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Abstract 

Background:  The process of thrombus formation is thought to involve interactions between platelets and leuko‑
cytes. Leukocyte incorporation into growing thrombi has been well established in vivo, and a number of properties 
of platelet-leukocyte interactions critical for thrombus formation have been characterized in vitro in thromboinflam‑
matory settings and have clinical relevance. Leukocyte activity can be impaired in distinct hereditary and acquired 
disorders of immunological nature, among which is Wiskott-Aldrich Syndrome (WAS). However, a more quantitative 
characterization of leukocyte behavior in thromboinflammatory conditions has been hampered by lack of approaches 
for its study ex vivo. Here, we aimed to develop an ex vivo model of thromboinflammation, and compared granulo‑
cyte behavior of WAS patients and healthy donors.

Results:  Thrombus formation in anticoagulated whole blood from healthy volunteers and patients was visualized by 
fluorescent microscopy in parallel-plate flow chambers with fibrillar collagen type I coverslips. Moving granulocytes 
were observed in hirudinated or sodium citrate-recalcified blood under low wall shear rate conditions (100 s−1). These 
cells crawled around thrombi in a step-wise manner with an average velocity of 90–120 nm/s. Pre-incubation of blood 
with granulocyte priming agents lead to a significant decrease in mean-velocity of the cells and increase in the num‑
ber of adherent cells. The leukocytes from patients with WAS demonstrated a 1.5-fold lower mean velocity, in line with 
their impaired actin polymerization. It is noteworthy that in an experimental setting where patients’ platelets were 
replaced with healthy donor’s platelets the granulocytes’ crawling velocity did not change, thus proving that WASP 
(WAS protein) deficiency causes disruption of granulocytes’ behavior. Thereby, the observed features of granulocytes 
crawling are consistent with the neutrophil chemotaxis phenomenon. As most of the crawling granulocytes carried 
procoagulant platelets teared from thrombi, we propose that the role of granulocytes in thrombus formation is that of 
platelet scavengers.

Conclusions:  We have developed an ex vivo experimental model applicable for observation of granulocyte activity 
in thrombus formation. Using the proposed setting, we observed a reduction of motility of granulocytes of patients 
with WAS. We suggest that our ex vivo approach should be useful both for basic and for clinical research.
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Background
A complex interplay between blood coagulation 
system, immune system, and endothelium, called 
thromboinflammation, occurs in diverse pathophysiolog-
ical situations, such as bacterial infection or cancer [1]. 
Thromboinflammation is thought to be driven mainly by 
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the interactions between granulocytes and platelets [2]. 
Platelets are non-nuclear cells, produced by the mega-
karyocytes, that have multiple functions both in hemo-
stasis and immunity [3, 4]. Platelet activation at the site of 
injury or inflammation leads to the secretion of platelet 
α-granules, which contain P-selectin, fibrinogen, VWF, 
growth factors, and chemoattractants for leukocytes 
(NAP2, RANTES, CD40L, etc.) [5, 6]. These proteins play 
a crucial role in the leukocyte recruitment and adhesion 
[7–9]. The adhesion to platelets causes leukocytes’ integ-
rins activation [10], and their migration through thrombi 
[11]. Therefore, platelet-leukocyte interactions are in the 
heart of thromboinflammation.

Granulocytes’ migration in thrombi should be depend-
ent on concentrations of their chemoattractants. The 
contact with a chemoattractant (“priming”) of granu-
locyte leads to their β2-integrins (CD11a/CD18, LFA-1 
(αLβ2) and mainly CD11b/CD18, Mac-1 (αMβ2)) activa-
tion, which results in their firm adhesion to the surface. 
Therefore, we expect that granulocyte movement in a 
thrombus should be influenced by their priming. An inhi-
bition of actin polymerization impairs granulocyte chem-
otaxis [12]. In patients with cytoskeletal abnormalities, 
for instance, with Wiskott-Aldrich syndrome (genetic 
hemorrhagic and immunological syndrome; WAS) [13, 
14], we expect impaired granulocyte involvement in the 
thrombus formation process.

The study was aimed at the development and validation 
of an ex vivo technique, allowing observation and simu-
lation of the thrombus-leukocyte interactions (thrombus 
growth and leukocyte activity). To validate the method, 
we loaded the hirudin-anticoagulated whole blood of 
healthy donors or patients with WAS in parallel-plate 
flow chambers under the low flow shear rate (100 s−1). 
The samples from healthy donors were studied under 
control conditions as well as with leukocyte-priming 

reagents. We have identified conditions for granulocytes’ 
observation and derived a plethora of parameters for 
granulocytes’ characterization. These parameters were 
used for the analysis of the whole blood of patients with 
WAS.

