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The precedence effect in spatial hearing
manifests in cortical neural population
responses
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Abstract

Background: To localize sound sources accurately in a reverberant environment, human binaural hearing strongly
favors analyzing the initial wave front of sounds. Behavioral studies of this “precedence effect” have so far largely
been confined to human subjects, limiting the scope of complementary physiological approaches. Similarly,
physiological studies have mostly looked at neural responses in the inferior colliculus, the main relay point between
the inner ear and the auditory cortex, or used modeling of cochlear auditory transduction in an attempt to identify
likely underlying mechanisms. Studies capable of providing a direct comparison of neural coding and behavioral
measures of sound localization under the precedence effect are lacking.

Results: We adapted a “temporal weighting function” paradigm previously developed to quantify the precedence
effect in human for use in laboratory rats. The animals learned to lateralize click trains in which each click in the
train had a different interaural time difference. Computing the “perceptual weight” of each click in the train
revealed a strong onset bias, very similar to that reported for humans. Follow-on electrocorticographic recording
experiments revealed that onset weighting of interaural time differences is a robust feature of the cortical
population response, but interestingly, it often fails to manifest at individual cortical recording sites.

Conclusion: While previous studies suggested that the precedence effect may be caused by early processing
mechanisms in the cochlea or inhibitory circuitry in the brainstem and midbrain, our results indicate that the
precedence effect is not fully developed at the level of individual recording sites in the auditory cortex, but robust
and consistent precedence effects are observable only in the auditory cortex at the level of cortical population
responses. This indicates that the precedence effect emerges at later cortical processing stages and is a significantly
“higher order” feature than has hitherto been assumed.
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Background
Having two healthy ears can bring considerable advan-
tages, enabling us to use binaural cues to localize sound
sources and to separate sound sources in a cluttered
acoustic environment. However, sound localization is
often rendered more complicated by the fact that every

hard surface reflects sound waves, acting like a “sound
mirror” and creating a mirrored sound source which in-
terferes with the localization of the original source.
Interestingly, we are usually unaware of the powerfully
distorting effect such reverberation has on the sound
waves that arrive at our eardrums. Our auditory path-
ways appear to be equipped with powerful “echo sup-
pression” mechanisms, but their function and their
physiological basis remain very poorly understood. One
important part of this echo suppression, which has been
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studied in some detail, is the so-called “precedence ef-
fect.” This refers to the phenomenon that the perception
of sound source direction puts great emphasis on the
binaural cue values experienced during the first few mil-
liseconds of a new sound burst. This reliance on sound
onset cues is thought to reduce the confounds that can
arise when the binaural cue values of later parts of the
sound are distorted by interference from reverberant
sound (for a review, see [1]).
The precedence effect has been recognized as a psy-

chophysical phenomenon in humans for over 100 years
(for a history, see [2]), and behavioral studies on rats [3]
and cats [4] indicate that it may be a common feature of
mammalian hearing. Previous animal work [3, 4] tended
to use brief individual stimulus pulse-echo pairs deliv-
ered in the free field, which is fine for investigating
whether or not there is a precedence effect, but it does
not permit quantification of the relative weighting that
the precedence effect might give to various elements of a
stimulus composed of a rapid series of consecutive
pulses. Understanding the perceptual weighting in pulse
train stimuli has considerable potential ecological and
translational importance. Firstly, because most animal
vocalization sounds, including human vowels, are effect-
ively (band-pass filtered) pulse trains. Secondly, because
cochlear implant (CI) neuroprosthetic devices, which are
used increasingly to treat profound to severe hearing
loss, will typically encode auditory stimuli as rapid trains
of electrical pulses delivered to auditory nerve fibers. Be-
ing able to measure the relative perceptual weight that
the brain assigns to each pulse in a pulse train as it
forms sound source location judgments is therefore
likely to become important in the development of better
sound processing algorithms for future assistive or neu-
roprosthetic devices.
One elegant way to perform such a quantification was

introduced by Stecker and Hafter [5], who used brief
binaural click trains delivered over headphones to meas-
ure so-called temporal weighting functions (TWFs) psy-
choacoustically. Each pulse in the train carries its own
binaural cue parameters (interaural time or level differ-
ences, ITDs or ILDs), but pulses are delivered at a rate
high enough for clicks to fuse perceptually into a single
perceived sound. Subjects are asked to indicate the per-
ceived source direction of the click train, and a statistical
analysis is used to calculate the relative influence of each
click in the train on the overall perceived source direc-
tion. Studies using this paradigm on normally hearing
human subjects [6–9] have consistently shown a strong
onset dominance to click trains, which is more pro-
nounced for higher click rates than for lower click rates.
From a translational perspective, it would be of inter-

est to extend this type of approach to hearing-impaired
patients as well as to animal models suitable for the

study of hearing loss and treatments. It is well known
that patients with severe hearing loss often have great
difficulty processing binaural cues, even if they are fitted
with bilateral CIs [10]. The processing of ITDs appears
to be particularly severely affected in such patients, even
more so than that of ILDs, and in this study, we shall
focus on ITDs as they are the type of binaural cue for
which deficits, and therefore the need for improvement,
are greatest. Some recent studies have raised the intri-
guing possibility that changes to the current standard al-
gorithms for computing CI stimulus pulses might
enhance the ITD sensitivity of bilateral CI patients. For
example, introducing temporal jitter into the interval be-
tween stimulus pulses may enhance the sensitivity to
ITDs in bilateral CI users [11] as well as normally hear-
ing listeners [12]. Meanwhile, Litovsky [13] reported that
bilateral CI users and normally hearing children may not
exhibit a precedence effect, which raises questions about
how stimulation paradigms and neurobiological develop-
ment interact to further result in effective spatial audi-
tory perception. We will need a better understanding of
the technical factors and biological mechanisms that de-
termine binaural listening performance to improve pa-
tient outcomes. The development of a suitable animal
model that lends itself to combined behavioral and
physiological approaches is going to be an important
step in this endeavor.
Our recent papers [14] demonstrated that Wistar rats have

similar sensitivity to both onset and ongoing envelope ITDs
as humans when tested in a sound lateralization task with
pulsatile stimuli, and intriguingly, rats fitted with bilateral CIs
can exhibit essentially normal behavioral ITD sensitivity even
after prolonged neonatal hearing loss [15]. This is in stark
contrast to human CI patients, who, as already mentioned,
often have very poor ITD sensitivity [10]. Rats may thus be a
highly valuable model for the study of binaural hearing and
the development of better auditory prosthetic strategies. To
evaluate their potential usefulness, it would be helpful to
know if rats also exhibit similar temporal weighting as hu-
man subjects do. In this study, we therefore sought to answer
the following three questions: (1) whether it is possible to
adapt the TWF approach developed by Brown and Stecker
[6] for behavior testing in rats, (2) whether behaviorally mea-
sured ITD TWFs for rats resemble those reported for
humans, with most or all of the perceptual weight vested in
the first click of a train, and (3) whether or how electro-
physiological responses recorded from rat auditory cortex
(AC) reflect the behavioral weighting.

Results
Behavioral data revealed profound onset dominance
For the behavioral experiment, female Wistar rats were
trained to perform a two-alternative forced-choice (2-
AFC) near-field lateralization task very similar to that
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described in [14]. The animals initiated a trial by licking
a center spout, were presented with an acoustic stimulus
over tube phones, and then responded by licking re-
sponse spouts on the left or right. Correct responses
were positively reinforced with drinking water; incorrect
responses triggered a short timeout. (See the “Behavioral
training task” section for further details.) The rats were
trained twice daily, 5 days a week. Usually, the rats
would perform ~ 160 trials on average in each 20-min
training session, but the number could vary from just
below 100 to well over 200. The rats were initially
trained with a 200-ms-long, 300-Hz binaural click train
including both ITD (± 0.136 ms) and ILD (± 6 dB) cues
for 13 to 17 training sessions until they reached the 80%
correct criterion in at least two sessions. Our convention
here is to use negative values to indicate binaural cues
that favor the left ear. These binaural cue values were
deliberately chosen to be large compared to the animals
physiological range, to make the stimuli easy to discrim-
inate and allow the animals to work on learning the pro-
cedure without having to struggle with difficult sensory
discriminations. In particular, acoustic measurements on
rats [16] indicate that ITDs of ~ 0.13 ms are at the upper
limit of the animals’ physiological range, and would
therefore be associated with source directions near the
intra-aural axis (± 90° azimuth). Upon reaching high
levels of performance (> 80% correct), the rats then pro-
gressed to “ITD only training”, which kept the ± 0.136
ms ITD cue, but set ILD to 0 dB. The removal of the
ILD cue had little effect on performance, so the rats re-
quired only 2 to 3 sessions to reach the criterion of >
80% correct in two sessions. They then progressed to
multiple “ITD value training” meaning that, at each trial,
stimulus ITDs were randomly chosen from the set
±[0.1587, 0.136, 0.0907, 0.068, 0.0454, 0.0227] ms. This
introduced many new stimuli with smaller ITDs, closer
to threshold, and the rats needed between 18 and 21
training sessions before reaching the respective criterion
for this training phase (75% correct in two sessions). We
initially trained 5 rats with this protocol, four of which
reached the required high performance with ITD-only
stimuli after about 2 weeks of training. The one rat
which failed to achieve the performance criterion for
progression after 2 weeks of training was excluded from
the rest of the study.
After completing the multiple ITD values training, the

