned earlier [28]. These gels were pre-run for 75 min
at 300 volts, and the samples were mixed with dye (10
mM Tris-HCl, pH 7.0; 1 mM EDTA; 30% glycerol; 0.08%
Orange G) and loaded. Gels were run at 5-6 mA over-
night at 4 °C until the Orange G dye front reached 6 cm
from the bottom of the gel. Bands were subsequently vi-
sualized by Toluidine Blue (0.1% w/v) stain. TBE-PAGE
gel-purified products of TaVIH reaction were used for
Matrix-assisted laser desorption-Time Of flight Mass
Spectrometry analysis (MALDI-ToF-MS). MALDI-ToF-
MS was performed from gel extract solutions which
were pipetted on an a-Cyano-4-hydroxycinnamic acid (=
98%, Sigma) prepared on a stainless steel plate (0.5 uL of
a 10mg/mL ACN/H20 1:1 solution). Negative
ionization mode was used for acquiring spectra on a
spectrometer (AB SCIEX TOF/TOF™ 5800; equipped
with a 337-nm laser) operating in the linear mode.

Cloning of VIH promoter, cDNA, and Arabidopsis
transformation

For promoter, ~ 2000 bp fragments upstream of the start
codon were PCR amplified from genomic DNA. The
cloned DNA fragments (in pJET1.2) were sequenced,
confirmed, and inserted into pCAMBIA1391z, a
promoter-less binary vector containing GUS reporter
gene to generate TaVIHpromoter: GUS in pCAM-
BIA1391z. For VIH2-3B ¢DNA (3117 bp) fussed C-
terminal His tag, site-directed cloning was done at Spel
generated site in pCAMBIA1302 (pCAMBIA1302:
TaVIH-His). These generated transcription units were
introduced into Arabidopsis seedlings, or T-DNA inser-
tion lines of vih2-3 (SAIL_165 F12), vih2-4 (GK-
080A07) mutant using Agrobacterium tumefaciens
(GV3101) mediated transformation by floral dip method
(Zhang, Henriques, Lin, Niu & Chua 2006). Multiple (7-
10) independent transformants were screened on 0.5x
MS media containing 30 mg/L hygromycin and 0.8%
agar. The transformed seedlings with long hypocotyls
and green expanded leaves at a 4-leaf stage were sepa-
rated from the non-transformed seedlings and trans-
ferred to the soil after about 3 weeks. Similarly, T; and
T, generation seeds were also selected and allowed to
grow till maturity. The transgenic seedlings were
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confirmed for the presence of recombinant cassette
using PCR-based approach. The transgenic lines harbor-
ing empty pCAMBIA1391Z or pCAMBIA1302 vector
was used as a respective negative control. The PCR-
positive lines were further used for functional
characterization. In addition, the promoter sequences of
TaVIH genes were analyzed for the presence of cis-
regulatory elements using the PLANTCARE database
(http://bioinformatics.psb.ugent.be/webtools/plantcare/).

GUS reporter assays and characterization of transgenic
lines in Arabidopsis

For promoter analysis, the seeds of PCR-positive lines
were surface sterilized and grown on 0.5x MS (Mura-
shige and Skoog media) agar plates containing 30 mg/L
Hygromycin B for 15 days before they were subjected to
various abiotic stress and hormonal treatments. For de-
hydration stress, the seedlings were air-dried by placing
them on Whatman filter paper for 1 h. Exposure to ABA
(100 uM), GA3 (20 uM), and drought-mimic (20% and
30% PEG) were given by placing the seedlings on filter
paper impregnated with 0.5x MS solution containing the
respective chemical for 24 h. For Pi starvation, seedlings
were allowed to grow on MS agar plates without
KH,PO, for 96 h. Histochemical staining of seedlings
after respective treatments were performed by incubated
overnight in GUS staining solution (Jefferson 1987) with
2mM X-Gluc (5-bromo-4-chloro-3-indolyl-beta-D-glu-
curonic acid, HiMedia, India) at 37°C in a 48-well mi-
croplate  containing about ten  seedlings/well.
Chlorophyll was removed from tissues by dipping in
90% ethanol. The staining was visualized and photo-
graphed under Leica DFC295 stereomicroscope (Wet-
zlar, Germany) at a magnification of x 63. MS solution
without any chemical served as a control.