Results
Granulocytes crawl among the growing thrombi under low 
wall shear rate conditions
Parallel plate flow chambers are a widely applied mod-
ern tool for the hemostasis assessment [15]. We used 
this tool for the assessment of the leukocyte incorpora-
tion into thrombus formation (Additional file 1: Fig. S1; 
Additional file  2: Video). For this purpose, we used five 
most known anticoagulants: EDTA and citrate (both 
chelate calcium), heparin and hirudin (inhibit thrombin 
indirectly and directly, correspondingly) [16]. For the 
identification of nuclear cells (NCs), blood was loaded 
with Hoechst 33342 (intracellular DNA), while DiOC6 
(membrane potential) was used to visualize both NCs 
and other cell types (such as platelets). No adherent NCs 
were observed in EDTA or citrate anticoagulated blood 
(Additional file 1: Fig. S1A-H). Upon calcium replenish-
ment to the physiological concentration in the citrated 
blood (Additional file 1: Fig. S1I-L) as well as in heparin 
or hirudin anticoagulated blood (Additional file  1: Fig. 
S1M-T), NCs crawling among the thrombi was observed 
(Additional file 1: Fig. S1A-C).

We observed rolling or crawling NCs among the 
thrombi, growing in the flow chamber on fibrillar colla-
gen, as well as some motionless ones (Additional file 3: 
Video). The cells’ instant velocity changed from 0.014 to 
0.21 μm/s and the mean velocity was 0.116 ± 0.017 μm/s 
(Additional file  1: Fig. S2B, D, F, Table  1). Detailed 
comparison between the anticoagulant impact on 
NCs behavior is given in the Table  1. Although the 

Table 1  NC behavior after 30 min of blood perfusion. Data for N = 5 donors

EDTA Citrate Citrate recalcified Heparin Hirudin

NC velocity, μm/s

  Minimal instant 0.072 ± 0.022 0.07 ± 0.06 0.022 ± 0.003 0.018 ± 0.005 0.022 ± 0.017

  Maximal instant 0.65 ± 0.14 0.58 ± 0.14 0.62 ± 0.03 0.567 ± 0.07 0.703 ± 0.006

  Average 0.30 ± 0.09 0.32 ± 0.07 0.137 ± 0.018 0.095 ± 0.012 0.116 ± 0.017

NС trajectory length, μm

  Minimal 30 ± 21 24 ± 11 30 ± 7 23 ± 9 26 ± 15

  Maximal 221 ± 69 228 ± 40 361 ± 114 400 ± 67 469 ± 25

  Median 82 ± 46 65 ± 35 148 ± 62 137 ± 9 216 ± 44

Motionless NCs (velocity < 0.045 μm/s), % – – 25 ± 13 15 ± 5 7 ± 4

Number of attached NCs per FOV – – 0.52 ± 0.23 1.6 ± 0.6 1.1 ± 0.6

Thrombus area, % of FOV 3.6 ± 2.3 21 ± 3 19.9 ± 2.2 9.7 ± 0.9 12 ± 4
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citrate recalcification setting allows observation of both 
plasma and platelet hemostasis, in a large fraction of 
experiments, the flow chamber becomes occluded by 
the growing thrombi (data not shown). To avoid it, we 
added 50 ATU (12.5% from the standard anticoagula-
tion) of hirudin upon recalcification. Compared to hir-
udin, in the heparin-anticoagulated blood more NCs 
attached to the surface (Additional file  1: Fig. S3A), 
while the NCs trajectories were shorter and the number 
of motionless NCs was nonsignificantly larger (Addi-
tional file 1: Fig. S3B, Table 1). This attests that the NCs 
are at least primed by heparin, in line with previous 

data [17, 18]. Thus, hirudin was used as anticoagulant 
in all further experiments.

In order to identify the NCs, DiOC6 (Fig.  1D), the 
antibody to CD66ace (Fig. 1E) and the antibody against 
CD66ace (Fig.  1F) were used. Alternatively, blood was 
pre-incubated with Hoechst 33342 (H), DiOC6 (I), or 
anti-CD2 antibody (J). It appeared that while most of 
the cells were granulocytes (CD66b and CD66ace posi-
tive; Fig.  1D-G, Additional file  1: Fig. S4A-J)), a subset 
of cells was T lymphocytes (CD66ace, CD66b negative 
and CD2 positive; Fig. 1H-K, Additional file 1: Fig. S4K-
O; Additional file  4: Video). Most of the crawling cells 