rats were introduced to stimuli designed to measure
their TWFs (see section “Acoustic stimuli for behavioral
TWF measurement” below for further details). Briefly,
our TWF stimuli consisted of a brief train of eight bin-
aural pulses presented at a rate of 20, 50, 300, or 900 Hz,
with the ITD for each of the pulses drawn independently
and uniformly from the range of ± 0.125 ms. We gener-
ated two types of such TWF stimuli: In stimuli for

“honesty trials” (see Fig. 1A), the ITDs for all 8 pulses
were either positive (right ear leading) or negative (left
ear leading), and the rat had to respond on the appropri-
ate side to receive a reward. In contrast, in “probe trial”
stimuli (Fig. 1B), the ITDs were unconstrained, there is
not a priori correct lateralization, and the animals were
free to choose to respond as they pleased and were
rewarded regardless. The final training stage before for-
mal testing began involved only honesty trials. Once the
rats’ performance exceeded 80% correct in two or more
sessions, testing commenced with TWF stimulus ses-
sions containing both “honesty” and “probe” trial stimuli
presented randomly interleaved in a 2:1 ratio. For the
50-Hz and 300-Hz pulse rates, only 2 honesty-trial-only
training sessions were needed for all the rats before test-
ing could begin, while for the 20-Hz and 900-Hz pulse
rates, 4 and 6 training sessions respectively were re-
quired before the final behavioral testing stage.
In the final, psychoacoustic testing stage, we collected

data over a total of 35 sessions for rat 1801, 34 sessions
for rat 1802, 33 sessions for rat 1803, and 33 sessions for
rat 1805. The numbers of probe and honesty trials and
the correct response rate in honesty trials in each condi-
tion for each rat are summarized in Table 1. Rat 1802
was the best performer in honesty trials for all pulse
rates. The correct rate in honesty trials and the number
of training sessions needed in the honesty training stage
suggest that the task difficulty was similar across the
four tested click rates. Note that, even at the most diffi-
cult, 900 Hz click rate, all rats had more than 80% cor-
rect responses in honesty trials.
An analysis of the probe trials obtained during these

testing sessions using Probit regression revealed a pro-
found and consistent onset dominance (“precedence ef-
fect”) across all animals and all click rates. The results
were also remarkably consistent across all animals
tested, as can be appreciated in Fig. 2, which shows the
TWFs, computed as Probit coefficients of each for the
eight clicks in our click trains (see section “Behavioral
data analysis”), for each of the four animals and at each
of the four pulse rates tested. The figure allows us to ap-
preciate the high consistency of the behavior results
across all animals in our cohort. The first and second
pulse weights were significantly above zero in all 4 ani-
mals for click rates of 50 Hz or less, but for higher click
rates of 300 and 900 Hz, significantly non-zero weights
beyond the first pulse are only observed sporadically.
It is also noticeable that faster pulse rates produced

the strongest weighting for the first pulse, suggesting
greater onset weighting at higher pulse rates. This is en-
tirely consistent with previous reports of similar trends
in human listeners [8]. In order to estimate whether
such differences in weights are statistically significant,
we computed bootstrap confidence intervals for the
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Fig. 1 Example waveforms of the acoustic stimuli used in the behavioral experiments. A Example of an honesty trial stimulus at 900 Hz with
0.042 ms jitter and + 0.083 ms offset (+: right ear leading, −: left ear leading). In honesty trials, all ITDs point in the same direction (in this example
the right ear is always leading, even if the size of the ITD can vary between + 0.042 and + 0.125 ms). There is no ambiguity, and the rat will only
be rewarded for responding on the appropriate side. B Example of a probe trial stimulus at 900 Hz with 0.125 ms jitter and 0ms offset. The ITD
for each binaural pulse was randomly chosen from the range of − 0.125 ms to + 0.125 ms. Since there was no a priori objectively correct
response to probe trials, rats were rewarded in those trials irrespective of which side they responded on

Table 1 A summary of the data collected in the final “honesty + probe” testing stage

Condition Animal Probe trials Honesty trials Correct responses in honesty trials Correct response rate in honesty trials

20 Hz 1801 558 1095 879 80.27%

1802 517 1077 984 91.36%

1803 564 1152 983 85.33%

1805 626 1163 946 81.34%

50 Hz 1801 458 888 759 85.47%

1802 495 923 844 91.44%

1803 469 898 763 84.97%

1805 457 943 765 81.12%

300 Hz 1801 449 928 784 84.48%

1802 525 986 881 89.35%

1803 423 816 675 82.72%

1805 422 814 652 80.10%

900 Hz 1801 399 796 643 80.78%

1802 413 868 800 92.17%

1803 388 798 657 82.33%

1805 410 882 707 80.16%

Total 7573 15027 12722 84.66%
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Probit regression weights using classic N-out-of-N re-
sampling. Behavioral data were pooled across all 4 ani-
mals, and the set of N trials for each pulse rate was
randomly resampled with replacement to generate a
bootstrap sample of size N, for which Probit coefficients
were computed in the same way as for the original data
set. This random resampling was repeated 1000 times to
generate a bootstrap distribution of temporal weights.
The resultant bootstrap distributions for the temporal
weights are represented graphically as violin plots in Fig.
3. The full extent to these distributions can be inter-
preted as 99.9% confidence intervals for the true tem-
poral weights. Note that these do not overlap for click 1
at 20 Hz vs click 1 at 900 Hz, indicating that the ob-
served trend for initial weights to increase with pulse
rate is statistically robust. Also note that the bootstrap
distributions are entirely above zero at 20 Hz for pulses
1, 2 and 3, while at 900 Hz only the first pulse had a
weight that can be considered significantly greater than
zero. This suggests that higher pulse rates not only pro-
duce larger initial weights, but also a more rapid decay
of subsequent weights. How complete is this decay? To
answer this question, we can examine the bootstrap dis-
tributions for the later pulses, for example, from click 4
onward. Note that, although almost all (14 out of 16) of
the bootstrap distributions for pulses 4 to 8 straddle
zero, nevertheless, the great majority of them (14 out of

16) have medians greater than zero. Such a large propor-
tion of above zero medians would be surprising if the
later pulses contributed absolutely nothing to the rats’
lateralization percept. For comparison, the binomial
probability of observing 14 or more “heads” in 16 flips of
a fair coin would be only 0.0021. Thus, the contributions
of the later pulses to the lateralization percept are clearly
very small, much smaller than that of the initial pulse
and so small as to be hard to measure accurately, but
they nevertheless appear to be, on average, slightly
greater than zero.
In summary, the behavioral results shown in Figs. 2

and 3 demonstrate that rats temporally weight ITD cues
in a manner that is very similar to the temporal weight-
ings previously described for human listeners by Stecker
and colleagues [5, 8, 17]. All four rats in our cohort
showed a very strong and highly consistent onset
weighting at all tested pulse rates, and the strength of
onset weighting increased significantly at higher pulse
rates.