For characterization of transgenic line parameters such
as rosette area, the number of leaves, leaf size, length of
central root axis, and number of shoots (primary and
secondary). Four independent confirmed homozygous
transgenic lines were used for this study. Each parameter
was calculated using three experimental replicates, each
consisting of twelve plants. For drought-mimic stress ex-
periments, 3-day-old seedlings of transgenic and control
pre-grown on 0.5x MS were transferred to 0.5x MS
plates consisting of either 125- or 100-mM mannitol or
5 or 10% glycerol. Ten seedlings were used, and the ex-
periments were repeated three times with similar pheno-
types. For control, seedlings continued to grow on % MS
plates. Root lengths were measured, graphs were plotted
(using three experimental replicates), and pictures were
taken after 9 days of growth. The relative water loss %
was calculated of twenty-five leaves per five plants with
a similar developmental stage for each of the transgenic
lines, and control plants were subjected to incubation
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(27 °C) for the period of 8 h. The fresh weight of the de-
tached leaf was taken and continued for the measure-
ments every 2 h. The experiment was repeated twice for
similar observations. The leaf relative water content
(RWC) measurement was performed as mentioned earl-
ier [41]. The value for each treatment was calculated by
using the standard formula RWC (%) = [(FW - DW)/
(TW - DW)] x 100 with FW is fresh weight, DW is dry
weight, and TW is turgor weight. For performing these
experiments, leaves of equal sizes were detached from
24-day-old transgenic lines and control Arabidopsis and
weighed immediately (FW). The leaves were submerged
in deionized water for 24 h. After incubation, the leaves
were blotted dry, and their weight was determined
(TW). To measure their DW, they were oven-dried (at
65 °C) for 24 h. The experiments were performed with at
least three experimental replicates, each consisting of
five to six plants.

For drought response, the seedlings were grown in a
symmetrical box with demarcated sections for each
seedling. The seedlings were inter-rooted so that they
are exposed to similar soil moisture conditions. The 7-
day-old seedlings of Arabidopsis were subjected to
drought (water withholding) conditions for the period of
14 days. After the drought period, the seedlings were re-
watered, and observations were made after 4 and 7 days.
Post this, the plants were observed, and % survival rates
were calculated.

RNAseq profiling

Col-0(Ev) and overexpressing TaVIH2-3B Arabidopsis
(#Line4 and 6) seedlings were grown for 25 days. Total
RNA was extracted from three independent biological
replicates for each genotype using RNeasy Plant Mini
Kits (Qiagen, CA). Genomic DNA contamination was
removed by digestion with Turbo DNase (BioRad, CA).
RNA quantity was checked by Bioanalyzer for quality
control (RIN > 8). Library construction and sequencing
were performed by Eurofins, Bangalore, India, using
pair-end library preparation. About 9.5 to 13.8 million
raw reads were obtained for each sample. Raw reads
were processed to filter out the adapter, and low-quality
(QV < 20) reads using trimmomatic v0.39 [58]. The
reads were then pseudo-aligned against the reference
transcriptome (Ensembl release 48) using Kallisto
v0.46.2 [59]. The obtained raw abundances were summa-
rized to gene-level expression counts using tximport and
imported to DESeq2 [60, 61] for differential expression
(DE) analysis in R. The obtained log2 fold change (LFC)
values were further processed using apeglm package to
reduce noise [26]. Genes with 1 > LFC < - 1 and padj <
0.05 were considered significantly DE. The expression
correlation across lines and within replicates was ana-
lyzed using principal component analysis (PCA) in
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ggplot2 [62]. The data have been deposited in the NCBI
as a Bioproject ID PRJNA685929.

GC-MS analysis of Arabidopsis cell-wall polysaccharides
and ABA measurement

Extraction of cell-wall components was performed as de-
scribed earlier with minor modification as depicted in
the flowchart as Additional file 14 : Fig. S10 [63]. Since
such chemical analysis requires relatively large amounts
of samples, pools from 3 to 5 independent plants (for
each of the three biological replicates) of the respective
lines expressing wheat VIH2-3B were used for chemical
analysis. Briefly, 5 g (fresh weight) of shoots from re-
spective lines and control at similar developmental
stages (25 days old) was crushed to a fine powder and
processed further. The derived pellet was used to extract
arabinoxylan (AX) and cellulose, whereas the super-
natant was used to extract arabinogalactan (AG). The
extractions were checked with iodine solution to make
sure that they are free of starch interference. The com-
positional analysis of the extracted AG, AX, and Cellu-
lose was determined by preparing their alditol
derivatives and process for gas chromatography-mass
spectrometry (GC-MS) analysis as described [64, 65].
Two microliters of samples was introduced in the split-
less injection mode in DB-5 (60 m x 0.25 mm, 1 um film
thickness, Agilent, CA) using helium as a carrier gas.
The alditol acetate derivative was separated using the
following temperature gradient: 80°C for 2 min, 80—
170°C at 30 °C/min, 170-240 °C at 4 °C/min, 240 °C held
for 30 min and the samples were ionized by electrons
impact at 70eV. ABA was measured using plant hor-
mone abscisic acid (ABA) ELISA kit (Real Gene,
Germany). Twenty-five-day-old plant leaves were used
for the measurement of the ABA content. One gram of
fresh weight from eight plants for each line was used for
extractions. The experiments were repeated with at least
three independent extractions, and concentration was
calculated using standard graphs as per the manual in-
structions. Standard graph and test samples were plotted
using a log of concentration, and color development for
each line was measured at 430 nm (Additional file 15 :
Fig. S11A and B).