Fig. 1  Nuclear cells (NCs) are able to crawl among the growing thrombi. A–C Thrombi (highlighted by red) with crawling NCs (highlighted by 
yellow) upon hirudin-anticoagulated blood perfusion through the flow chamber with fibrillar collagen fluorescent mode (DiOC6, A) or DIC (B, C) 
at × 100 magnification (raw data at https://​doi.​org/​10.​6084/​m9.​figsh​are.​18356​042.​v1). D–G Thrombi with crawling NCs in the presence of DiOC6 
(D), CD66b (E), and CD66ace (F) at × 20 magnification (G–merged D–F; raw data at https://​doi.​org/​10.​6084/​m9.​figsh​are.​18417​194.​v1). H–K Among 
crawling CD66b and CD66ace positive cells were motionless cells with single nuclei (H) and clustered DiOC6 staining (I), which appeared to be 
CD2-positive (T lymphocyte marker; J) as well (K–merged H–J; raw data at https://​doi.​org/​10.​6084/​m9.​figsh​are.​18435​551.​v1). L, M Different types of 
granulocytes were observed—crawling (L) and spread (M). O Granulocyte slowing down and spreading dynamics. O Based on the granulocyte and 
lymphocyte velocity distribution, it can be claimed that spread granulocyte and lymphocytes were distinctive not only by their appearance but by 
their velocity as well. Representative data out of N = 10 donors. Individual data values are given in the Additional Table 3

https://doi.org/10.6084/m9.figshare.18356042.v1
https://doi.org/10.6084/m9.figshare.18417194.v1
https://doi.org/10.6084/m9.figshare.18435551.v1
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(Fig. 1L, Additional file 5: Video) appeared to have active 
CD11b in their posterior part (Additional file 1: Fig. S4A-
E). Some of the granulocytes slowed down and spread 
(Fig. 1M) with fewer number of active CD11b in the mid-
dle parts of the cell (Additional file 1: Fig. S4F-J) [17]. The 
process of granulocyte slowing down and spreading is 
depicted in Fig. 1N and in Additional file 6: Video. Both 
granulocytes and T lymphocytes were CD18 positive; 
however, CD18 staining on T lymphocytes appeared to 
be less clustered (Additional file  1: Fig. S5). The named 
three cell types (crawling granulocytes, spread granulo-
cytes and T lymphocytes) were clearly distinguishable 
by their DiOC6 staining pattern (Fig.  1A, I, L, M) and 
their velocities, namely, spread granulocytes’ and T lym-
phocytes’ velocity was less than 0.045 μm/s on average 
(Fig. 1O). The number of all types of NCs increased from 
1 to 2 cells per field of view (FOV) on the 5th minute 
to 8 cells per FOV on the 20th minute and then did not 
change significantly up to 30th minute (Additional file 1: 
Fig. S6). Analysis of the blood contents prior and post 
blood perfusion revealed that nearly 50% of granulocytes 
participated in the process of thrombus formation in our 
conditions (Additional file 1: Fig. S7A-C). However, upon 
platelet depletion, slightly yet significantly lesser amounts 
of granulocytes were incorporated in the thrombus for-
mation process in contrast to non-thrombocytopenic 
blood (Additional file 1: Fig. S7D-F). On the other hand, 
granulocyte crawling velocity appeared to be independ-
ent from the platelet count: no statistical differences were 
present between granulocyte crawling in normal and 
thrombocytopenic blood (Additional file 1: Fig. S8).

Mediators of inflammation and platelet activators alter 
granulocyte behavior
In order to test whether NCs activation affected their 
adhesion at sites of growing thrombi, we performed 
experiments in the presence of leukocyte-priming agent, 
myeloperoxidase (MPO) [19], which is one of the key pro-
teins, stored in granulocytes and secreted upon activation 
[20]. By binding to Mac-1, MPO can induce granulocyte 
activation in an autocrine fashion including MAPK activa-
tion, degranulation [21, 22], and adhesion [23]. It has been 
demonstrated previously that MPO facilitates granulocyte 
recruitment by its positive surface charge [24]. Further-
more, MPO-dependent granulocyte recruitment at sites 
of inflammation has been demonstrated both in vitro and 
in vivo [24]. MPO did not significantly affect granulocyte 
trajectories (Fig. 2D–F) and velocities (Fig. 2H), while sig-
nificantly increasing the number of NCs per FOV (Fig. 2G) 
and percentage of motionless NCs (Fig.  2I) in line with 
the literature data on MPO impact on granulocytes [19, 
22, 24]. For the combined activation of granulocytes on 
platelets, we used fucoidan, capable of inducing platelet 

degranulation (P-Selectin exposure, Additional file 1: Fig. 
S9) via CLEC-2 receptor [25] as well as pro-inflamma-
tory cytokine production and apoptosis delay in granu-
locytes [26]. Therefore, we expect an increased attraction 
of granulocytes to the growing thrombi. Indeed, the num-
ber of NCs (Fig. 2G) as well as the NC crawling velocities 
(Fig.  2H) increased upon fucoidan treatment, while NC 
spreading was not significantly altered (Fig.  2I). Finally, 
we used lipopolysaccharides (LPS) [27] to mimic the pro-
inflammatory granulocytes stimulation. LPS activate and 
promote NETosis via TLR4 receptor on granulocytes, 
while do not significantly alter platelet functioning and 
thrombus formation in flow chambers [28]. As expected, 
LPS increased granulocyte crawling velocity only at 10th 
minute but significantly reduced it at 20th and 30th min-
ute (Fig.  2H), which was associated with the statistically 
significant increase of the numbers of slow NCs upon LPS 
introduction (Fig.  2I). All of the used agents altered the 
thrombus area; however, their effects are not uniform and 
should be the object of additional studies (Additional file 1: 
Fig. S10, S11A).