Channel-wise regression shows only sporadic precedence
effects in electrocorticographic (ECoG) signals from the
auditory cortex
Having demonstrated that rats exhibit strong temporal
onset weighting in their behavioral lateralization of
acoustic stimuli which closely resembles that seen in

Fig. 2 ITD Temporal weighting functions for the four rats used in the behavior experiments, at the click rates shown above each panel. The x-
axes show the individual clicks in the 8-click train. The y-axes show the “temporal weight” of the corresponding click as calculated via Probit
regression. Weights which were individually statistically greater than zero are based on the p values obtained in the Probit regression (p < 0.01)
and are marked with asterisks. Strong onset dominance was seen at all pulse rates for all rats. The weights of the clicks following the first click
increased as the click rate decreased
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humans, we wanted to test whether neural responses in
auditory cortex showed a similarly strong onset weight-
ing, as might be expected if cortical ITD tuning provides
a simple and direct neural correlate of the sensations the
rats report in their behavior. However, identifying the
neurophysiological correlates of TWFs is more challen-
ging than measuring TWFs behaviorally, since neurons
in the auditory pathway do not give binary “left” or
“right” responses, but instead have ITD tuning curves
which can differ greatly from one neuron to the next.
Furthermore, these tuning curves may map ITD values
to neural firing rates in a non-monotonic manner [18].
Field potentials recorded with ECoG electrodes will re-
flect a superposition of many such diverse tuning curves.
Measuring neural TWFs can therefore degenerate into
an under-constrained problem, where one seeks to
understand the mapping of a relatively large number of
continuous-valued stimulus parameters (the ITDs of
each pulse in the train) onto a very noisy continuous-
valued output variable (electrical signals reflecting neural

firing rates) through a set of tuning curves of unknown
shape. In an attempt to make the problem more tractable,
we reduced the complexity of the stimuli compared to
those used in the behavioral experiment by reducing the
number of pulses in the train from 8 to only 4, and by
constraining each pulse so that it could take only one of
two possible ITD values, either − 0.164ms or + 0.164ms.
These ITD values are close to, and slightly larger than, the
maximal ecological ITD values of ± 0.13ms measured
acoustically in rats [16]. By constraining each stimulus
pulse train to have only four pulses, and each pulse con-
strained to take one of only two possible values (corre-
sponding to “far left” or “far right”), we reduced the set of
all possible stimulus pulse trains to only 16, and we pre-
sented each of these 16 possible stimuli 40 times, in
pseudo-random order, recording 640 responses in total at
each recording site. We refer to this reduced-complexity
set of stimuli as “sparse” TWF stimuli to distinguish it
from the richer set of stimuli used in the behavior.

Fig. 3 Distribution of Temporal Weights (Probit Coefficients) obtained by resampling the behavioral data. The colored lines show the range and
the median values of the coefficient distributions obtained over 1000 bootstrap trials. The spindle shapes display the kernel densities of the
corresponding distribution: their widths reflect the proportion of bootstrap samples over a given narrow y-range of coefficients in much the
same way as the height of a histogram would
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In total, we recorded electrophysiological responses to
this set of sparse TWF stimuli at 12 ECoG electrode
placements: 4 placements from the right AC of each of
the 4 trained animals in our cohort, and another 3 from
the left AC of 3 of the 4 trained animals, plus another 5
recordings from the right AC of an additional five un-
trained animals which had not been exposed to the
TWF stimuli prior to the electrophysiological experiments.
At each electrode placement, we recorded responses to our
sparse TWF stimuli at two pulse rates: 300Hz and 900Hz,
yielding a total of 24 electrophysiology data sets. As de-
scribed in the “Univariate analysis: channel-wise regression”
section, in our univariate regression analysis, we aimed to
quantify how well changes in LFP response amplitudes
could be accounted for by a linear regression model in
which each of the four ITDs of our “sparse” ITD stimulus
set serve as regressors. This approach does of course rely
on the assumption that LFP amplitudes recorded with our
ECoG arrays do covary with stimulus ITD, at least to some
extent and for some electrode channels. It is well docu-
mented that single units recorded in the auditory cortex
with penetrating, high-impedance electrodes can be ITD
tuned. However, one cannot necessarily take it for granted
that ITD sensitivity is still observable in ECoG electrode
signals recorded from the cortical surface. In Fig. 4, we

therefore show example LFPs recorded from a single ECoG
channel with two different stimuli, one where all four ITDs
were − 0.164ms, the other where all four ITDs were +
0.164ms. It is readily apparent that the LFP amplitude is
somewhat smaller for the − 0.164ms ITD case. For this
particular channel, that difference in LFP amplitude is
highly statistically significant (p = 0.0026, rank sum test),
but that channel was selected as an illustrative example to
motivate the overall approach. Not all recording channels
can be expected to show such a clear and large ITD de-
pendence on response amplitude. The frequent ipsilateral
ITD tuning is unexpected. Nevertheless, if we assume that
the precedence effect is established early in the pathway,
perhaps by cochlear mechanisms or inhibition in the brain-
stem and midbrain (we will revisit these notions in the dis-
cussion), then we would expect that the type of ITD tuning
observed in Fig. 4 should be dominated by the first pulse in
the train. Furthermore, this dominance ought to be mani-
fest in a multiple linear regression that computes a set of
regression parameters βn to quantify how strongly RMS
LFP amplitude depends on the ITD values of each of the
four pulses in the stimulus (see section “Univariate analysis:
channel-wise regression” for details).
However, in contrast to the behavioral experiments,

which showed highly consistent and strong weighting of

Fig. 4 Examples of LFPs recorded at channel 29 from the left cortex of rat 1803. The stimulus were “sparse” ITD stimulus pulse trains (consisting
of only four binaural pulses) at 300 Hz. The lines show mean ± standard error of the LFP responses recorded when either all four ITDs were +
0.164 ms (red line) or when all were − 0.164 ms (blue line). In this particular example, left ear leading ITDs gave the stronger response, even
though this channel was recorded on the left side, contrary to the expectation that cortical neurons generally prefer sound source locations from
the contralateral side. ECoG channels which defied that expectation were not uncommon in our dataset
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the first pulse, the results of the regression analysis of
the ECoG results were highly variable, and not very con-
sistent in which of the four pulses most strongly shaped
the response. Overall, we observed at best only a weak
trend for slightly larger weights for the ITD of the first
pulse compared to later pulses in the train, and there
was a great deal of heterogeneity in physiological TWFs
from animal to animal and from recording site to re-
cording site. Physiological TWF shapes could also vary
quite strongly depending on whether the pulses were
presented at 300 or 900 Hz. Only for a small subset of
ECoG electrode placements did we observe a clear and
statistically significant weighting of the first pulse in a
majority of channels. An example is shown in Fig. 5A. For
many other electrode placements, we saw a much more
mixed picture, without a convincing or consistent tendency
for the first pulse to carry the highest weight, as would be
expected if neural firing rates consistently reflected the be-
havioral weighting. The examples in Fig. 5B–D illustrate
the diversity of physiological TWFs obtained, the strong
trend for TWFs to correlate among neighboring channels,
and the fact that in these univariate physiological TWFs the
largest absolute weights can also often occur on the 2nd,
3rd, or 4th, rather than the 1st pulse.
To provide an overview of our complete dataset of 12

electrode placements across the 9 animals, we show box-
plots in Fig. 6 which give the distributions of temporal
weights (absolute regression coefficients |β|). We chose
to plot absolute β values because the sign of the β de-
pends on whether the recorded neural population at
each electrode site happens to have a preference for ipsi-
lateral or contralateral leading ITDs, and the sign is
therefore not relevant to the question of whether the
first or second pulse in the stimulus has a stronger influ-
ence on the amplitude of the response. Our data set
comprises a total of 4 β coefficients (one for each pulse
in the 4 pulse train) for each of the 61 electrode chan-
nels for each of the 12 electrode placements, yielding a
total of 2928 coefficients at each of the two pulse rates
tested. Of these, 147 (5%) were individually significant
at alpha 0.05 at 300 Hz, and 228 (7%) were significant
at 900 Hz. (Note that one would expect a priori that
the proportion of significant regression weights ob-
tained in this analysis is likely to be small). Boxplots
summarizing the distributions of these β values are
shown separately for the 300 and 900 Hz pulse rate
conditions, and we show both the entire distribution
of all regression weights and the distributions con-
taining only weights which were significantly different
from zero (p < 0.05).
The median absolute beta values for the first, second,

third, and fourth pulses were similar in all conditions.
For the distributions that excluded non-significant betas,
there was a weak trend for median absolute weight of

first, onset pulse to be larger than the other weights, but
this trend is surprisingly weak compared to the robust
behavioral onset weighting shown in Figs. 2 and 3). Note
in Fig. 5 that TWFs seen at neighboring recording sites
are often highly correlated. Therefore, regression weights
obtained from neighboring sites cannot be treated as sta-
tistically independent observations, which makes it very
difficult to judge whether the observed trends in the
ECoG-derived weight distributions are statistically sig-
nificant. In any event, the “effect size” of the weak trend
seen in Fig. 6 appears too small, and the neural response
patterns are too variable to provide a convincing physio-
logical correlate of the very strong and consistent onset
weighting seen in the behavioral results.

