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Abstract

Background: There is a need for functional genome-wide annotation of the protein-coding genes to get a deeper
understanding of mammalian biology. Here, a new annotation strategy is introduced based on dimensionality
reduction and density-based clustering of whole-body co-expression patterns. This strategy has been used to
explore the gene expression landscape in pig, and we present a whole-body map of all protein-coding genes in all
major pig tissues and organs.

Results: An open-access pig expression map (www.rnaatlas.org) is presented based on the expression of 350
samples across 98 well-defined pig tissues divided into 44 tissue groups. A new UMAP-based classification scheme
is introduced, in which all protein-coding genes are stratified into tissue expression clusters based on body-wide
expression profiles. The distribution and tissue specificity of all 22,342 protein-coding pig genes are presented.

Conclusions: Here, we present a new genome-wide annotation strategy based on dimensionality reduction and
density-based clustering. A genome-wide resource of the transcriptome map across all major tissues and organs in
pig is presented, and the data is available as an open-access resource (www.rnaatlas.org), including a comparison to
the expression of human orthologs.
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Background
An important part of the functional genome annotation
is to explore the body-wide expression patterns of all
protein-coding genes across all major cell types, tissues,
and organs. This allows the classification of proteins
based on the expression of the corresponding protein-
coding genes. For the human genome, such annotation

has led to the annotation first with regard to tissue spe-
cificity based on the relative transcriptome levels across
all major tissues [1], and secondly, with regard to tissue
distribution, showing the fraction of tissues with detect-
able expression corresponding to a given gene [2]. Both
these genome-wide annotation tools are useful, but re-
quire arbitrary cut-offs; hence, the resulting classification
depends on a decision regarding what is relevant fold
changes and detection limits for the underlying tran-
scriptomics data.
We have therefore explored various algorithms for

categorizing genes utilizing dimensionality reduction
and density-based clustering to classify genes based on
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similarity of expression patterns across all major tissues
and organs. We present, for the first time, a new ap-
proach for annotation of genomes based on Uniform
Manifold Approximation and Projection (UMAP) clus-
ters followed by functional Gene Ontology (GO) analysis
and a tissue specificity analysis, combined with manual
curation. The new approach for genome annotation has
been performed on the pig transcriptome based on a
comprehensive analysis of all major tissues and organs
in the Bama minipig, a strain broadly used in biomedical
research [3–5].
Pigs have become an attractive large animal model sys-

tem in pharmacology [6], toxicology [7], and diseases [8]
and as a model system in pharmacological, immuno-
logical, and other biomedical applications [9–11]. In
addition, pigs are interesting as potential donors for
organ transplantation [8, 12]. However, in contrast to
more widely used model organisms, genomic, transcrip-
tomic, and proteomic characterizations of pigs are lim-
ited, although important updates have been made
recently improving gene annotations and genome cover-
age [13–20]. We here present a new UMAP-based classi-
fication scheme, called Tissue Expression Clustering, for
genome-wide annotation based on body-wide expression
patterns. The results are presented as an open-access re-
source with transcriptome analysis of all protein-coding
genes across all major pig tissues and organs (www.
rnaatlas.org).

Results
Body-wide transcriptomics analysis of the pig
To generate a body-wide expression atlas of the porcine
protein-coding genes, 350 samples representing 98 dif-
ferent tissues and 14 organ systems (Fig. 1A) were col-
lected from four young adult (two males and two
females, 1-year-old) Bama minipigs. The 98 tissues were
grouped into 44 main organ/tissue types based on
shared developmental, functional, and/or anatomical
properties (Fig. 1B). The 30 tissue types that represent
the central nervous system were included in Sjöstedt
et al. [21] comparing expression profiles across human,
pig, and mouse brains. The protein-coding expression
data of the pig brain is also integrated into the Human
Protein Atlas (HPA) Brain section.
The dissection accuracy of the tissue samples was con-

firmed by histological analysis of adjacent tissue. Sam-
ples were sequenced with an average depth of 165.5
million reads (Additional file 2), and read counts were
normalized (protein-coding transcript per million
(pTPM) for visualization, and normalized expression
(NX) for gene classification) for all 22,342 protein-
coding genes. In total, 22,007 (98.5%) genes were de-
tected (NX > 1) in at least one tissue type, ranging from
13,607 to 16,867 genes detected per tissue type

(Additional file 1: Fig. S1A). Highly specialized tissue
types, such as the lens and joint cartilage, express fewer
genes, whereas tissues composed of many different cell
types (e.g., testis and brain) express the highest number of
genes, in line with results from human tissues [1, 22, 23].
To further investigate similarities in global transcrip-

tome profiles between tissues, Spearman correlation was
used in a pairwise correlation heatmap for the 44
grouped tissues (Additional file 1: Fig. S1B). The heat-
map with a body-wide representation of all tissues and
organs shows that testis and the various brain samples
have the most divergent global expression profiles
similar to the pattern in human tissues [1, 2]. The corre-
sponding dendrogram based on the global transcripto-
mics profile across all protein-coding genes (Fig. 1C)
demonstrates that related tissues cluster together,
including tissues of the respiratory system, immune
system, gastrointestinal tract, muscle tissues, and the
nervous system. In general, closely clustering tissues
often share germ layer origin, functions, and/or cellular
composition, e.g., skin, mouth tissues, and cornea all in-
clude ectoderm-derived squamous epithelium [24, 25].
The esophagus, although containing squamous epithe-
lium, revealed a high degree of similarity with the saliv-
ary gland and other secretory tissues due to the presence
of esophageal glands [26]. Neuroectoderm-derived tis-
sues such as brain tissues, pituitary gland, pineal gland,
and retina cluster into one major branch (Fig. 1C and
Additional file 1: Fig. S1B). The mesoderm-derived tis-
sues, including all soft tissues, and skeletal and cardiac
muscles are clustered closely. The endoderm-derived tis-
sues including respiratory tissues (i.e., lung, bronchus,
trachea, larynx) and gastrointestinal tissues are clustered
together. In contrast, tissues composed of major cell
types originating from different germ layers are clustered
between the major germ layers, such as glands and re-
productive tissues. The testis, with a large enrichment of
germ cells, is clustered separately. Similar clustering
patterns of tissues per germ layer has previously been
described [27], including in pig specifically [15].
The genome-wide expression profiles were investi-

gated for all the 350 individual samples using dimen-
sional reduction analysis and the results for principal
component analysis (PCA) are shown in Fig. 2 and
using UMAP in Additional file 1: Fig. S2A. The ana-
lysis shows that tissue types with related functions
share similar global expression profile and that the
brain samples have a unique expression pattern com-
pared to peripheral tissues. The 30 brain subregions
cluster according to the basic organization of the
brain, with the spinal cord and brainstem together
with corpus callosum and other white matter-rich
regions, separated from neuronal rich cerebellum
and cortical areas (Fig. 2). The shared developmental
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neuroectoderm origin between the brain, endocrine
tissues, and retina [28, 29] is also seen in the global
expression comparison. Additionally, tissues from the
gastrointestinal (GI) tract show similarity to lymph-
oid tissues, possibly explained by local germinal cen-
ters in GI, and specialized GI immune cells [30].
The respiratory system is found close to the GI tract
and lymphoid tissues, due to the presence of mucus-
secreting goblet cells (also found in GI) and respira-
tory tract-associated immune cells [31]. A correlation
analysis showed a high correlation between samples
of the same tissue type, with an average Spearman
correlation of 0.96, ranging from 0.89 to 0.99, de-
pending on tissue type (Additional file 1: Fig. S2B).