NCs bear Annexin‑V‑positive platelets
Among the key physiological functions of granulocytes 
in the blood flow is the removal of the phosphatidyl-
serine (PS) exposing (Annexin-V-positive) cells [29]. 
In particular, granulocytes can form hetero-aggregates 
with Annexin-V-positive platelets [7], which form in 
the process of thrombus formation [30]. Indeed, in our 
experimental setting, the crawling granulocytes were 
associated with Annexin-V-positive particles (Fig.  3A–
C). In order to identify these particles, whole blood was 
loaded with Hoechst 33342, anti-CD61 (specific marker 
of platelets) antibodies, and Annexin-V. It appeared, 
that the majority of granulocytes were associated with 
Annexin-V-positive and CD61-positive cells—proco-
agulant platelets (Fig. Additional file 1: 2A-E, Additional 
file 7: Video). Same has been observed for experiments 
at lower magnification (× 40): most of granulocytes 
appeared to be bearing Annexin-V- and CD61-positive 
cells (Additional file 1: Fig. S12F-I). To identify the mech-
anism of Annexin-V-positive platelets association with 
crawling NCs, we analyzed active CD11b and CD66b 
distribution on the crawling cells (Fig. 3 and Additional 
file 1: Fig. S13, correspondingly). Colocalization analysis 
[31] revealed that DiOC-6 (Fig. 3G) and CD66b (Addi-
tional file 1: Fig. S11D) staining did not significantly cor-
relate (Pearson’s correlation coefficient, PCC, 0.46 ± 0.13 
and 0.52 ± 0.15, correspondingly) with Annexin-V fluo-
rescence (Fig.  3I). On the other hand, the correlation 
between CD11b and Annexin-V fluorescence (Fig.  3H) 
was significantly higher, PCC = 0.68 ± 0.12 (Fig.  3I). 
Therefore, platelets attach to crawling granulocytes, 
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probably, in a CD11b-dependent manner. Furthermore, 
trajectories of the crawling NCs correlated to the tra-
jectories of Annexin-V-positive platelets in most cases 
(Fig. 3L, Additional file 7: Video).

Blood plasma proteins are required for granulocyte 
crawling among the thrombi
In order to identify the mechanisms of the NC incor-
poration at sites of growing thrombi, we have removed 

plasma proteins from the whole blood by means of 
sequential centrifugation (see the “Methods” section). 
In a such “clear” system, no granulocyte crawling on the 
collagen surface was observed (Fig. 4A), while short-term 
NC attachment to the platelet covered surface and gran-
ulocyte rolling was observed 6 μm above the collagen 
layer (Fig. 4B, Additional file 8: Video). The introduction 
of 10% of physiological concentrations of fibrinogen and 
von Willebrand factor (VWF) resulted in the recovery 

Fig. 2  Granulocyte and platelet activators’ impact on granulocyte behavior among the growing thrombi.A–F Granulocytes from vehicle- (A–C) or 
MPO- (D–F) treated blood crawl among platelet thrombi in a direct manner: A, D—initial moment; B, E—10 min after granulocyte adhesion; C, F— 
instant granulocyte velocity. G–I Granulocyte and platelet activators alter the number of NCs per FOV (G), crawling granulocyte velocity (H), and 
slow NCs amount (I). Statistical significance was calculated with the Mann-Whitney test; green lines correspond to p < 0.05, red lines correspond p 
< 0.01, black lines correspond p < 0.001. Statistics were calculated over 20 FOVs from n = 10 donors. Raw data at https://​doi.​org/​10.​6084/​m9.​figsh​are.​
18357​611.​v1. Individual data values are given in the Additional Table 3

https://doi.org/10.6084/m9.figshare.18357611.v1
https://doi.org/10.6084/m9.figshare.18357611.v1
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of granulocyte crawling (Fig.  4C, D, Additional file  8: 
Video) on the collagen covered glass, yet granulocytes 
descended from the thrombi less readily than in the 
whole blood (Fig. 4E, F, Additional file 8: Video). Based 
on these findings, we propose the following scheme of 
the events: NCs from the blood flow attach to the grow-
ing thrombi in the presence of calcium and descend onto 
the collagen level via fibrinogen and VWF, where granu-
locytes crawl, bearing Annexin-V-positive platelets and 
eventually slow down and spread (Fig. 4G).