Abbreviations

ADP: Adenosine diphosphate; AG: Arabinogalactan; ATP: Adenosine
triphosphate; AX: Arabinoxylan; CYP: Cytochrome P450; DREB: Dehydration
response element-binding; DTT: Dithiothreitol;

EDTA: Ethylenediaminetetraacetic acid; GAs: Gibberellic acid; GUS: -
glucuronidase; InsPs: Inositol phosphate; InsPg: myo-inositol-
hexakisphosphate, phytic acid; IWGSC: International wheat genome
sequencing consortium; KD: Kinase domain; NCED's: 9-cis-epoxycarotenoid
dioxygenase; IP6Ks: Inositol hexakisphosphate kinases; IPTG: Isopropyl 3-D-1-
thiogalactopyranosid; TPKinase: Inositol 1,34 trisphosphate 5/6 kinase;
PAGE: Polyacrylamide gel electrophoresis; PP-InsPs: Inositol pyrophosphates;
PP-IP5Kinase: Diphosphopentakisphosphate kinase; Pi: Phosphate;

RLU: Relative luminescence units; RWC: Relative water content; SD: Standard
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deviation; TBE: Tris-borate EDTA buffer; TBS: Tris buffered saline; TBST: Tris
buffered saline tween; WT: Wild type; YPD: Yeast extract peptone dextrose
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Additional file 1: Fig. S1: Kyte-Doolittle Hydropathy plots and con-
served domains of wheat VIH proteins. (A) Kyte-Doolittle hydropathy plots
with the positive values indicating the hydrophobic domains and nega-
tive values represent hydrophilic regions of the amino acid residues. The
hydropathy profile for proteins was calculated according to Kyte and
Doolittle, 1982. (B) Schematic representation of domain architecture of
TaVIHs deduced from CDD database: light gray rectangles indicate ATP
Grasp/RimK Kinase domain and dark gray colored hexagon corresponds
to Histidine Phosphatase superfamily.

Additional file 2: Table S1: List of TaV/H genes with computed physical
and chemical parameters. The molecular weight and isoelectric point
prediction were done using Expasy ProtParam tool (https://web.expasy.
org/protparam/). The sub-cellular localization prediction was done using
WoLF PSORT prediction tool (http://www.genscript.com/wolf-psort.html).
RefSeq v1.1 for wheat Ensembl Plants was used for gene ID.

Additional file 3: Fig. S2: Multiple Sequence Alignment (MSA) of
different VIH/Vip protein sequences (TaVIH1, TaVIH2, AtVIH1, AtVIH2 and
ScVIp1). The red sequence shows high conservation of the amino acids.
The single green line indicates rimK/ATP-grasp kinase domain, and the
double green line indicates Histidine Phosphatase Domains (HAPs).

Additional file 4: Fig. S3: Yeast complementation assays of wheat VIHs.
(A) Total protein was extracted from yeast cell transformed with TaVIH1-
4D (C-myc tag) and TaVIH2-3B (C-myc tag) and Western analysis was
done (left panel). Representative image of spotting assay performed on
SD-Ura plates containing 1% raffinose, 2% galactose and supplemented
with 0, 2.5 and 5 mM of 6-azauracil (right panel). The wild type BY4741
and vipTA strains were transformed with respective constructs using Li-
acetate method. Representative images were taken 4 days after the spot-
ting assay was performed. Similar results were obtained with three inde-
pendent repeats. (B) Filamentous growth assays were observed for wild
type yeast (WT), yeast mutant- vipTA with empty pYES2 (vip1A) and
TaVIH2-38 complementation in vip1A- (TaVIH2-3B+ Avip1). Pictures were
taken 20 days post-incubation.