Genome-wide annotation of the protein-coding genes
To generate an overview of the body-wide distribution
and specificity of pig genes, the gene classification ap-
proach used in the Human Protein Atlas program was
adapted to classify all 22,342 porcine protein-coding
genes as described in Additional file 3 [1, 2], and exem-
plified in Additional file 1: Fig. S3D. The categories of
tissue enriched, group enriched, and tissue enhanced are
collectively termed tissue elevated. The specificity
categorization shows that 13,372 genes have elevated ex-
pression in one or more tissues, out of which 3085 genes
show enriched expression (Additional file 1: Fig. S3A
and S3C). Genes with elevated expression are as ex-
pected mostly found in tissues with highly specialized

Fig. 1 Whole-body expression analysis of the pig. A Organ schematic drawing of the pig body, following the established color code. B The 98
tissue types analyzed from the Bama minipig are grouped into 44 grouped tissues, each belonging to one of 14 organ systems. C Circular
dendrogram based on Ward’s criterion on pairwise Spearman correlation between tissue types. Branch lengths have been scaled to reduce visual
complexity. A selection of branches is annotated based on common biological features

Karlsson et al. BMC Biology           (2022) 20:25 Page 3 of 18



cells, such as the brain (n = 2930), testis (n = 2,718), and
lymphoid tissues (n = 1,360) (Additional file 1: Fig. S3B).
Whereas tissue types composed of large proportions of
common structures and cell types have lower number of
genes with elevated expression, such as smooth muscle-
rich tissues or soft tissues (e.g., aorta and adipose
tissues).
A network plot (Fig. 3A) was constructed to visualize

commonalities between tissues in terms of tissue and
group enriched genes across all the tissues and organs
analyzed here. Most tissue enriched genes are found in
the testis (n = 1004) followed by the brain (n = 409) and
liver (n = 239) similar to the corresponding analysis in
the human body [2]. Most group enriched genes are
found between the heart and skeletal muscle (n = 57)
and between the kidney and liver (n = 50). The data has
been published in a new open-access resource called the
Pig RNA Atlas (www.rnaatlas.org), to allow researchers
to explore the list of genes corresponding to the various
tissues and organs. Furthermore, analysis of tissue distri-
bution highlighted 1046 genes to be detected in a single
tissue type (Additional file 1: Fig. S3A), out of which a
large fraction was also classified as testis enriched. The
highly specific expression of the testis is due to the
testis-specific Sertoli and germ cells and has previously
been described in human [2], pig [15, 32], macaque [33],
and mouse [34]. In contrast, a large portion of the genes
is classified as low tissue specificity and detected in all
tissues (n = 7699), and this set of genes is also interest-
ing to study further.
To confirm and further explore expression profiles ob-

served in pig tissues at the protein level, we stained

tissues with antibodies for visualization of proteins cor-
responding to genes classified as tissue enriched, in
terms of location and distribution (Fig. 3B). The exam-
ples include the brain enriched Myelin oligodendrocyte
glycoprotein (MOG), a protein detected in oligodendro-
cytes and myelin sheets in the brain; the liver enriched
Asialoglycoprotein receptor 1 (ASGR1) which is a liver
transmembrane protein detected in hepatocytes; the
testis enriched Cysteine-rich secretory protein 2
(CRISP2) detected in spermatids; the skeletal muscle
enriched Troponin T1 (TNNT1) detected in the slow
muscle fibers; and skin enriched Desmocollin 1 (DSC1)
a desmosomal cadherin detected in the membrane of
keratinocytes. In all cases, the good agreement between
the RNA expression and protein detection supports the
approach to use RNA as proxy for mapping protein pro-
files in tissue.

New genome-wide classification of expression profiles
based on UMAP dimensionality reduction
To complement the genome-wide annotation of expres-
sion based on specificity and distribution as previously
described, we here introduce a new classification system
for gene expression based on dimensional reduction of
global expression patterns using UMAP, and subse-
quently density-based clustering [35]. The expression of
22,342 protein-coding genes across the 350 individual
samples was projected onto two dimensions (Additional
file 1: Fig S4A-B), and the genes were subsequently
classified into 84 clusters based on their expression
across the tissues and organs (Fig. 4 and Additional file
4). In this manner, all protein-coding genes have been

Fig. 2 Principle component analysis (PCA) plot showing the relation and clustering of all tissue samples. Brain samples are shown in more detail
in the zoom-in box (right)
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classified based on their similarity in expression with
other genes across all samples, designating each gene
into a single Tissue Expression Cluster. Based on the
cluster’s expression profile and functional enrichment
analyses, an annotation of the clusters was performed,
assigning each cluster a name describing the cluster’s
specificity, and/or function (Fig. 4 and Additional file 5).
To facilitate annotation and further characterize the 84
clusters, tissue specificity category, expression propor-
tion per tissue type, and abundance level were summa-
rized in Additional file 1: Fig. S5. Genes in each cluster

can be explored in the open-access Pig RNA Atlas, to-
gether with cluster annotations based on Gene Ontology
(GO) terms and tissue specificity.
The expression UMAP shows an expression “land-

scape” with distinct clusters with genes related to tissues
and/or functions, such as the testis or muscle contrac-
tion. Many genes involved in neurological functions can
be found in the brain-related clusters situated adjacent
to each other. Similarly, cluster of genes involved in
immunological function such as the clusters annotated
as “lymphoid B cells,” “lymphoid T cells,” and