Crawling of WAS patients’ granulocytes is altered 
in comparison to healthy donors
Altogether, the observed features of granulocytes crawl-
ing are consistent with the granulocyte chemotaxis phe-
nomenon. Therefore, we assumed it should be altered 
in cells with defective cytoskeleton. Wiskott-Aldrich 

syndrome is a genetic disease, caused by WAS gene 
mutations and alteration of cytoskeleton of both immune 
cells and platelets [32]. WAS is mainly characterized by 
immunodeficiency, microthrombocytopenia, and auto-
immune/oncological predisposition [14].

Typical FOVs of healthy donors and WAS patients 
are shown in Fig.  5A–C and D–F, correspondingly. The 
number of granulocytes per FOV was increased (Addi-
tional file 1: Fig. S11C) in WAS patients in comparison to 
healthy donors. This resulted in a significantly increased 
ratio of granulocyte number to thrombus area in WAS 
samples (Fig.  5G, Additional file  1: Fig. S11B). On the 
other hand, crawling granulocytes of WAS patients 
were significantly slower than crawling granulocytes of 
healthy donors (Fig.  5G). Finally, slow NC amount was 
significantly increased in WAS samples in comparison to 
healthy donor samples (Fig. 5H). Thus, it can be claimed 

Fig. 3  Annexin-V-positive platelets attach to the crawling granulocytes.A–C DiOC6 (A) and Annexin (B) staining colocalized (C) in a manner 
suggesting that granulocytes bear Annexin-V-positive platelets. D–F Similar conclusions can be made based on CD11b (D) and Annexin-V 
(E) colocalization (F) analysis. G, H Scatterplots of the Annexin-V and DiOC6 (G) or CD11b (H) fluorescence intensity correlation from C and F, 
correspondingly (raw data at https://​doi.​org/​10.​6084/​m9.​figsh​are.​18613​442.​v1). I Pearson’s R correlation coefficient (PCC) for Annexin-V and 
DiOC6, CD11b, and CD66b dyes (n = 50 for each pair), individual data values are given in the Additional Table 3. J, K Microscopy images of the 
crawling granulocyte, bearing Annexin-V-positive platelets after 2 min (J) and after 9 min (K) from the start of the observation. L Trajectories of the 
granulocyte (green curve) and the Annexin-V-positive platelet (red curve) from J–K. Typical results out on n = 50 trajectories

https://doi.org/10.6084/m9.figshare.18613442.v1
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WAS granulocytes and MNCs are more prone to the col-
lagen adhesion and spreading. In order to check, whether 
granulocyte velocity are not altered due to thrombocyto-
penia or neutropenia, we partially supplemented leuko-
cyte rich plasma with Tyrode’s, analogous to our earlier 
study [33]. It appeared, that in the “neutropenic” condi-
tions no alterations in the granulocyte crawling were pre-
sent (Additional file 1: Fig. S11D).

Finally, experiments with “hybrid” samples were per-
formed. Blood samples from patients with WAS were 
platelet-depleted and substituted with healthy donor’s 
platelets. Washed healthy donor platelets were loaded 
with Fura-Red in order to distinguish them from the 
native WAS patient cells (Additional file 1: Fig. S14 A-O). 
It appeared that the observed thrombi were Fura-Red pos-
itive, which allowed us to claim that platelet replacement 
was effective. Alternatively, effectiveness of the replace-
ment was controlled using a cell counter: platelet count 
in the whole blood dropped upon depletion and then 
increased upon healthy donor platelet addition (Addi-
tional file  1: Fig. S14P). Furthermore, platelet size also 
increased upon replacement, what additionally confirms 

validity of the developed experimental setting, as WAS 
patients typically have smaller platelets (Additional file 1: 
Fig. S14R). Granulocyte numbers in patients remained 
intact (Additional file  1: Fig. S13S). Average velocities of 
the granulocytes of WAS patients in the presence of WAS 
platelets and healthy donor platelets did not differ signifi-
cantly (Additional file 1: Fig. S14T), while the amount of 
spread granulocytes and lymphocytes even increased 
(Additional file 1: Fig. S14U). As granulocytes of the WAS 
patients in were generally slower than granulocytes of 
healthy donors (Fig. 5G), it can be stated that substitution 
of the defective platelets of the patients by healthy donor 
platelets does not alter WAS patient granulocyte crawling.