Multivariate decoding shows strong precedence effect in
ECoG signals from the auditory cortex
We have just seen that the univariate (channel-by-chan-
nel) analysis revealed only a weak trend toward onset
weighting in the physiological TWFs obtained by regres-
sion analysis, and many individual recording sites
showed the strongest weighting for pulses other than the
first. In order to try to account for this apparent discrep-
ancy, we investigated whether a multivariate stimulus-
decoding analysis, which takes into account distributed
activity patterns across the electrode array, can reveal a
neural representation of stimulus ITDs which more ac-
curately reflects the powerful onset weighting seen in
the behavioral data (see section “Multivariate analysis:
population-based decoding” for details). Indeed, this
population decoding approach revealed very strong and
highly significant onset weightings in the physiological
responses which closely mirrored the behavioral results.
When analyzing the average RMS activity observed
within the first 30 ms after pulse train onset, and pooling
RMS values over multiple channels the ITD decoding es-
timate of the first pulse was much higher than that for
the other pulses, as is shown in Fig. 7A for data recorded
from our four trained rats, and in Fig. 7B for the five
naive rats. The results from the trained and naive ani-
mals were similar. While the decoding estimate for the
initial pulse was nominally larger for the trained rats
(mean 0.0099, SEM 0.0037) than for the naive rats
(mean 0.0057, SEM 0.0034), the difference was not sig-
nificant (Wilcoxon rank sum test, Z = 1.4569, p = 0.14).
The difference between decoding estimates based on left
and right cortex was also not significant (Wilcoxon rank
sum test, Z = 0.506, p = 0.61; left: mean 0.0065, SEM
0.0027; right: mean 0.0087, SEM 0.0034). When pooling
data for the trained and naive rats together, we found
the decoding of the first three pulses to yield values that
were significantly different from zero (first pulse: p <
0.001, Z = 3.945; second pulse: p = 0.019, Z = 2.346;
third pulse: p = 0.042, Z = 2.033), while the decoding of
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the fourth pulse was not significant (p = 0.5663). The
decoding of the first pulse was significantly higher than
the decoding of all remaining pulses (all p < 0.003), and
the decoding of the second pulse was significantly higher
than the decoding of the fourth pulse (p = 0.019), while
there were no significant differences in decoding

between the remaining pulses (all p > 0.05). The decod-
ing of the first pulse was also significant when both
pulse rates were analyzed separately (300 Hz: p = 0.009,
Z = 2.599; 900 Hz: p = 0.003, Z = 2.934; Fig. 7D, E).
Overall, based on neural responses to the pulse trains
pooled from multiple ECoG channels, the ITD of the

Fig. 5 Examples of physiological TWFs obtained by univariate analysis of auditory cortex ECoG responses. In each subplot, the x-axis shows the
individual click in the 4-click train, and the y-axis shows the beta value (“temporal weight”) from linear regression, in units of proportion change in
normalized response per ms ITD, computed with ordinary least squares regression. Each subplot represents the physiological TWF obtained by
analyzing the responses recorded at a different ECoG array position and pulse rate. The examples are chosen to be representative of the very
diverse results obtained. Red asterisks (*) mark regression weights that were individually significantly different from zero at p < 0.05 (not corrected
for multiple comparisons). Some physiological TWFs showed strong and significant onset weighting (e.g., most channels in A), but many others
did not, and it was not uncommon for temporal weights other than the first to be the largest absolute significant value
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first pulse (and, to a lesser extent, of the subsequent two
pulses) could be decoded reliably from the cortical
population response. These multivariate decoding results
thus closely parallel the behavioral results, which show

that the rats base their sound direction judgments pre-
dominantly on the first pulse.
In a further analysis, we investigated the decoding dy-

namics in a longer time window, ranging from 0 to 200

Fig. 6 Boxplots showing the distributions of absolute weights at 300 Hz and 900 Hz pulse rates. The weights were pooled across all ECoG
recordings from all nine rats. The x-axis indicates the individual click in the 4-pulse train, and the y-axis shows the absolute beta value (“temporal
weight”) obtained from the Ordinary Least Squares regression. The top panels show all absolute weights (“All β”). The bottom panels show the
weights which were significantly different (“Significant β”) from zero (p < 0.05). There is a trend for the median absolute weightings in “Significant
β” on the first click to be larger than for the other clicks, but the trend appears to be very modest when compared to the behavioral TWFs seen
in Fig. 2, where the weights on the first click were an order of magnitude larger than those seen on the later clicks. The statistical significance of
that trend is doubtful and very difficult to assess accurately given the non-normal nature and the nested statistical dependencies of the
individual observations
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ms post stimulus onset (Fig. 7C). In this analysis, rather
than using time-averaged activity to decode ITD, we
used a sliding time window approach, in which we
decoded ITD based on RMS fluctuations within 30-ms-
long time windows, with a time step of 5 ms. Decoding
based on activity fluctuations (rather than average activ-
ity) makes this analysis especially sensitive to short-lived
transients in neural activity [19]. This analysis revealed
that the ITD of the first pulse pair could be decoded
based on early neural responses, corresponding to time
windows centered at 15–30 ms following stimulus onset
(pFDR < 0.01, corrected across time windows), but also
based on later neural responses (95–115 ms and 155–
160 ms following stimulus onset; pFDR < 0.01). Similarly
to the decoding analysis based on average activity, in this

analysis, we also observed weaker but significant decod-
ing of the ITDs of the second and third clicks (click 2:
20 ms; click 3: 15–25ms and 155 ms following pulse
train onset; all pFDR < 0.01, corrected across time win-
dows; click 4: no significant decoding time windows),
suggesting that brief neural transients to individual clicks
might be sensitive to individual ITDs at different laten-
cies. However, in this analysis too, the peak ITD decod-
ing value for the first click was significantly (all p <
0.001) larger than those for the later clicks, by approxi-
mately an order of magnitude. The decoding results in
Fig. 7C thus closely mirror the behavioral results shown
in Fig. 2.
In Fig. 7F, G, we plot the individual decoding estimates

for the same two examples as plotted in Fig. 5A, B,

Fig. 7 Multivariate analysis of auditory cortex ECoG responses. A, B ITD decoding for trained (seven placements) and naive (five placements) rats,
respectively, based on average RMS activity between 0 and 30ms relative to stimulus onset. Error bars denote SEMs across ECoG array
placements. Asterisk indicates statistical significance (p < 0.05, Bonferroni-corrected). C ITD decoding time series based on activity fluctuations in
each 30-ms-long sliding time window. Shaded areas denote SEMs across twelve placements. Filled circles indicate statistical significance (p < 0.01,
FDR-corrected). D, E ITD decoding based on average RMS activity between 0 and 30 ms relative to stimulus onset, separately for 300 and 900 Hz
pulse rates. Error bars denote SEMs across twelve ECoG array placements. Asterisks indicate statistical significance (p < 0.05, uncorrected). F, G
Examples of ITD decoding based on average RMS activity between 0 and 30ms relative to stimulus onset, separately for two individual electrode
placements. Example 1 corresponds to Fig. 5A; example 2 corresponds to Fig. 5B. Error bars denote 99% confidence intervals
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respectively. For both examples, the decoding of the first
click ITD is better than that of the remaining clicks. Per-
haps surprisingly, this trend is even more pronounced
for the electrode placement where individual channels
were heterogeneous and showed no obvious preference
for the first click in the univariate analysis (example 2;
Fig. 5B) than for the electrode placement in which uni-
variate TWFs often showed a similar onset preference
across the majority of channels (example 1; Fig. 5A).
This is likely due to the fact that we used a Mahalanobis
distance metric to estimate ITD decoding, in which the
influence of each channel is scaled by the overall covari-
ance across channels. Therefore, in the case of example
1, where most channels show a similar TWF pattern, the
decoding relies on fewer response features than in the
case of example 2, where different channels can have a
unique contribution to decoding.