Fig. 3 Gene classification based on tissue expression. A Network plot indicating the number of genes with tissue or group enriched expression
for combinations of tissue types (tissues: gray nodes; tissue enriched: red nodes; group enriched: orange nodes). Nodes were filtered based on
rules listed in “Methods” section to reduce visual complexity. B Immunohistochemical (IHC) staining (left) and RNA expression (right) of tissue
enriched genes: MOG (Brain), ASGR1 (liver), CRISP2 (testis), TNNT1 (skeletal muscle), and DSC1 (skin)
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“housekeeping defence” are found adjacent to each
other. Interestingly, the “housekeeping” genes expressed
in all tissues are found in distinct clusters, mostly adja-
cent to each other in the UMAP, as exemplified by the
clusters annotated as “housekeeping protein processing”
and “housekeeping regulation” (Fig. 4).
When the tissue specificity classification is superim-

posed upon the cluster landscape (Additional file 1: Fig.
S6A), patterns of the various categories emerge.
Additional file 1: Fig. S6A shows that genes classified as
tissue enriched or group enriched reside in smaller clus-
ters of genes, or at the periphery of larger groups of
genes, while genes classified as tissue enhanced are cen-
trally located and partially overlapping with the genes
annotated as low tissue specificity. Furthermore, genes
classified as tissue elevated in a tissue cluster together,

exemplified in Additional file 1: Fig. S6B, which shows
how the majority of the genes classified as brain elevated
cluster together, spatially distinct from genes classified
as elevated in the lung, lymphoid tissues, or testis. In
addition to clustering by tissue specificity, genes with a
functional relationship can be observed to be co-
localized, such as for cluster 23 (a cluster of 477 genes,
highlighted in Additional file 1: Fig. S6B), which harbors
genes with elevated expression in both testis and lung,
as well as choroid plexus, upper respiratory system, and
fallopian tube (Additional file 1: Fig. S7), and more in-
depth analysis reveals that many of these genes code for
proteins of ciliated cells, including proteins involved in
mobility, such as the sperm flagella [36].
To facilitate cluster annotation and find an association

between clusters and tissues, a hypergeometric test was

Fig. 4 UMAP gene cluster annotation and visualization based on gene expression clustering. UMAP plot showing clustering of 22,342 genes
based on their expression in 350 pig tissue samples. The resulting 84 gene clusters are outlined and are color coded by mixing the colors
associated with each organ system in proportion to the mean squared fraction of total expression among tissues for genes in the cluster. Top:
Color legend and cluster map showing cluster ID numbers. Bottom: Annotated cluster names. See Additional file 1: Fig. S4, for basic gene
UMAP visualizations
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conducted, calculating the extent of the observed
overlap between genes elevated for each tissue and
the cluster genes. Genes classified as elevated in the
lung, testis, choroid plexus, upper respiratory system,
and fallopian tube are significantly overlapped with
cluster 23 (Fig. 5). Indeed, Gene Set Analysis (GSA)
towards GO annotations revealed that cluster 23 is
enriched with genes related to cilium functions, in-
cluding cilium movement, organization, and assembly.
These results indicate that genes are arranged in
groups of clusters with distinct relation to certain
tissue types. For instance, clusters 46, 49, and 50
contain genes highly expressed in muscle tissues, al-
though each cluster also shows a distinct expression
pattern: cluster 46 is dominated by the skeletal
muscle, while cluster 49 is mainly expressed in the
heart muscle. Other examples include cluster 33 with
almost exclusive expression in the lens and clusters
57 and 59, which include genes important for squa-
mous epithelium and include several different keratin-
coding genes.
There are 18 Tissue Expression Clusters containing

altogether 9910 protein-coding genes with “housekeep-
ing” functions, with an overrepresentation of genes clas-
sified as low tissue specificity, as exemplified by clusters
22, 53, and 66. Functional analysis shows that cluster 66
(2285 genes) is mainly enriched for genes related to
transcription, RNA processing, and DNA repair. Simi-
larly, cluster 22 contains 204 genes related to DNA-
template regulation of transcription, while cluster 53
only includes 19 mitochondrial protein-coding genes,
verifying the housekeeping-related functions of the
clusters.
Thirteen clusters were annotated as “low abundant -

uncharacterized” due to limited gene information, low
expression levels, and limited functional data. However,
among the uncharacterized clusters, olfactory receptors
were highly represented with cluster 6 harboring 73 out
of 88 genes coding for olfactory receptors and cluster 21
with many olfactory receptors (17 out of 54) found in
male reproductive tissues, such as the testis and epididy-
mis, and cluster 56 (10 of 13 genes) with olfactory recep-
tors found in the lung and bronchus. This suggests that
the porcine olfactory receptors have additional function-
ality beyond olfaction, which is consistent with previous
findings of the human olfactory receptors [37].
In summary, we have introduced a new genome-wide

classification scheme to identify genes with similar ex-
pression profiles based on dimensional reduction. This
has allowed us to classify all pig protein-coding genes
into 84 Tissue Expression Clusters. This new approach
for classification is an attractive tool for annotation of
mammalian proteomes to catalogue all proteins accord-
ing to body-wide expression patterns.

Comparison of body-wide gene expression between pig
and human
The pig whole-body expression atlas enables us to com-
pare tissue-wide similarities and differences between the
pig and human expression. Here, we analyze the expres-
sion profiles of 32 tissue types for which the data pre-
sented here for pig could be compared with the data
already generated for human tissues [1]. First, we gener-
ated a UMAP of the global expression profiles of these
tissues in human and pig (Fig. 6A). As expected, tissues
from the two species cluster together based on tissue
types, but certain tissues such as the ovary, breast, and
cervix show distinct expression profile differences in pig
and human. The retina and bone marrow show a large
discrepancy in the clustering, which is expected since
the sampling for these tissues from the two species dif-
fered. The pig retina was isolated with as little pigment
layer as possible, whereas the human retina sample in-
cluded the pigment layer. Similarly, the pig bone marrow
was used without further fractionation, whereas the hu-
man bone marrow was Ficoll separated, thus isolating
mononuclear cells from e.g. adipose cells, vessels, and
non-hematopoietic components [38]. The esophagus
and salivary gland also show somewhat different cluster-
ing for pig and human tissues, most likely explained by
the abundance of glands in the submucosal layer of the
pig esophagus, which are limited in the human
esophagus.
To achieve a detailed comparison regarding tissue-

specific expression profiles, we subsequently investigated
the overlap between the specificity classification categor-
ies in pig versus human using the updated gene classifi-
cation described previously [2]. Figure 6B shows that
6496 genes are classified as low tissue specificity in both
pig and human tissues, while the remaining 9673 genes
are classified as elevated in either of the two species. A
majority of the elevated genes are classified similarly in
the two species (Additional file 1: Fig. S8B) with few ele-
vated genes showing a different tissue specificity. The
gene category overlap was particularly high when
comparing tissue enriched and group enriched genes
(Additional file 1: Fig. S8B and S8C) with 76% and 80%
of the genes having overlap in classification respectively.
This demonstrates the similar molecular architecture of
these evolutionary close species.
However, there are some interesting differences that