Discussion
Here, we developed an ex vivo approach to study gran-
ulocyte involvement into the thrombus formation. We 
observed leukocytes rolling, crawling, and arrest in 
thrombus formation (Fig.  1). The granulocytes behav-
ior was affected by MPO, fucoidan, and LPS (Fig.  2). 
Most of granulocytes were bearing procoagulant plate-
lets, presumably, in CD11b-dependent manner (Fig. 3). 

Fig. 4  The role of blood plasma proteins in NCs incorporation into the growing thrombi.A–F Confocal microscopy images of the growing thrombi 
and NCs. A, B Thrombi in the “clean” system on the collagen level (A) and 6 μm above (B). C, D Thrombi in the “clean” system with the addition of 
fibrinogen and VWF on the collagen level (C) and 6 μm above (D). E, F Thrombi in the whole blood on the collagen level (E) and 6 μm above (F). 
Representative images of n = 10 experiments (raw data could be found at https://​doi.​org/​10.​6084/​m9.​figsh​are.​18358​274.​v1). G Scheme of the 
granulocyte behavior on the collagen covered glass coverslip (in 0.2 × 0.2 × 18 mm flow chamber): granulocytes (green cells) attach to the growing 
thrombi (yellow). In the presence of fibrinogen and VWF granulocytes, descend to the collagen level and collect Annexin-V-positive platelets from 
the thrombi in the process of crawling. Eventually, granulocytes slow down and spread on the collagen

https://doi.org/10.6084/m9.figshare.18358274.v1
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The observed granulocyte incorporation in growing 
thrombi appeared to be mediated by plasma proteins—
fibrinogen and VWF (Fig. 4). For WAS patients, lower 
crawling velocities and higher relative number of gran-
ulocytes were observed (Fig.  5). Thus, the proposed 

ex vivo experimental setting allows to observe granulo-
cytes activity in near-physiological conditions.

Here, we provide evidence that granulocyte behavior 
during thrombus formation could be studied ex  vivo in 
parallel-plate flow chambers at wall shear rates less than 
200 s−1 and in presence of physiological calcium level 

Fig. 5  Comparison of healthy donors’ and WAS patients’ NCs behavior. A–C Typical for healthy donors FOV with growing thrombi and crawling 
granulocytes. D–F Typical for healthy donors FOV with growing thrombi and crawling granulocytes. G–I Quantitative comparison of the 
granulocyte behavior of healthy donors (white) and WAS patients (green): the ratio of granulocyte number to thrombus area (G), average velocities 
of the crawling granulocytes (H), amounts of spread granulocytes and lymphocytes (slow NCs) (I) for n = 10 healthy donors and n = 7 WAS patients 
(raw data could be found at https://​doi.​org/​10.​6084/​m9.​figsh​are.​18359​408.​v1, individual data values are given in the Additional Table 3). Statistical 
significance was calculated with Mann-Whitney test, ** corresponds to p < 0.01, *** corresponds to p < 0.001

https://doi.org/10.6084/m9.figshare.18359408.v1


Page 9 of 13Morozova et al. BMC Biology           (2022) 20:32 	

(Fig. 1, Additional file 1: Fig. S1, Table 1) as well as a sub-
stantial amount of fibrinogen and VWF (Fig. 4). We pro-
pose hirudin as the most convenient anticoagulant for 
such studies, because citrate recalcification significantly 
affects reproducibility of the experiments [34]. Heparin 
could be an attractive option; however, heparin impact 
on the immune cell behavior is well established [19, 22, 
35, 36] and was confirmed in this study as well (Addi-
tional file 1: Fig. S3, Table 1).

The first quantitative characteristic of granulocytes pro-
posed here is their movement velocity, which appears to 
be 0.1 ± 0.02 μm/s on the average, with instant velocities 
reaching 0.5 μm/s (Table 1). These values increased upon 
priming of granulocytes with various agents (Fig. 2) and 
decreased in WAS samples (Fig. 5). Previously, C. Jones 
et  al. showed that human neutrophils migrated towards 
LTB4 with an average velocity of 0.39 ± 0.09 μm/s [37]. 
While Jones et al. used a constant gradient of chemoat-
tractant, in our experimental setting, there were several 
target areas of attraction for granulocytes, which might 
explain non-monotonous movements of granulocytes 
in the current study (Fig.  2, Additional files 2 and 3: 
Video). In another study, M. Weckmann et  al. observed 
the velocity of neutrophil migration on fibronectin in the 
presence of IL-8, fMLP, and LTB4 [38], where leukocyte 
velocity appeared to be 0.11 ± 0.12 μm/s, the same as in 
our study in the presence of the priming reagents (Fig. 2).