Discussion
Principal findings
To the best of our knowledge, this is the first study to
measure binaural TWFs behaviorally and physiologically
in a species other than humans. We were able to show
that laboratory rats strongly onset weight binaural cues,
basing lateralization judgments almost entirely on the
first pulse in a click train. Their perception of such stim-
uli thus closely resembles that reported for human lis-
teners. Note also that prior human psychoacoustic
studies reported somewhat smaller weights on the first
pulse when pulse rates were fairly low (20 or 100 Hz,
inter-click intervals (ICI) of 50–10ms) compared to
those obtained with faster rates (500 Hz; ICIs of 2 ms)
[8]. Our rat data exhibit the same trend, with the weight
of the first pulse in a train increasing at higher pulse
rates. We acknowledge that the number of animals in
the behavior cohort was quite small (N = 4) but given
that the behavioral results were highly consistent across
all animals in that cohort, as well as with the multivari-
ate analysis of our electrophysiological results from a lar-
ger cohort (N = 9), and with previously published
human data, showing the striking similarities in TWF
shapes and pulse-rate-related trends, our results never-
theless indicate that the heavily onset-weighted TWFs
one would expect given the well-known precedence ef-
fect are likely to be the rule, rather than the exception,
in laboratory rats.
Having thus validated the rat as a good model for hu-

man binaural hearing, we were able to follow this up
with a physiological examination of the encoding of bin-
aural cue values in cortical population responses re-
corded with ECoG arrays. Perhaps surprisingly, neural
responses obtained at individual recording sites often
failed to show a robust onset dominance in the temporal
weighting of ITDs. However, a multivariate analysis of

single-trial population responses revealed a neural en-
coding of ITDs that mirrored the animals’ behavioral re-
sponses. This observation has important implications for
future studies, which may wish to use physiological tests
on rats to probe factors governing binaural hearing per-
formance, for example, in order to develop improved
neuroprosthetic devices. Studies focusing heavily on
reading out cortical responses one neuron or one unit or
one recording site at a time could be missing out on im-
portant correlates of psychoacoustic performance that
are only readily apparent at the level of a population
coding analysis.
Only female rats were used in this study, as it is in our

experience easier to run a behavior lab comprising only
of female rats, avoiding “distractions” that would other-
wise arise from pheromones and reproductive drives in
our experimental animals. In mammals, both sexes de-
rive very similar evolutionary benefits from spatial hear-
ing and have a generally very similar auditory physiology
and anatomy. We are aware of only single study of
spatial hearing in humans which recruited the very large
cohorts needed to measure the very small sex differences
one might see, and they reported a very modest, but sig-
nificant, difference, with females having ITD thresholds
that are on average 0.25 sigma worse than those of males
[20]. Sex differences of such small magnitude are negli-
gible in the context of our research question, whether rats
have essentially similar TWFs as humans. Given the in-
ternally very highly consistent results of our behavioral ex-
periments, as well as the external consistency with the
wealth of prior papers published on TWFs in humans and
the precedence effect in general in a number of mamma-
lian species, we do believe that our conclusion that rats
show TWFs which are fundamentally similar to those seen
in humans and other species is well supported.

Neural correlates of the precedence effect
As discussed in [21], although the basic features of the
precedence effect have been described for more than
half a century, its biological mechanisms remain contro-
versial. Electrophysiological recordings from central
auditory structures have demonstrated reduced neural
responses to “simulated echoes,” that is, pairs of pulses,
similar to the first two pulses in the click trains used in
this study [22–24]. It is natural to assume that a reduc-
tion in strength of auditory midbrain responses to the
second click in a pair might lead to a corresponding
down-weighting of that second click “further down-
stream,” as the neural representations of the pulses are
fused into a unified percept of a single source with a
(usually not consciously perceived) echo, and with a sin-
gle perceived source location. Rather than challenging
this assumption, much previous work has instead fo-
cused on discussing the physiological mechanisms that
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are likely to be responsible for the reduction of the re-
sponse to the second click. The two main mechanisms
considered were synaptic inhibition [25–27] or more
peripheral processes involving cochlear mechanics [28,
29]. Central inhibition and cochlear mechanics could, in
principle, both contribute to the physiological mecha-
nisms which underpin the precedence effect. However,
recent evidence suggests that cochlear mechanics are
unlikely to be the major determinant, given that focal le-
sions [30] and pharmacological manipulations [25, 26] of
auditory midbrain structures which leave the cochlea
untouched nevertheless alter the precedence effect, and
given that psychoacoustic signatures of a precedence ef-
fect have been observed even in cochlear implant pa-
tients in whom cochlear mechanics have been
completely bypassed by neuroprosthetic stimulation
[21].
Our approach to studying possible physiological bases

for the precedence effect differs from previous work in a
number of important ways. For example, previous
physiological studies commonly measured responses in
the inferior colliculus to each of two click pairs delivered
in rapid succession in the inferior colliculus and inter-
preted an observed suppression of the lagging click as a
putative correlate of the precedence effect. However, po-
tential echos can arrive very quickly if reflective surfaces
are slow. The highest pulse rate tested with our TWF
paradigm is 900 Hz, corresponding to inter-pulse inter-
vals of 1.1 ms, which is much too fast for the IC to pro-
duce individual responses locked to individual clicks
[31]. Therefore, here we asked how strongly the neural
response as a whole is influenced by the ITD of a given
click (univariate, channel-wise regression analysis), and
to what extent the response might be “decoded” to re-
veal the ITD of each click (multivariate analysis). Also,
our study looks at neural responses in the cortex rather
than IC. In this context, it is worth mentioning that a
previous non-invasive study on human volunteers had
described parallels between location judgments under
conditions that required echo suppression and auditory
evoked potentials [32].
Our investigation of the neural correlates of TWFs

using channel-wise regression of individual channels
produced very variable and inconsistent results, with
some recording sites showing the expected largest
weights for the first click in the train, but many others
showing highly unexpected TWF patterns, with the lar-
gest absolute weight placed on the 2nd or 3rd pulse, in
the middle of the 4-pulse train (cf Fig. 5C, D). The fre-
quent, large, and significant weightings of later clicks is
highly surprising because it implies that, at the level of
individual groups of cortical neurons, neural TWFs can
differ substantially from the behavioral TWF and place
the largest weight away from the stimulus onset. This

phenomenon was so common that, overall, there was
only a small trend for the first pulse in the series to have
the largest median absolute weight. This surprising find-
ing led us to hypothesize that, at the level auditory cor-
tex, a consistent precedence effect may only emerge at
the level of neural population responses. To test this hy-
pothesis, we analyzed the ECoG data using recently de-
veloped neural population decoding methods. That
approach produced results in perfect agreement with the
precedence effect demonstrated in the behavioral tests.
The two analysis approaches are conceptually and

mathematically distinct, and the observed discrepancies
between the two sets of results might be due to several
reasons. One plausible explanation is that decoding the
activity of a wider population of neurons is needed to
observe the precedence effect. The regression analysis
was applied here to analyze neural activity on a channel-
by-channel basis, with a more localized, smaller set of
neurons contributing to the responses within one chan-
nel. Conversely, the multivariate decoding method se-
lected channels with a high signal-to-noise ratio, and
pooled signals from these channels, integrating activity
patterns over a much larger population of neurons. In
the multivariate analysis, we also scaled the responses of
each channel by their noise covariance, accounting for
dependencies between channels. The success of the
multivariate pattern analysis that we used for neural de-
coding suggests the following insights into the neural
correlates of the precedence effect: First, pooling neural
activity over space (channels)—which can enhance
neural decoding accuracy [33, 34]—appears to be neces-
sary to uncover a compelling neural correlate of the pre-
cedence effect. Second, pooling neural activity over time
(i.e., including temporal transients rather than time-
averaged responses as decoding features)—which high-
lights dynamic, short-lived neural activity patterns [19]—
uncovered weaker but significant decoding of the later
clicks in the train. Therefore, although the precedence
effect strongly dominates the neural population code re-
vealed by this analysis, read-outs of this code at fine
temporal resolution nevertheless give access to binaural
cue values beyond the very onset of the stimulus. This
temporal integration of the signals to combine informa-
tion from separate populations is also reminiscent of ob-
servations by [35] that the onset and offset of sound
stimuli may be represented by non-overlapping popula-
tions of primary auditory cortex neurons (A1).