are worth more in-depth studies to understand their re-
spective molecular function in human and pig. For ex-
ample, the neuropeptide galanin (GAL) was classified as
tissue enriched in the pig adrenal gland, but was classi-
fied as not detected in human adrenal gland samples.
Similarly, the pro-neuropeptide Y precursor (NPY) is
classified as group enriched in the human adrenal gland,
brain, and prostate, while being group enriched in brain
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Fig. 5 Comparison between UMAP clusters and tissue specificity classification. Bubble heatmap showing the –log10(FDR) of the hypergeometric
test comparing the overlap of cluster genes with genes classified as elevated in different tissues. FDR values are capped at 10−100 to allow for
higher contrast in the figure. Only statistically significant overlaps (FDR < 0.001) are shown
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and lymphoid tissues in pig. Additionally, the human
testis-specific protein, MORC family CW-type zinc fin-
ger 1 (MORC1), is classified as enriched in the pig liver.
This list of genes classified as elevated in different tissue
types between human and pig (Additional file 6) is obvi-
ously of high relevance for our understanding of evolu-
tionary processes that drive species differences.
To statistically assess the similarity between human

and pig gene classification, a hypergeometric test was
performed for each pair of human and pig tissues (Fig.
6C). Brain, liver, and lymphoid tissues show high simi-
larity between human and pig. As expected, the analysis
revealed similarities between the heart (cardiac) muscle
and skeletal muscle, as well as between the brain and
retina. Interestingly, the hypergeometric test suggests
overlap in expression profiles between the fallopian tube
and lung, which is most likely explained by the presence
of ciliated cells in both tissues. To further explore the
global transcriptome similarity between human and pig
tissues, we performed a genome-wide comparison of
gene expression between pig and human for each tissue
using Spearman correlation, resulting in 32 scatter plots
(Additional file 1: Fig. S8E). The global transcriptome
correlation between species for the individual tissue
types ranges from 0.60 to 0.80. Collectively, the body-
wide gene expression comparison between pig and hu-
man thus suggests that the global protein-coding gene
expression is similar between the two species. However,
an interesting exception is the low similarity for repro-
ductive tissue, as exemplified by ductus deferens, ovary,
endometrium, cervix, and prostate. It would be of inter-
est to extend this comparison to other mammals, such
as rodents, to give context to the similarity between hu-
man and pig.
An alternative approach to investigate similarities and

differences between human and pig is to perform
antibody-based tissue profiling, to allow a single-cell
analysis of the corresponding protein in situ in the con-
text of neighboring cells. Here, we used antibodies raised
against the human ortholog to probe the tissue profile in
both human and pig tissue (Fig. 6D and Additional file

Fig. 6 Comparison of gene expression between human and pig. A
UMAP of human and pig tissues based on expression normalized for
ubiquitous expression level differences between species. Lines
connect the same tissue between the two species. B Alluvial
diagram showing the overlap between human and pig, in terms of
tissue specificity categories, based on 32 tissue types available in
human and pig datasets. C Statistical assessment of overlap using a
hypergeometric test. The heatmap shows the adjusted p-values for
statistically significant overlap (FDR < 0.001) between genes classified
as tissue elevated in either pig or human tissues. FDR values are
capped at 10−100 to increase the contrast in the figure. D IHC (left)
and RNA expression (right) examples: PLN (overlapping expression)
and CYP19A1 (not overlapping). The scale bar represents 50 μm
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1: Fig. S8A). The first example is the Phospholamban
(PLN) protein showing a similar staining in the heart
muscle of both pig and human, supporting its role in
calcium regulation in myocytes [39]. Similarly, Cadherin
17 (CDH17) is shown to stain GI-related tissues in both
species, supporting the GI-enriched classification in both
species. Furthermore, the special AT-rich sequence-
binding protein 2 (SATB2) classified as enriched in the
intestine and brain in both species shows similar staining
in the intestine of both species. It is also reassuring that
pyruvate dehydrogenase E1 beta subunit (PDHB) classi-
fied as low tissue specificity in both species shows a ubi-
quitous staining across many tissues in both species
(Additional file 1: Fig. S8A).
The antibody-based profiling can also be used to valid-

ate the genes with differential expression in the two spe-
cies. In Fig. 6D, the antibody-based tissue profiling of
estrogen synthetase (CYP19A1) is shown. CYP19A1 was
classified as testis enriched in pig, but instead enriched
in the placenta in humans. The tissue profiling confirms
the high abundance of this protein in pig testis, while
antibodies to this protein instead stain human placenta
[40]. Interestingly, the CYP19A1 catalyzes the synthesis
of estrogens from androgens in the steroid hormone bio-
synthesis and is associated to fertility in pig [41]. In this
context, it is interesting to note that many genes related
to steroid hormones are differentially expressed in the
testis of the two species, most likely due to the abundant
number of Leydig cells in pig testis compared to human
testis. This is further exemplified by scavenger receptor
class B member 1 (SCARB1), a receptor important for
uptake of cholesteryl esters and ovarian steroidogenesis
[42, 43]. This protein shows a similar protein profile in
the adrenal gland, testis, and ovary. However, both the
RNA expression level and the protein abundance are
much lower in the human testis and ovary as compared
to the corresponding tissues in pig (Additional file 1:
Fig. S8D).

The Pig RNA Atlas
An interactive Pig RNA Atlas (www.rnaatlas.org) has
been launched as part of this study. This open-access re-
source harbors more than 20,000 separate web pages, in-
cluding summary pages for all protein-coding genes of
pig. Genes are searchable based on gene name and gene
id. Categorizations in terms of specificity, distribution,
and UMAP-based Tissue Expression Profile clusters are
presented and searchable for each gene. Human ortho-
log data is an integrative part of the atlas with tissue ex-
pression profiles for both human and pig shown on the
pig gene summary pages. In addition, the tissues are
grouped into organ systems, each described in separate
chapters with illustrative images and IHC examples. The
Pig RNA Atlas also includes a pig histology dictionary

based on representative stained sections from the tissues
in this study, providing morphological details and com-
parison to human tissues.

Discussion
The pig-centric mammalian transcriptomics map pre-
sented here is based on protein-coding expression of
350 samples across 98 well-defined pig tissues divided
into 44 tissue groups. The distribution and tissue specifi-
city of gene expression are described for all 22,342
protein-coding pig genes present in Ensembl 92 assem-
bly. Out of these, 18,730 are overlapping with the newer
assembly of Ensembl 103, where 413 are reclassified as
other gene types than protein coding, mainly pseudo-
genes (Additional file 8). Interestingly, 232 of the 335
genes classified by us as not detected are removed from
the Ensembl 103 assembly. In future versions of the Pig
RNA Atlas portal, the data will be continuously updated
to later versions in parallel with the update of the
human data in the Human Protein Atlas [40]. The classi-
fication in both pig and human has allowed a compre-
hensive comparison of 16,228 gene orthologs in 32
common tissues between pig and human, to decipher
the molecular signatures of pig tissues and organs in re-
lationship with the human counterpart, to identify simi-
larities and differences between human and pig.
An important quest for genome biology research is to