The second quantitative characteristic observed here 
is the percentage of spread granulocytes and attached T 
lymphocytes. It has been observed that with the flow of 
time, granulocytes slow down and spread (Fig.  1, Addi-
tional file  6: Video); however, it cannot be claimed that 
these cells are undergoing NETosis, as it has been dem-
onstrated that NETosis usually occurs later than 30 min 
after activation [39]. Analysis of the active CD11b distri-
bution revealed that while active CD11b were present at 
posterior parts of the crawling cells (Additional file 1: Fig. 
S4B, Additional file 5: Video), in the spread cells, CD11b 
was less active and located in the middle part of the cells. 
This was in agreement with previously published data 
[40]. It is noteworthy that not only granulocytes partici-
pated in the thrombus formation in our setting: a pleth-
ora of T lymphocytes were present as well (Additional 
file 1: Fig. S4, S5), and thus, their role in thromboinflam-
mation is to be respected as well. Detailed study of the 
T lymphocyte activity in the given setting should be the 
object of further studies.

The third semi-quantitative characteristic is the total 
number of granulocytes per field of view (Fig.  2). This 
value depends on the platelet functioning, because it is 
well-known that platelets activate and attract leukocytes 
by platelet-leukocyte interactions during thromboinflam-
mation [1, 9, 41].

Hereby, we assume that our approach can be used for 
the assessment of platelet-granulocyte interplay in dif-
ferent conditions, including hematological and immuno-
logical disorders, such as WAS. We observed impaired 
granulocyte activity in WAS patients (Fig.  5), consist-
ent with the reduced integrin-dependent degranulation 
and respiratory burst [42]. The enhanced granulocyte 
recruitment to the growing thrombi (Fig. 5G) can be the 
result of the higher proportion of procoagulant platelets 
in WAS patients [43, 44]. Supplementation of the WAS-
patient platelets by healthy donor platelets did not result 
in a significant increase in the granulocyte velocity that 
allows to claim that granulocyte motility in WAS patients 
is caused by WASP deficiency instead of platelet dys-
function (Additional file 1: Fig. S14). It should be noted 
that additional animal studies could be helpful in order 
to determine whether direct WASP mutations affect NC 
crawling in the absence of WASP mutations in platelets.

Several other new findings of platelet-granulocyte 
interplay were observed in our study. First, we observed 
procoagulant platelets attached to the moving granu-
locytes (Fig.  3, Additional file  1: S12). Procoagulant 
platelets are hyperactivated platelets that underwent 
mitochondria-dependent necrosis and exposed phos-
phatidylserine on their surface in the first minutes upon 
activation [45]. These cells have compromised cytoskel-
eton what results in their increase in size and loss of most 
of adhesive integrins [43]. Procoagulant platelets in our 
conditions attracted granulocytes in the manner com-
mon for any tissue debris (Fig. 3), as demonstrated in sev-
eral studies [46].

Based on our results, we also claim that the mechanism 
of the granulocyte involvement in thrombus formation 
is dependent on plasma proteins (fibrinogen and VWF) 
(Fig.  4A–F). This is in line with findings of Constanti-
nescu-Bercu A. et al. [47] who demonstrated VWF- and 
platelet integrin αIIbβ3-dependent activation of neutro-
phils and with findings of Ghasemzadeh M. et  al. [48], 
who confirm the essential role of fibrin in intravascular 
leukocyte trafficking. Additionally, the VWF role in the 
recruitment of leukocytes during thromboinflammation 
has been previously established [49].

Conclusions
In this study, we report the phenomenon of the granu-
locyte crawling among the growing thrombi ex vivo. We 
claim that granulocyte characterization can be used for 
a more in-depth analysis of the mechanisms of immu-
nological and hematologic diseases. Based on our own 
experimental assays, we propose a scheme of granulocyte 
participation in thrombus formation: (1) granulocytes 
attach to growing thrombi in a calcium-dependent man-
ner, (2) granulocyte descent to collagen level is mediated 
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by fibrinogen and VWF, (3) descended granulocytes 
collect annexin-V-positive platelets from the growing 
thrombi, and (4) granulocytes eventually slow down and 
arrest (Fig. 4).

Methods
Aim
The key aim of the study was to establish the experimen-
tal setting for the ex  vivo observation and characteriza-
tion of the immune cell participation in the process of 
venule-thrombus formation by means of fluorescent 
microscopy.

Materials
The sources of the materials were as follows: Annexin 
V-Alexa Fluor 647 (BioLegend, San Diego, CA), DiOC-6, 
Fucoidan from Fucus vesiculosis, HEPES, bovine serum 
albumin, lipopolysaccharides from E. coli O111:B4, 
human fibrinogen, Hoechst-33342 (Sigma-Aldrich, 
St Louis, MO); CD11b-FITC, CD18-APC, CD66ace-
Alexa647, CD66b-PE, CD2-APC (Sony Biotechnol-
ogy, San Jose, CA), fibrillar collagen type I (Chrono-Log 
Corporation; Havertown; USA); human von Willebrand 
factor (VWF) was a kind gift of Prof. Pierre Mangin 
(NSERM, Etablissement Français du Sang-Grand Est, 
UMR_S1255, Fédération de Médecine Translationnelle 
de Strasbourg, Université de Strasbourg, France). The 
HL-60 cell line (promyelocytic leukemia) was used as a 
source of myeloperoxidase (MPO). MPO was isolated, 
as described in [50]. LAL-test was performed on human 
fibrinogen and VWF using LAL-kit Lonza (QCL-1000) in 
order to ensure absence of the endotoxin contamination 
(Additional file 1: Tables S1, S2).