The role of auditory cortex in spatial hearing and the
precedence effect
Despite decades of study, there are still many unknowns
about the role of auditory cortex in encoding spatial lo-
cation in general, ITD cues in particular, and almost
nothing is known the extent to which putative cortical
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encodings of space are subject to the precedence effect.
Here our coverage of the cortical ITD literature is select-
ive to focus on the those studies most relevant to our
findings. That neurons in auditory cortex, including in
high-frequency areas, can be tuned to ITDs, sometimes
very sharply, has been documented [36], and the idea
that some form of neural population code is likely in-
volved in the cortical representation of auditory space is
also not new [37]. Our neural decoding results extend
these observations by showing a strong precedence effect
in the AC of rats for click train stimuli at both 300 and
900 Hz, which nicely paralleled the behavior results.
Nevertheless, this correspondence is of course not suffi-
cient to prove that the precedence effect results from
cortical population coding. Indeed, despite decades of
study, the exact role of AC in spatial hearing remains
somewhat unclear, and there may be substantial species
differences. Unilateral lesions of AC result in poor per-
formance in localizing brief sound in the contralateral
sound field in a variety of species [38–41], while other
studies indicate an important role for A1 in recalibrating
binaural hearing after periods of partial monaural
deprivation [42]. However, unilateral lesions on the
contralateral AC of rats reportedly did not disrupt the
sound localization performance of rats [43]. Also, how
difficulties in localizing sources within one hemi-
sphere relate to the sound lateralization ability across
the midline has not been investigated in detail. There
are also previous studies documenting ITD sensitivity
at the level of AC of rats [44, 45], as well as studies
on humans and cats which suggest that an intact AC
may be necessary for the precedence effect [4, 46].
The fact that our ECoG data reveal fairly widespread,
significant ITD sensitivity in LFP responses is there-
fore unsurprising. However, our finding that popula-
tion decoding is necessary to reveal a strong
precedence effect which mirrors behavioral observa-
tions is surprising and suggests an unexpected key
role that cortex may play in transforming physical
binaural cue values into integrated percepts.

Conclusions
We developed a behavioral temporal weighting test for
rats, based on previous human work [6]. The behavioral
ITD TWFs of rats closely resemble those of humans,
with the first (onset) pulse in a pulse train dominating
the lateralization percept, and this onset weighting is
particularly pronounced at faster pulse rates. The ECoG
signals from AC of rats showed a population neural re-
sponses correspondence to behavioral TWFs, while the
responses from a single recording site failed to reflect
the behavioral TWFs most of the time. Our behavioral
and electrophysiological findings confirmed that the pre-
cedence effect is preserved in rats. And the precedence

effect is presented only in population neurons which
may inspire the studies on “higher-order” perceptions to
see questions in a greater map.

Methods
Animals
Our subjects were nine female Wistar rats which were 8-
week-old and weighed 216–242 g at the beginning of the
study. Of these, four were first used for behavioral training
and psychoacoustic determination of ITD TWFs (see “Be-
havioral study” section). All nine (4 trained and 5 naive
animals) were then used in terminal electrophysiological
experiments to elucidate the cortical encoding of the bin-
aural stimuli (see “Electrophysiology” section). The rats
were housed in standard cages with 2 or 3 rats in each.
Preyer’s reflexes were tested, and the outer ears and

tympanic membranes were visually examined to ensure
that the rats had healthy, sensitive hearing. In addition,
prior to the behavioral and electrophysiological experi-
ments, acoustic brainstem responses (ABRs) were re-
corded to confirm normal hearing sensitivity (data not
shown). For this examination, the rats were anesthetized
by intraperitoneal injection of ketamine (80 mg/kg, 10%,
Alfasan International B.V., Holland) and xylazine (12
mg/kg, 2%, Alfasan International B.V., Holland). Eye gel
(Lubrithal, Dechra Veterinary Product A/S Mekuvej 9
DK-7171 Uldum) was applied to prevent the eyes from
drying. The outer ear canals and tympanic membranes
were inspected under a microscope (RWD Life Sciences,
China). The rats were then fitted to a stereotactic instru-
ment with a pair of hollow ear bars in a sound attenuat-
ing chamber, and ABRs to pulses were recorded to
ascertain low hearing thresholds in both ears. ABR
thresholds less than 30 dB SPL were considered indica-
tive of normal auditory sensitivity. All the rats we used
here had ABR thresholds < 30 dB. More detailed descrip-
tion of ABR recordings can be found in [15].

Behavioral study
Behavioral training setup
The behavioral setup and the training methods were
identical to those described in sections “Channel-wise
regression shows only sporadic precedence effects in
electrocorticographic (ECoG) signals from the auditory
cortex” and “Multivariate decoding shows strong prece-
dence effect in ECoG signals from the auditory cortex”
of [14]. In brief, a training box was situated in a sound
attenuating box and the front wall of the training box
was fitted with three brass water spouts. Two hollow
tubes were connected to a pair of mini headphone
drivers (GQ-30783-000, Knowles, Itasca, Illinois, USA)
to deliver the sound stimuli delivered by a USB sound
card (StarTech.com, Ontario Canada, part No. ICUS-
BAUDIOMH) and amplified by an audio amplifier
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(Adafruit stereo 3.7W class D audio amplifier, part No.
987) into the behavioral training box as close to the rats’
ears as possible. Stimulus delivery and monitoring and
control of the behavioral task were performed by a Rasp-
berry Pi computer running custom written Python
software.

Behavioral training task
During behavioral training and testing, the four animals
were tested five days a week, with two rest days. Our
training used drinking water as a positive reinforcer.
Therefore, a day prior to the first testing day, the home
cage water bottles were removed, and for the following
5 days, the rats only had access to drinking water during
their twice daily testing sessions. They then had easy ac-
cess to ad lib water from the evening of the fifth training
day until the morning of the second rest day. Food was
available ad lib in the animals’ home cages throughout.
Behavioral training and testing were essentially identi-

cal to [14], except that a different set of stimuli was de-
signed and used to enable the quantification of TWFs.
In the behavioral experiments, rats performed a 2-AFC
near-field lateralization task. Rats initialized each trial by
licking a centrally positioned “start spout.” Initiating a
trial was rewarded with a small drop of water on a ran-
dom subset of 1 in every 7 trials. Initiating a trial trig-
gered the delivery of a binaural stimulus, to which the
animals responded by licking one of two “response
spouts” positioned either side of the start spout. If the
animal’s choice corresponded to the side indicated by
the binaural cues, it was rewarded by three small drops
of water delivered through the response spout. If the re-
sponse was incorrect, it triggered a 15-s “timeout” dur-
ing which a 90-dB negative feedback sound was played
and no new trials could be initiated. If the rat made a
wrong response, the following trial would be a “correc-
tion trial,” in which the last stimulus was repeated. “Cor-
rection trials” help reduce the tendency of animals to
develop responses biases toward one side, but are ex-
cluded from the calculation of the correct response
scores. Each rat performed two sessions per testing day,
one in the morning and one in the afternoon, each ses-
sion lasting ~ 20min. The animals would typically per-
form between 100 and 200 trials per session.
The rats were initially trained with 200-ms-long, 300

Hz binaural pulse train stimuli which contained both
ILD (± 6 dB) and ITD cues (± 0.136 ms). The motivation
for the initial combined ITD and ILD training was to
start the animals off with stimuli that should be very
easy to lateralize as they contain “natural” combinations
of both ITD and ILD binaural cues with rats to quickly
adapt to the training environment. We required that the
rats lateralized these initial training stimuli at least 80%
correct in at least 2 sessions to advance to the next

“ITD-only” training stage, during which ILDs were set to
0 dB. The rats reached the 80% correct criterion in this
first stage of training after 8–10 days of training. After
the initial training phase, all stimuli presented through-
out the rest of the study had 0 dB ILDs and varied in
ITD only. Once the rats reached 80% correct on two ses-
sions with the 0.136-ms ITD-only stimuli, we increased
the range of ITD values tested in each session. During
this stage, the ITDs presented at each trial were drawn
at random from the set ±[0.1587, 0.136, 0.0907, 0.068,
0.0454, 0.0227] ms. This set purposefully includes some
ITD values that are below previously determined percep-
tual ITD thresholds for rats (~ 0.05 ms, see [14]), in
order to accustom the animals to the possibility that ses-
sions may include trials that may be difficult to
lateralize. In this potentially more difficult “wide ITD
range” training stage, the rats had to reach 75% correct
in at least two sessions before advancing to the TWF
testing stage. Animals which did not quickly advance to
that final stage were given additional training sessions
with easier stimuli, during which timeouts and reward
quantities were individually adjusted as necessary to
achieve reliably high levels of performance.