generate gene-specific annotation based on expression,
functionality, and species differences. Efforts such as the
UniProt [44], GeneCards [45], GenBank [46], and
Ensembl [47] have been important to provide manual or
semi-automated annotation of genes. In addition, a large
number of expression maps have been described, includ-
ing the Human Protein Atlas [1, 2, 21], the Human Cell
Atlas [48], Gene Expression Atlas [49], and Genotype-
Tissue Expression [50, 51] presenting the transcriptome
profiles across cells, tissues, and organs of various spe-
cies and thus contributing to the understanding of biol-
ogy in humans and other species. The pig transcriptome
landscape has previously been described in the context
of biomedical research [15] with a large emphasis on
muscle and fat tissues due to their importance to indus-
try. Our study has expanded this comparison to a wide
variety of tissues with high granularity, including 30
brain regions, endocrine glands, multiple parts of the
male and female reproductive system, and lymphoid tis-
sues. In this manner, it has been possible to score indi-
vidual genes with regard to similar expression patterns
across all major tissues and organs in the body. An at-
tempt in this direction was first described as part of the
Tissue Atlas [1] in which the Tissue Specificity, scored as
expression in one tissue compared to all other tissues in
the body, was defined for all human protein-coding
genes. Later, the Human Protein Atlas annotation was
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extended to also annotate the Tissue Distribution of all
genes, scored for a given gene how many tissues the
gene can be detected [2]. The fact that these genome-
wide annotation tools require arbitrary cut-offs makes it
attractive to develop new approaches for genome-wide
annotation of expression profiles, without the need to
determine fold-change cut-offs or define limits for
scoring a gene as “detected.” Here, we describe the use
of dimensionality reduction to stratify genes based on
similarity of expression patterns across all analyzed tis-
sues, independent of cut-offs. This new strategy allows
all protein-coding genes to be annotated as part of a
Tissue Expression Cluster with relationship to tissue spe-
cificity and underlying protein function. This classifica-
tion has been performed for all 22,342 protein-coding
genes of pig and all genes have been classified as part of
one out of 84 Tissue Expression Clusters presented for
all protein-coding genes in the open-access Pig RNA
Atlas, launched as part of this study. A similar gene clus-
tering has previously been performed in a meta-analysis
of pig samples from multiple sources [19], where the
clustering was performed at a higher granularity, finding
1043 clusters in total, out of which 59 are annotated. Al-
though differences in methodology, samples, and gene
inclusion criteria, our clustering produces similar pat-
terns to Summers et al.; 74 of our 84 clusters had a sta-
tistically significant overlap to an annotated Summers
et al. cluster in a one-sided hypergeometric test consid-
ering common gene IDs, with similarities in annotations
between overlapping clusters. Clusters annotated by us
as “Testis sperm,” “Testis spermatogenesis,” and “Testis
uncharacterized” had an overlap to the Summers et al.
cluster “Testis only” of 89%, 85%, and 82%, respectively,
and “Brain neurotransmission” had an overlap of 72% to
“CNS” (Additional file 5). This indicates that independ-
ent cluster analyses are able to recreate the main fea-
tures of expression landscapes.
Although most tissues/organs consist of different cell

types, previous studies have shown that most tissues and
organs are composed of major cell types from the same
germ layers [27]. Previous efforts studying the mamma-
lian transcriptome in mouse cell lines and tissues found
that the global transcriptome of these cell types and tis-
sues were clustered according to germ layer origins, in-
cluding ectoderm (neurectoderm, neural crest, surface
ectoderm), endoderm, mesoderm, blood mesoderm,
germ cells, and the embryonic domain [52]. In this
study, although we do not focus on classifying the germ
layer-specific gene expression and distribution, our re-
sults (Fig. 1C and Additional file 1: Fig. S1B and S3B)
also suggest that tissues derived from the same germ
layer are clustered closely.
The comparisons between the pig and human tran-

scriptomes show that a majority of the elevated genes

are classified similarly in the two species with very few
genes classified as elevated in different tissues. This
demonstrates a similar molecular architecture of these
evolutionary close related species. It is interesting that
most differences are observed for the male and female
reproductive tissues. Indeed, the gross anatomy of hu-
man and pig uterus is different, e.g., pigs have a bicornu-
ate uterus, as well as a nonseasonal and polyestrous
cycle [53], which could contribute to the variance. Fur-
thermore, the pig tissues were sampled at 1 year of age
and had not undergone pregnancy, while human sam-
ples are sampled from adults of various age (majority
above 40 years of age) and unknown previous pregnancy
status. Since a previous pregnancy and menopause status
both have a considerable impact on reproductive tissues
including the mammary, endometrium, and cervix, this
could explain some of the differences observed in female
reproductive tissues between the human and pig sam-
ples. The gene expression difference in reproductive tis-
sues is important both from an evolutionary perspective
and also to increase our understanding in the difference
of human and pig reproductive biology. While this pair-
wise comparison between humans and pigs is useful, fur-
ther research should also investigate similarities across
additional species, thereby putting pairwise similarities
between species into context, i.e., how similar e.g. pig
tissues are to human, in contrast to their similarity to ro-
dent or other primate tissues. This type of effort has pre-
viously been published using the brain samples from this
study in Sjöstedt et al. [21], which entails a detailed
comparison of the pig brain samples to human and
mouse brain, highlighting a general species conserved
gene expression across brain regions and placing pig
closer to the human brain than mouse, based on expres-
sion profiles. Furthermore, it would be of additional use
to expand the comparison of multiple species to also in-
volve various stages of development, to assess the effect
on tissue gene expression.

Conclusion
In conclusion, we present a new approach for genome-
wide functional annotation of protein-coding genes
based on UMAP clustering to allow annotation of all pig
genes based on an expression analysis, here covering 98
tissues and organs. Comparison of protein-coding tran-
scriptomics supported the evolutionally similarity be-
tween pig and human, with some tissues showing higher
differences, in particular the reproductive tissues. A
genome-wide resource of the transcriptome map across
all major tissues and organs in pig has been launched
and the data is available as an open-access resource
called the Pig RNA Atlas (www.rnaatlas.org) with the ex-
pression profile of all protein-coding genes across all tis-
sues, including a comparison to the human orthologs.
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This resource will facilitate future attempts to under-
stand pig biology and to use pig as a model system for
human health and disease.