Blood collection and handling
Blood collection was performed under the protocol 
approved by the free CTP PCP RAS Ethical Commit-
tee (protocol #1 from 12.01.2018), and written informed 
consents were obtained from all donors and patients. 
Blood was collected from healthy adult volunteers 
(n = 35, men and women 18–35 years old) into Vacuette© 
sodium citrate (3.8 % v/v) or lithium heparin (18 I.U./
ml blood) or Sarstedt-Monovette© hirudin (525 ATU/
ml blood) vacuum tubes. Experiments were performed 
within 3 h after blood collection. For the assays involving 
Wiskott-Aldrich syndrome patients, blood was collected 
from healthy pediatric donors (n = 12) or from patients 
with Wiskott-Aldrich syndrome (n = 10) into Sarstedt-
Monovette hirudin (525 ATU/ml blood) tubes.

For the experiments with “hybrid” and “plasma-free” 
settings, blood samples were purified from plasma pro-
teins by 3 sequential centrifugations of citrated whole 
blood for 10 min by 1000 g with supplementation of the 

plasma by Tyrode’s calcium-free buffer. Final supplemen-
tation was performed by Tyrode’s calcium buffer. For 
artificial thrombocytopenia studies, whole citrated blood 
of healthy donors was centrifuged at 100 g for 8 min. 
PRP was collected above the buffy coat and centrifuged 
at 1000 for 10 min. The resultant supernatant was then 
collected and returned to the whole blood. For control 
experiments, PRP was returned to the blood without 
additional centrifugation. Platelet count was monitored 
using Drew D3 cell counter (Drew Scientific, USA). 
For WAS-hybrid patient studies patients’ samples were 
depleted from platelets in the same manner. Platelets of 
healthy donors were washed by sequential centrifuga-
tions as described earlier [45] (100 g 8 min for PRP and 
then two centrifugations for 10 min at 1000 g with resus-
pension in Tyrode’s buffer) and concentrated 10 times 
above initial. Healthy donor platelets were then added 
to the WAS patient platelet-depleted blood. Prior to the 
experiments, the sample was recalcified to achieve free 
calcium concentration of 2.5 mM.

Fluorescent microscopy
Parallel-plate flow chambers were described pre-
viously [30]. Channel parameters were as follows: 
0.2 × 18 × 0.206 mm. Glass coverslips were coated with 
fibrillar collagen type I (0.2 mg/ml) for 1 h 30 min at 
37  °С, washed with distilled water and then inserted 
into the flow chambers. Blood was perfused through 
the parallel-plate chambers over collagen-coated 
(0.2 mg/ml) surface with wall shear rates 100 s−1 
[51]. Thrombus growth and leukocyte crawling were 
observed in DIC/epifluorescence modes with an 
inverted Nikon Eclipse Ti-E microscope (100x/1.49 NA 
TIRF oil objective).

Data analysis
Nikon NIS-Elements software was used for microscope 
image acquisition; ImageJ (http://​imagej.​net/​ImageJ) 
was used for image processing. ImageJ manual tracking 
plugin was used for manual granulocyte tracking, and 
the Coloc2 plugin for fluorescence colocalization analysis 
plugin was utilized. For automated cell tracking, particle 
tracking algorithm described in [52] was utilized. The 
algorithm was based on Python trackpy v 0.4.2 library. 
First, particle tracking was performed, and then the 
tracks belonging to leukocytes were selected manually. 
The platelet thrombus area was calculated as the percent-
age of the screen covered by platelet thrombi upon the 
subtraction of the area of crawling cells. Tracking Code 
listing and program operation examples can be found in 
the data availability statement below.

http://imagej.net/ImageJ
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Statistics
All experiments were performed at least in triplicate with 
platelets from different donors. Statistical analysis was 
performed using Python 3.6; all statistical details are pro-
vided in the figure legends.

Abbreviations
MPO: Myeloperoxidase; LPS: Lipopolysaccharides from E. coli O111:B4; VWF: 
von Willebrand factor; PS: Phosphatidylserine; GP: Glycoprotein; CD: Cluster 
of differentiation; FOV: Field of view; WAS: Wiskott-Aldrich syndrome; NCs: 
Nuclear cells.
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