Acoustic stimuli for behavioral TWF measurement
The stimuli used in the TWF measurement phases of
our experiments were modeled on the stimuli developed
by [6]. Our stimuli consisted of trains of 8 binaural
pulses (Fig. 1) delivered at rates of either 20, 50, 300, or
900 Hz. Importantly, the ITD of each pulse in the train
was varied by introducing a small, random “temporal jit-
ter” in the timing of each pulse which was independent
in each ear. An analysis of lateralization judgments for a
large number of stimuli with different ITD values at
each pulse in the series would then make it possible to
determine the “weight” (that is, the contribution made)
by the nth pulse in the train to the perceived lateral pos-
ition of the pulse train as a whole.
A potential difficulty with the use of these stimuli is

that one cannot always determine a priori whether a
subject’s lateralization response is “objectively correct.”
Because ITD cue values of different pulses in the train
could, by design, point in opposite directions, and how
such ambiguous stimuli with conflicting ITD values are
“supposed to be perceived” depends on the subject’s
own TWF which is unknown at the start of the experi-
ment. Brown and Stecker [7] simply trusted their human
participants to understand the objective of the experi-
ment and to report their lateralization judgments faith-
fully, presumably with low error or bias, and without the
need of trial-by-trial reinforcement. Our rats, in contrast,
need to be kept motivated and honest throughout the
experiment by regular rewards for “correct” responses.
Therefore, we constituted each block of trials as a
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randomly interleaved set of “honesty trials” and “probe
trials.” In honesty trials, the ITDs of all pulses in the 8-
pulse sequence pointed in the same direction, that is,
they were either all positive (right ear leading) or all
negative (left ear leading), so that the response to these
honesty trials could be judged objectively as correct or
incorrect irrespective of the details of each animal’s
TWF. Pulses in honesty trails had a fixed ITD offset of ±
0.083 ms, plus an additional jitter drawn uniformly at
random from a range of ± 0.042 ms, in steps of 10.4 μs
afforded by the 96 kHz sample rate Hi-Fi USB Audio
sound card. Since most ITD values in an honesty trial
should be above typical rat ITD thresholds reported in
[14], we expected them to be relatively easy to lateralize
correctly, and responses to honesty trials were only
rewarded if the animal responded on the appropriate
side. We required that the rats lateralized at least 80% of
honesty trials correctly in at least two sessions before
they would also receive “probe trials,” in which the ITD
for each pulse was drawn independently and uniformly
from the range of ± 0.125 ms and ITDs of subsequent
pulses in the train were allowed to point in opposite di-
rections. Responses to probe trials were always rewarded
regardless of the side on which the animal responded. In
each TWF testing session, honesty trials and probe trials
were randomly interleaved at a ratio of 2:1. The large
proportion of honesty trials ensured that random guess-
ing without attending to the sounds was not an effective
strategy for the animals and allowed us to monitor that
the animals continued to report their lateralization per-
cepts with good accuracy throughout. During informal
testing, the authors were unable to distinguish honesty
trials from probe trials just by listening to them, and
there is no indication that the rats could distinguish
these either. We therefore consider it safe to assume that
the rats’ responses to the probe trials accurately reflected
their lateralization judgments for these stimuli. After
reaching the “ITD-only” lateralization training criteria
described above, all four rats were also able to meet the
80% correct TWF honesty trial criterion after minimal
training, as might be expected given that to casual hu-
man observers, TWF stimuli with jittered ITDs and
stimuli with fixed ITD sound indistinguishable.

Behavioral data analysis
TWFs were computed from the responses to the probe
trials only, and separately for each of the four pulse rates
(20, 50, 300, and 900 Hz), by computing a Probit regres-
sion to fit the probability of a “right spout” response
against the ITD values for each of the 8 pulse pairs in
the train, using the open source Python function stats-
models.discrete.discrete_model.Probit [47]. The Probit re-
gression model takes the form:

y ¼ Φ xT β
� � ð1Þ

Here, y is the probability that the animal will respond
on the right, x is the vector of the eight ITD values of
the pulses in the train plus an added 1 for the intercept,
T is the transpose operator, and β is the vector of coeffi-
cients, or “weights” attributed to each of the pulses,
which are estimated by maximum likelihood. Φ is the
cumulative Gaussian normal distribution. The fitted
model thus assumes additive effects of the weighted ITD
of each pulse in the train, and the set of coefficients β
represent the animal’s TWF. Here we use the terms Pro-
bit coefficient and temporal weight interchangeably.

Electrophysiology
ECoG recording apparatus
Acoustic stimuli were generated by RZ6 multi-I/O pro-
cessor (Tucker-Davis Technologies, USA) and presented
via a pair of custom-made speakers (AS02204MR-N50-
R, PUI Audio, Inc.) fitted to the openings of the hollow
stainless steel ear bars, which fixed the rat into a stereo-
tactic instrument (RWD Life Sciences, China). The
speakers were calibrated with a GRAS 46DP-1 micro-
phone (GRAS Sound & Vibration A/S), and their trans-
fer functions were compensated with an inverse filter to
be flat over the range of 600 Hz to 20 kHz to ~ ± 3 dB.
Neural activity was recorded using a 61-channel ECoG

array [48]. The flexible (~ 30 μm thin) ECoG array com-
prised 203-μm diameter circular electrodes arranged on
an 8 × 8 square grid, with three of the four corner posi-
tions unoccupied, and a 406-μm spacing between neigh-
boring electrodes. The array covered an area of 10.6
mm2.
The neural signal was captured through two Intan

C3314 32 channel headstage amplifiers (Intan Technolo-
gies, USA) connected to a PZ5 neurodigitizer (Tucker-
Davis Technologies, USA) and processed with an RZ2
bioamp processor (Tucker-Davis Technologies, USA).
Python programs written by the authors were used to
generate stimuli and save the recorded signals.

ECoG recording procedure
ECoG was recorded from the auditory cortex (AC). At
first, rats were anesthetized as described in the ABR re-
cording procedure in “Behavioral data revealed profound
onset dominance”, and their scalp was shaved. Prior to
ECoG recording, ABRs were tested again to make sure
the ear bars were still in good position, followed by in-
traperitoneal injection of urethane (20%, 1 mL). If a toe
pinch reaction was observed during the ECoG recording,
an additional 1 mL of urethane was injected. The total
amount of injected urethane was less than 7.5 mL/kg.
Additionally, butorphanol (10 mg/mL, 0.2 mL/kg every
1–2 h, Richter Pharma AG, 4600 Wels, Austria) was
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subcutaneously injected for analgesia. A deep cut in the
midline of the scalp was made, and the surgical field was
exposed. Local anesthetic Lignocaine (0.3 mL, 20 mg/
mL, Troy Laboratories Pty Ltd, Australia) was applied
on top of the surgical area. A craniotomy was performed
over the right, or, in most cases, both temporal cortices.
From a point 2.5mm posterior to Bregma, a line was drawn
perpendicular to the sagittal suture to the temporal ridge,
and the intersection of this line and the ridge was marked.
The craniotomy area extended 5.0mm posterior and 4.0
mm ventral from this intersection point, to allow the place-
ment of an ECoG electrode array on the auditory cortex
(primary auditory cortex, secondary auditory cortex dorsal
area, secondary auditory cortex ventral area). A hole was
drilled through the skull anterior to Bregma to fix a screw
which served as a reference electrode to connect to the
ground wire of the recording headstage amplifier.
After placing the ECoG electrode array on the AC,

acoustic stimuli were presented to the rat. ECoG neural
signals were recorded at 6 kHz sample rate. At the end
of the recording experiments, the rats were euthanized
with an overdose of Pentobarbital (1~2 mL, 20%, Alfasan
International B.V., Holland).