Methods
Pig and sample collection
Sample collection and handling of animals were carried
out in accordance with national guidance for large ex-
perimental animals and under the permission of the
local ethical committee. Four Chinese Bama minipigs (2
male and 2 females, 1 year old) were provided by the
Pearl Lab Animal Sci & Tech Co., Ltd. Animals were
housed in a specific-pathogen-free pigsty under standard
condition. The pigs were deeply anesthetized and sacri-
ficed by terminal bleeding. The sampling order was simi-
lar between the four pigs: the peritoneum, abdominal
fat, and pancreas were sampled first (in spite of this ef-
fort, the pancreas did still fail the quality control and is
therefore missing from this study), followed by removal
of the eye and orbital adipose tissue. The eye was conse-
quently dissected into the cornea, lens, and retina (with
as little pigment layer as possible). After removal of the
eye, the skull was opened and the brain was removed.
For brain sample processing, the dura mater was sam-
pled and the entire pig brain was removed from the skull
and submerged into ice-cold PBS buffer for 2 min to
stiffen the tissue and remove excess blood. Brain sam-
ples were retrieved from the respective hemispheres, in
total 30 samples, of which one side was fixed in whole
slabs and the other hemisphere was used for regional
sampling and RNA extraction. The brain is further de-
scribed and analyzed in more detail in Sjöstedt et al.
[21]. In summary, the cerebellum and cerebral cortex
were collected as pieces while the remaining brain re-
gions and subregions were collected in their entirety.
Peripheral tissue samples were divided into two pieces,

one for fixative and morphological verification while the
other piece was snap frozen for RNA sequencing. Tissue
samples for RNA sequencing were snap frozen in dry ice
and stored at − 80 °C until further processing. For tissue
fixation, samples were immersion-fixed in phosphate-
buffered saline containing 4% paraformaldehyde for 1
week followed by storage of 70% ethanol at 4 °C. The
joint cartilage, synovial tissue, and larynx were excep-
tions without fixed tissue samples, due to being sparse
and difficult tissues to sample. The brain samples were
stored in phosphate-buffered saline containing 0.1% so-
dium azide at 4 °C. All samples included in the Pig RNA
Atlas are listed in Additional file 2.

Library preparation and sequencing
RNA extraction was performed with a Trizol-based tis-
sue RNA extraction protocol. The tissue was homoge-
nized mechanically using a pre-cooled Dounce tissue

grinder in liquid nitrogen. Total RNA was then extracted
with a standardized protocol based on TRIzol reagent
(Invitrogen). Quality and quantity of total RNA samples
were measured with Agilent 2100 BioAnalyzer (Agilent
Technologies). Library preparation was carried out using
the DNBseq technology provided by MGI Tech Ltd.
First, total mRNA and noncoding RNAs were enriched
by removing ribosomal RNA (rRNA) using a MGIEasy
rRNA depletion kit (MGI Tech, China). Enriched RNAs
were then mixed with RNA fragmentation buffer result-
ing in short fragments (180 to 300 base pairs). Third,
complementary DNA (cDNA) was synthesized from the
fragmented RNAs using N6 random primers, followed
by end repair and ligation to BGIseq sequencer compat-
ible adapters. The quality and quantity of the cDNA li-
braries were assessed using Agilent 2100 BioAnalyzer
(Agilent Technologies). Finally, the libraries were se-
quenced on the BGISEQ-500 with 100-bp paired-end
read (PE100). A few randomly selected libraries were
also re-sequenced and co-validated with the MGI2000
sequencer. An average of 165.5 million reads per sam-
ples were generated for each library. Sequencing reads
that contained adapters, had low quality, or aligned to
rRNA were filtered before following bioinformatics
analysis.

Raw data processing
The output analysis was performed using Kallisto
v.0.43.1 [54] and mapped to the pig Ensembl build 92
with 22,342 protein-coding genes, for the initial analysis.
An overview of the total reads, Q30 clean reads, and
mapping ratio to the pig genome (Sscrofa11.1) is pro-
vided in Additional file 2.

Data normalization
The transcriptomics data were normalized as in a previ-
ous publication [2]. In brief, transcripts per million
(TPM) values were calculated per each sample (n = 350)
for all protein-coding genes, referred to as pTPM.
Samples of the same tissue type (n = 98) were then
aggregated by using the average pTPM per gene, and
resulting values were sample-wise corrected using
trimmed mean of M values (TMM) [55] and then gene-
wise pareto scaled (dividing by the square root of the
standard deviation), resulting in an expression score re-
ferred to as NX. Expression values for grouped tissues
were calculated as the maximum expression of sub-
tissues. Both TMM-corrected and NX values were used
in down-stream analyses, as specified in each section
below.

Gene distribution and specificity classification
Each gene was individually classified in terms of specifi-
city and distribution based on relative NX expression
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values between 44 different tissue types. The specificity
categories were defined as follows: tissue enriched: a sin-
gle tissue has 4-fold or higher NX than any other tissue,
group enriched: 2–5 tissues have NX larger than a
fourth of the maximum NX and their average NX is 4-
fold higher than any other tissue, tissue enhanced: the
gene is neither tissue enriched nor group enriched and
one or multiple tissues have an NX at least 4-fold higher
than the average NX, low tissue specificity: the gene is
neither tissue enriched, group enriched, nor tissue en-
hanced and detected above cut-off in at least one tissue.
The pig gene expression distribution categories were de-
fined as follows: detected in all: NX ≥ 1 for all tissues,
detected in many: NX ≥ 1 for at least 31% (n = 14) tis-
sues but not in all, detected in some: NX ≥ 1 for more
than 1 tissue but less than 31% (n = 14), and detected in
single: NX ≥ 1 for a single tissue. A gene was classified
as not detected if no tissue had NX ≥ 1.

Network of tissue enriched and group enriched genes
For all genes classified as either tissue enriched or group
enriched, the number of genes was calculated for each
unique combination of elevated tissues observed, thus
forming tissue nodes, as well as gene nodes, the latter in-
dicating the number of elevated genes with elevated ex-
pression in the connected tissues. This was visualized in
Cytoscape (v 3.6.1) [56], and gene nodes were filtered to
remove complexity such that gene nodes were displayed
if they (1) contained tissue-enriched genes, (2) contained
at least 5 genes, or (3) ranked top 2 largest node for any
connected tissue and contain at least 2 genes. The layout
was manually curated such that no nodes or edges
overlapped.

Hierarchical clustering
Hierarchical clustering was used in several figures to fa-
cilitate data visualization.
Figure 1C: Spearman correlation was calculated be-

tween all tissue types, after which the correlation was
transformed into a distance (1 – Spearman’s ρ). The cor-
relation distance values were then clustered using
Ward’s criterion, and the resulting dendrogram was then
transformed into a hierarchical graph, where link dis-
tances were normalized to emphasize graph connections
rather than link distances. Link width is proportional to
the distance from the root and is colored according to
organ system if only one organ system is present among
connected tissue type leaves.
Figure S1B: Spearman correlation was calculated

between all tissue types, after which the correlation was
transformed into a distance (1 – Spearman’s ρ). The
correlation distance values were then clustered using the
average distance (unweighted pair group method with
arithmetic mean).

Figure 5 and S5: Tissues and clusters were both
clustered using binary distance of –log10(p-value) and
Ward’s criterion.