Additional file 5: Fig. S4: Protein purification and western analysis of
wheat TaVIH1-KD and TaVIH2-KD. The molecular weight is around 40 kDa
. Both the VIH proteins (VIH1 and VIH2) were expressed and purified as
mentioned in the Methods section, and the expression was confirmed by
the Western analysis using His-antibody.

Additional file 6: Fig. S5: (A) PAGE gel (33%) analysis of mIP6K1
generated product by staining with Toluidine Blue. Substrate InsPg
without and with ATP (2.5, 5 and 10 mM) was used as a control. The
product InsP; was generated using mIP6K1 and InsPg as a substrate (last
lane). (B) The InsP; generated by mIP6K1 was eluted from gel and MS
analysis was done which indicated a signal at m/z of 740.3 that
correspond to mass of InsP; and matches with the expected generated
species. Indicated by arrow. (C) The kinase reactions were performed
using 30 ng of TaVIH1-KD, and TaVIH2-KD purified proteins for 9 hr at 28°
C. (D) MALDI-ToF MS analysis of synthesized InsPg for TaVIH2-3B KD. MS
analysis indicated a significant signal at m/z of 82047 that correspond to
the mass of InsPg Indicated by arrow.

Additional file 7: Fig. S6: Hormonal and abiotic stress response of
TaVIH genes promoter. (A) Cis-element analysis of VIHT and VIH2 pro-
moters (~ 1 kb) Multiple stress related domains are represented in a sche-
matic form. (B) Representative images for histochemical GUS assay
performed against different stresses for promTaVIH1:GUS and promTa-
VIH2:GUS transgenic lines raised in Arabidopsis thaliana Col-0 background.
Two-week-old seedlings selected positive against hygromycin selection
on 0.5XMS agar plates were subjected to respective treatments: drought
(20% PEG), dehydration (1 hr air drying), ABA (100 pM), GA3 (20 uM) and
Pi-deficiency (0.5X MS medias without KH,PO,). Seedlings with or without
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treatment (control) were stained overnight in GUS staining solution and
photographed using Leica stereomicroscope at 6.3X magnification.

Additional file 8: Fig. S7: RNAseq analysis of transgenic Arabidopsis. (A)
PCA analysis of the RNAseq for control (Col-0 (Ev)) and two transgenic
Arabidopsis lines. (B) Map man analysis of the genes those are
consistently represented in the two transgenic Arabidopsis lines with
overexpressing TaVIH2-3B.

Additional file 9: Table S2: List of genes up- and down-regulated in
#line4 (Sheets1,2) and line6 (Sheets3,4) w.rt. Col-O(Ev) lines. DEGs were
obtained using the Kallisto-DESeq2 pipeline; genes with LFC > 1 in either
direction and padj < 0.05 were considered to be differentially regulated.

Additional file 10: Fig. S8: gRT-PCR validation of selected genes from
the Col-O(Ev), #Line4 and #Line6. A total of 2 ug of RNA (DNA free) was
used for cDNA synthesis and gRT-PCR was performed using gene specific
primers (Supplementary Table S4). C; values were normalized against
wheat ARFT as an internal control.

Additional file 11: Table S3: List of drought responsive genes that are
differentially regulated in #line4 (Sheet1), #line6 (Sheet2), and
differentially requlated in both #line4 and line6 (Sheet3). Drought
responsive genes at 10 days of drought stress w.rt Control plants were
extracted from the SRA RNAseq dataset (SRP075287) using Cufflinks
pipeline. Genes with 1 > LFC < -1 were considered to be drought
responsive.

Additional file 12: Fig. S9: Expression patterns of TaVIH gene
homoeologous in different tissues and stress conditions. RNAseq datasets
of (A) Tissues and developmental stages (B) Abiotic (phosphate
starvation, heat and drought stress) and (C) Biotic stress conditions were
used. The expression values were obtained from expVIP database in the
form of TPM values and ratios of stressed to control condition were used
to generate heatmaps using MeV software. Green and red colors
represent down-regulation and up-regulation of the genes in the specific
stresses, as shown by the color bar.

Additional file 13: Table S4: List of primers used for this study.

Additional file 14: Fig. S10: Flow representation of the preparation
and extraction of polysaccharides (Arabinogalactans, Arabinoxylans and
Cellulose) form the shoots of Arabidopsis.

Additional file 15: Fig. S11: Standard graph for ABA measurement in
plant leaves samples. (A) Y-axis indicates Log of concentration and X-axis
indicates the optical density. Data was linearised by plotting the log of
the target antigen concentrations versus the log of the OD and the best
fit line was determined by regression analysis. (B) Panel showing the color
development for the quantitation of the ABA in different leaf samples,
OD was taken at 420 nm.
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