ECoG data analysis
We attempted two approaches to analyze the electro-
physiological responses, one “univariate” approach which
used a regression model to try to account for neural re-
sponse amplitudes observed at each individual recording
site, and one “multivariate” approach which attempted to
use recently developed population decoding analyses to
reconstruct stimulus ITDs from single-trial population re-
sponses observed across the ECoG array. The multivariate
approach turned out to be much more successful, which
has interesting implications for the nature of the represen-
tation of perceived ITDs as we shall see below.

Univariate analysis: channel-wise regression Our ana-
lysis of the responses recorded with these stimuli was
based on the assumption that most ITD sensitive neu-
rons in the central auditory pathway would be tuned so
as to have a “preference” for ITDs pointing to the
contralateral side, while a minority might have an ipsilat-
eral preference, but very few should have tuning curves
that are symmetric at either end of the ecological range
of ITDs [49–51]. We further assumed that neural re-
sponse amplitudes of contralaterally tuned units should
consistently increase when contralateral leading ITDs
are presented, irrespective of whether these contralateral
ITDs occur at the first, second, or nth click. Similarly,
for ipsilaterally tuned units, response amplitudes should
consistently decrease when contralateral ITDs are pre-
sented. Under these simplifying assumptions, we can at-
tempt to fit TWFs to the neural data using a simple

multiple linear regression, which regresses response
amplitude against the signs of the four ITDs in each
stimulus.
This univariate analysis of ECoG voltage data was fur-

ther based on standard methods for quantifying evoked
response amplitudes from LFPs as follows. First, per
channel, the signal was band-passed using a 4th order
band-pass filter from 30 to 300 Hz (scipy.signal.butter(),
scipy.signal.filtfilt()). This chosen frequency region
covers the gamma to very-high-gamma frequency ranges
which have previously been shown to correlate particu-
larly highly with multi-unit responses of auditory cortical
neurons [52]. The band-passed signal was downsampled
by a factor of 4 to a sample rate of 1500 Hz (scipy.-
signal.decimate()) and the decimated multichannel data
were denoised using the “denoising by spatial filtering”
methods developed by [53]. The cleaned data were “re-
referenced” by subtracting the median across all chan-
nels. Re-referencing to the median has been shown to
make the re-referenced signal less susceptible to outliers
[54]. Neural responses were then quantified by epoching
the cleaned, re-referenced signals into data segments
ranging from 1 to 30ms post stimulus onset. This epoch
was chosen by visual inspection to cover the onset re-
sponse peak, and it is consistent with reports that the
initial responses to acoustic stimuli in the rat auditory
cortex peak approximately 20 ms after stimulus onset
[55]. The epoched data were baseline-corrected by sub-
tracting their mean [56], and the RMS amplitude was
calculated for each response epoch. Outlier epochs with
RMS amplitudes greater than three standard deviations
above the median RMS amplitude were excluded from
further analysis [57].
The distribution of RMS response amplitudes obtained

in this manner was highly positively skewed. We log-
transformed the RMS values to make them more suit-
able for linear regression analysis to obtain TWF values.
Furthermore, we wanted to compute temporal weighting
coefficients in normalized units which were insensitive
to site-to-site or animal-to-animal variability in the
range of observed voltage values that can result from
variable electrode impedances or electrode placements.
We therefore z-scored the log(RMS) values prior to re-
gression analysis.
The transformed data were then subjected to an ordin-

ary least squares (OLS) regression (statsmodels.api.OLS,
[47]) with constant added (Eq. 2). The form of the re-
gression model is

y ¼ xT βþ ∈ ð2Þ

where y is the z-scored, log-transformed LFP ampli-
tude observed in each trial, x is a vector of the regressors
(the ITDs of the 4 clicks in ms, and the added constant
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to provide the intercept), β is the vector of regression
coefficients (the neural TWF weights in units of stand-
ard deviations of log RMS LFP amplitudes per ms of
ITD), and ε is an error term which, as usual for normal
linear regression, is assumed to follow a Gaussian distri-
bution. In addition to computing the regression weights
β, the software returned p values indicating how likely it
is that the corresponding β is significantly different from
zero.

Multivariate analysis: population-based decoding In
addition to the mass-univariate (i.e., channel-by-channel)
analyses described above, data were also subject to a
multivariate analysis based on the response of the popu-
lation of recorded neurons (i.e., pooling information
from multiple channels). Rather than computing the
“weight” of a given ITD in the train as a scaling factor
that maps ITD values onto changes in response ampli-
tude, the rationale of this analysis was to try to decode
the ITD value of each click in the train on a trial-by-trial
basis. This decoding analyzed the pattern of neural activ-
ity measured by multiple ECoG channels, and quantified
the “weight” of each ITD in the stimulus train by how
well the ITD value can be decoded from single-trial
neural population responses. The decoding methods
used were originally developed by [58, 59] as a means to
analyze human EEG response data, and were recently
adapted for the analysis of rat auditory cortex ECoG data
[60]. To construct the decoder, we first selected chan-
nels that showed a robust evoked response to the click
train. The criterion that we used for channel selection
was based on the signal-to-noise ratio (SNR), defined for
each channel as the ratio between the RMS of the signal
in the first 30 ms after click train onset and the RMS of
the signal in the last 30 ms prior to click train onset.
Only channels with SNR > 3 dB were taken into the ana-
lysis. On average, 73.36% (SEM 8.22% across penetra-
tions) met this criterion.
Following channel selection, for each ECoG array pos-

ition, data from multiple channels were used to decode
the ITD of each click in the train, one at a time, based
on the RMS in the 0–30-ms time window following click
train onset. To this end, we split the data into three sets:
(1) the test trial itself, (2) the remaining trials with the
same ITD value as the test trial, and (3) the remaining
trials with a different ITD than the test trial. From these
three sets, we obtained three vectors of average response
RMS amplitude values concatenated across channels.
We then calculated the multivariate Mahalanobis dis-
tance values between (1) the test trial vector and the
average vector of trials with the same ITD, as well as (2)
the test trial vector and the average vector of trials with
a different ITD. The Mahalanobis distance values were
scaled by the noise covariance matrix of all channels, i.e.,

the covariance based on single-trial residual RMS after
removing the mean RMS from each trial [61]. The scaled
Mahalanobis distance values, obtained for a given trial k
relative to other “same” or “different” trials, were used to
calculate the overall decoding distance metric according
to the following equation:

decoding kð Þ ¼ distance k; differentð Þ‐distance k; sameð Þ
distance k; differentð Þ þ distance k; sameð Þ ð3Þ

This procedure was carried out for each trial in turn
in a leave-one-out cross-validation approach, and the
resulting decoding values were averaged across trials to
obtain ITD decoding estimates for each of the four clicks
in the train. The decoding estimates were tested for stat-
istical significance using a signed rank test. These signed
rank tests were done for all electrode placements pooled
together, as well as separately for 300 and 900 Hz click
rates. The tests were corrected for multiple comparisons
using Bonferroni correction. Furthermore, to plot repre-
sentative examples of individual electrode placements,
we calculated 99% confidence intervals of the observed
individual decoding estimates by repeating the analysis
over 1000 iterations, whereby in each iteration the ITD
labels were randomly reshuffled, to obtain a surrogate
distribution of decoding estimates.
We also explored whether neural activity later than

the first 30 ms following click train onset can be used to
decode click ITDs. To this end, we repeated the decod-
ing analysis in a sliding time window approach, using a
window length of 30 ms (with a time step of 5 ms). Spe-
cifically, for each time window, we extracted the RMS
envelope (downsampled to 200 Hz to yield 7 RMS values
per time window), de-meaned it by removing the aver-
age across the time window (separately for each chan-
nel), and concatenated the de-meaned values across
channels [19]. The resulting vectors of RMS fluctuations
in multiple channels were used to calculate the Mahala-
nobis distance metrics and the corresponding decoding
estimates, as described above. Decoding time series were
tested for statistical significance for each click pair and
time point using a signed rank test, correcting for mul-
tiple comparisons using a false discovery rate of 0.01
[62]. Again, these statistical tests were applied for all
electrode placements pooled together, as well as for 300
and 900 Hz click rates separately.
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