Comparison of pig and human orthologs
Human orthologs were used for cross-species compari-
son of gene specificity classification and tissue-wide ex-
pression based on transcriptomics data. The analyses
were based on pig genes having a human ortholog in
Ensembl release 92, and the orthologs included were the
one2one orthologs (n = 15,483) and the set of one2many
orthologs having a single high-confidence pair (n = 756).
Many2many orthologs and one2many orthologs with
only low-confidence pairs or several high-confidence
pairs were excluded since the analyses rely on gene-to-
gene comparisons. A complete list of ortholog mappings
can be found in Additional file 6.

Gene classification by UMAP analysis
Genes were clustered based on their expression in all
samples in order to stratify them into groups with re-
lated expression pattern and function, such that global
transcriptomic structures can easily be navigated. In
doing so, manual decisions in clustering were made such
that the number of clusters was reasonably low (n = 84),
and their average size was neither too large nor too
small. The resulting clustering favors accessibility and
visualization, rather than optimizing for a particular
metric.
Sample-wise TMM-corrected data was log-transformed

(log10(TMM +1)) and transformed to Z-score. Z-scores of
genes with a standard deviation of zero were set to zero.
The Z-scores were used to create a two-dimensional Uni-
form Manifold Approximation and Projection (UMAP)
[35] using the UMAP implementation in the uwot R pack-
age (v 0.1.8), with the parameters n_neighbors = 15, scale =
“none”, n_epochs = 1000. The two-dimensional UMAP was
then used to cluster genes in two steps: (1) density-based
clustering and (2) k-means clustering. The density-based
clustering was performed using the algorithm Density
based clustering using the density reachability and connect-
ivity clustering (DBSCAN) [57] implementation in the fpc
R package (v 2.2-8), and the reachability distance parameter
eps = 0.1. This clustering was used in order to define initial
k-means centers that are evenly distributed in spatially dis-
tinct clusters of genes. The two largest clusters were given
additional k-means centers by random sampling of gene
UMAP coordinates in proportion to their approximate
area. Using the now acquired k-means centers, the genes
were once again clustered, now using k-means in 50 itera-
tions. Resulting clusters were investigated for enrichment of
elevated genes in individual clusters using a hypergeometric
test (see “hypergeometric tests”), in order to annotate each
cluster based on their tissue specificity. Clusters that
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showed significant enrichment (Benjamini-Hochberg
adjusted p-value < 0.05) for the same tissues and were also
adjacent were merged to reduce the number of redundant
clusters, resulting in the final 84 clusters. The final clusters
were again investigated for tissue enrichment using the
same hypergeometric test, where a cluster-tissue overlap
was considered significant for Benjamini-Hochberg-
adjusted p-values < 0.001.

UMAP cluster annotation
To functionally annotate the gene clusters from UMAP
analysis, gene ontology analysis was carried out using
the enrichR R package (v 2.1) [58]. For each cluster, pig
genes were transferred to human gene names using the
established orthologs (see the section “Comparison of
pig and human orthologs” above) and analyzed for en-
richment to GO 2018 databases: Biological Process, Cel-
lular Component, and Molecular Function. The result
was filtered such that GO terms with adjusted p-value
(provided by enrichR) below 0.05 were kept. The
remaining GO terms were summarized and visualized
using rrvgo (v 1.0.1) and treemapify (v 2.5.3) and visual-
ized together with tissue specificity hypergeometric test
results and an expression heatmap of cluster genes. This
data, together with manual investigation of genes, were
used to manually annotate each cluster in terms of spe-
cificity and function where possible. The final list of
cluster annotations can be found in Additional file 4.

Human sequencing datasets
Human data was acquired from v 19 of the HPA (http://
v19.proteinatlas.org/about/download), which includes
expression data from The Functional Annotation of
Mammalian Genomes 5 (FANTOM5) project [59] and
the Genotype-tissue Expression (GTEx) project [51, 60,
61] normalized according to a previous publication [2].

Hypergeometric tests
Hypergeometric tests were performed using phyper
(stats v 4.0.2) [62] with the following parameters for test-
ing tissue specificity—MAP cluster overlap, and overlap
of tissue specificity in human and pig, respectively:
UMAP cluster versus pig tissue specificity: The test

was used to evaluate the overlap between genes elevated
for a particular tissue and genes within a particular clus-
ter; q—the number of genes both elevated for the tissue,
and present in the cluster; m—the total number of genes
in the cluster; n—the total number of pig genes; k—the
number of genes in the cluster. The analysis was re-
peated for all observed combinations of cluster affiliation
and tissue elevation.
Human tissue specificity vs pig tissue specificity: The

test was used to evaluate the overlap between established
orthologs elevated in a particular human tissue and a

particular pig tissue; q—the number of orthologs
elevated in both the human and pig tissue; m—the
minimum number of orthologs elevated in human or pig
tissue; n—the total number of orthologs; k—the number
of orthologs elevated in both or either the human and
pig tissue. The analysis was repeated for all observed
combinations of human and pig elevated tissues among
orthologs.

Tissue processing
Peripheral tissues were stored in 70% ethanol at 4 °C
while brain tissues that were stored in PBS buffer at 4 °C
were moved into ethanol 1 week prior to paraffin
embedding. Dehydration in absolute alcohol (VWR
chemicals) and xylene (Histolab) followed by paraffin
(Histolab) immersion were performed using an auto-
mated Tissue Processing Center TPC 15 Duo (MEDITE)
machine. After manual embedding into separate paraffin
tissue blocks, one representative section (4um) was
taken from each tissue block using microtome (Microm
HM 355S, Thermo Fisher Scientific) with a microm STS
Section-Transfer-System (waterfall) for section transfer
into warm water bath (38 °C) stretching before placed on
SuperFrost PlusTM slides (VWR). Slides were dried in
room temperature for 24 h followed by 50 °C over night
(LAMB Windsor Incubator E18.31, Histolab).

Tissue staining
The representative section for each tissue block was
stained with hematoxylin and eosin (H&E) for morpho-
logical examination, as well as digitalization for the on-
line tissue dictionary (www.rnaatlas.org/pig/dictionary).
Deparaffinization and rehydration of tissue slides were
performed using Leica ST5010 Autostainer XL starting
with 11min (5 + 5 + 1) incubation in xylene (Histolab),
followed by 6 min (3 + 3) ethanol absolute (VWR), 8
min (5 + 3) 96% ethanol (VWR), 3 min 80% ethanol
(mixed from 96% ethanol), and finally 3 min deionized
water. The rehydration steps were followed by 3 min in
filtered Mayers hematoxylin (Histolab), 3 min wash in
running water, 1 min in lithium carbonate (Merck
Millipore, 1:5 saturated lithium carbonate in deionized
water), another 5 min in running water, and then 1min
Eosin Y before initiation of dehydration and cover glass
mounting. Dehydration was performed by 14 s (7 + 7)
80% ethanol, 14 s (7 + 7) 96% ethanol, absolute ethanol
(7 s + 3 min + 3min), and 6 min (3 + 3) NeoClear® before
automated cover glass (VWR) mounting by the
Autostainer XL extension (slide mounting robot Leica
CV5030 unit) with Pertex® (Histolab) as mounting
media. Slides were moved from the mounting rack into
an oven for drying two times 20 min at 50 °C.
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TMA construction
A selection of tissue blocks, representing most normal
tissue types, was used for creating a tissue microarray
(TMA) using semi-automated TMAarrayerTM (Path-
ology Devices). The final TMA included 32 different
tissues from Pig 1 (female) and 4 (male), represented
by 1-mm punches moved from the donor block to an
empty recipient paraffin block according to the previ-
ously described method [63]. The TMA block was cut
following the identical details described above and
stored at −20 °C until used for staining. The TMA
slides were used for IHC staining, providing simultan-
eous results for a large number of tissue types for
comparison to RNA expression profile for the corre-
sponding tissues.

Antibody resource
The resource of antibodies produced in the HPA project
was utilized for protein profiling of pig tissues. Genes of
interest were investigated in the internal Laboratory In-
formation Management System (LIMS) based on two
important criteria: antibodies with high reliability (based
on human antibody validation [64, 65]), and over 80%
sequence homology between the PrEST (protein epitope
signature tag, used for immunization [66]) and corre-
sponding pig orthologous gene. The access to the exact
amino acid (aa) sequence for the antigens (PrEST) used
for immunization enables the comparison to pig se-
quence for corresponding orthologs. The exact aa- se-
quence for each antibody presented in this study is listed
in Additional file 7along with the % homology to the pig
gene as well as antibody concentration and dilution used
for the IHC protocol. All antibodies are published on
the HPA portal (www.proteinatlas.org) with more details
about antibody reliability and tissue distribution in hu-
man. Selected antibodies were first confirmed on human
tissues, reproducing the online human staining profile,
before applied on the pig tissue, using the exact same
pretreatment and staining protocol used for the human
tissues within the HPA standardized pipeline.

Immunohistochemical staining protocol
Deparaffinization and rehydration were performed by
Autostainer XL (ST5010, Leica biosystems) as described
above by exiting the program after 30 s in deionized
water, as well as the addition of 1:100 0.3% H2O2
(Merck Milipore) to the 5 min 96% ethanol (VWR) incu-
bation for blocking endogenous peroxidase. Slides were
placed in deionized water before being changed into re-
trieval buffer. Heat-induced epitope retrieval was done
in pH 6.1 citrate buffer (DAKO, diluted 1:10 with deion-
ized water and stored at 4 °C) and pressure boiler
(decloaking chamber, Biocare Medical) preheated to
80 °C. The total heating program is 35 min, first heating

to 125 °C and stays at 125 °C for 4 min followed by pas-
sive cooling to 99 °C and then active cooling (fan) to
90 °C. Slides were then cooled off by running deionized
water in the sink for a few min and then placed in wash
buffer. The wash buffer is mixed by 9.5 l deionized
water, 0.5 l Tris-buffered saline, and tween 20 (Thermo-
Fisher Scientific) and 15ml large volume tween 20
(ThermoFisher Scientific).
Autostainer 480 (ThermoFisher Scientific) was used

for automated IHC staining with UltraVision™ Quanto
Detection System HRP DAB-kit from Thermo Fisher
Scientific including; Ultra V Block, HRP Polymer, Pri-
mary Antibody Enhancer, DAB Quanto Substrate, DAB
Quanto Chromogen and primary antibodies were diluted
in Antibody Diluent OP Quanto. Rinsing between incu-
bations was done using the wash buffer except for the
final step, after DAB Quanto incubation, where deion-
ized water was used for rinsing. All in-house HPA anti-
bodies are affinity-purified polyclonal rabbit antibodies;
the antibody production has been described in detail
previously [67]. The secondary HRP Polymer (Thermo-
Fisher Scientific) is anti-rabbit, and for this reason, 20
min Primary Antibody Enhancer (ThermoFisher Scien-
tific) was added prior to the HRP polymer incubation in
the protocol of anti-SATB2 (AMAb90682), which is a
monoclonal mouse antibody. In all other cases, the IHC
protocol was identical; first, a rinse with wash buffer
followed by 5 min Ultra V Block, rinse twice, primary
antibody incubation for 30 min, rinse twice, HRP Poly-
mer incubation for 30 min, rinse twice, 5 min DAB
Quanto incubation and then a final rinse with deionized
water. Slides were placed in water and moved to the
Autostainer XL (ST5010, Leica biosystems) for counter-
staining (hematoxylin), dehydration, and cover glass
mounting. Slides were incubated 7.5 min in filtered
Mayers hematoxylin (Histolab) followed by 5min wash
in running water, 1 min in lithium carbonate (Merck
Millipore, 1:5 saturated lithium carbonate in deionized
water), another 5 min in running water. Dehydration
was performed by 6 min (3 + 3) 80% ethanol, 6 min (3 +
3) 96% ethanol, 9 min (3 + 3 + 3) ethanol absolute, and
6 min (3 + 3) NeoClear® before cover glass (VWR) was
automatically mounted by the slide mounting robot
Leica CV5030 unit using Pertex® (Histolab) and then
dried in the oven for 40 min at 50 °C. Image
digitalization was performed with Scanscope AT2
(Aperio) using a 20× objective.

Data visualization
Data visualization was performed in R (v 4.0.2) [62],
using RStudio (v 1.3.1093) [68]. The majority of
visualizations were made using ggplot2 (v 3.3.2) [69],
supplemented with the following packages: concaveman
(v 1.1.0), dendextend (v 1.14.0) [70], ellipse (v 0.4.2),
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ggalluvial (v 0.12.2) [71], ggalt (v 0.4.0), ggbeeswarm
(v 0.6.0), ggdendro (v 0.1.22), ggforce (v 0.3.2), ggraph
(v 2.0.3), ggrepel (v 0.8.2), ggridges (v 0.5.2), ggthemes
(v 4.2.0), igraph (v 1.2.6) [72], patchwork (v 1.0.1),
pcaMethods (v 1.80.0) [73], pheatmap (v 1.0.12), rrvgo
(v 1.0.1), sf (v 0.9-6) [74], tidygraph (v 1.2.0), treema-
pify (v 2.5.3), umap (v 0.2.6.0) [35], uwot (v 0.1.8),
and viridis (v 0.5.1). Cytoscape (v 3.6.1) [56] was used
to adjust network visualizations. Figures were assem-
bled, annotated, and aesthetically adjusted in Affinity
designer (v 1.8.5.703).
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been used in each figure, table of antibody information including ID,
targeted gene, and antigen sequence, and a table of staining reagents.

Additional file 8. Includes a gene-wise comparison of Ensembl 92 and
103 gene IDs with comments on changes in gene type and status.
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