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Abstract 

Background:  Resistance in malaria vectors to pyrethroids, the most widely used class of insecticides for malaria 
vector control, threatens the continued efficacy of vector control tools. Target-site resistance is an important genetic 
resistance mechanism caused by mutations in the voltage-gated sodium channel (Vgsc) gene that encodes the 
pyrethroid target-site. Understanding the geographic distribution of target-site resistance, and temporal trends across 
different vector species, can inform strategic deployment of vector control tools.

Results:  We develop a Bayesian statistical spatiotemporal model to interpret species-specific trends in the frequency 
of the most common resistance mutations, Vgsc-995S and Vgsc-995F, in three major malaria vector species Anopheles 
gambiae, An. coluzzii, and An. arabiensis over the period 2005–2017. The models are informed by 2418 observations 
of the frequency of each mutation in field sampled mosquitoes collected from 27 countries spanning western and 
eastern regions of Africa. For nine selected countries, we develop annual predictive maps which reveal geographi-
cally structured patterns of spread of each mutation at regional and continental scales. The results show associations, 
as well as stark differences, in spread dynamics of the two mutations across the three vector species. The coverage of 
ITNs was an influential predictor of Vgsc allele frequencies, with modelled relationships between ITN coverage and 
allele frequencies varying across species and geographic regions. We found that our mapped Vgsc allele frequencies 
are a significant partial predictor of phenotypic resistance to the pyrethroid deltamethrin in An. gambiae complex 
populations.

Conclusions:  Our predictive maps show how spatiotemporal trends in insecticide target-site resistance mechanisms 
in African An. gambiae vary across individual vector species and geographic regions. Molecular surveillance of resist-
ance mechanisms will help to predict resistance phenotypes and track their spread.

Keywords:  Insecticide target-site resistance, Resistance surveillance, Malaria vector control, Genetic resistance 
markers, Geostatistical model, Anopheles, spatiotemporal model, Mapping resistance, Multinomial model
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Background
A major challenge in malaria control involves manag-
ing the threat that insecticide resistance in mosquitoes 
poses to the efficacy of vector control technologies. 
Insecticide-based vector control techniques, including 
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indoor residual spraying (IRS) and insecticide-treated 
bed nets (ITNs), are pivotal to malaria prevention, with 
ITNs in particular being responsible for a large portion of 
the reductions in malaria cases achieved over the period 
2000–2015 [1]. ITNs rely on pyrethroid insecticides, 
which are used in the treatment of all ITNs pre-approved 
by the WHO and in many indoor residual sprays still 
used today [2–4]. Pyrethroid resistance in malaria vectors 
has spread extensively throughout Sub-Saharan Africa 
[5], and in 2017, the mosquito sample mortality following 
exposure to a pyrethroid as measured by a WHO stand-
ard susceptibility test had dropped to less than 50% in 
at least 34 malaria endemic countries (compared to less 
than 2% of susceptibility tests recording mortalities of 
less than 50% prior to 2006 [5]).

The prevalence of insecticide resistance phenotypes in 
African malaria vector species is highly heterogeneous 
across geographic space [5], and underpinned by vari-
ation in genetic resistance mechanisms [6], which have 
the potential for rapid long range spread [7]. Geographi-
cally comprehensive insecticide resistance monitoring 
and surveillance is therefore essential to track changes 
in resistance, interpret trends and anticipate upcoming 
threats. Unfortunately, despite the recommendations of 
the WHO Global Plan for Insecticide Resistance Man-
agement (GPRIM) [8] for the instigation of comprehen-
sive and routine insecticide resistance monitoring, the 
available surveillance data is sparse throughout Sub-
Saharan Africa, with 89% of administrative districts hav-
ing no recorded measurements in the period 2015–2017 
[9]. Standard susceptibility bioassays to measure pheno-
typic resistance are labour intensive and difficult to scale 
up. Moreover, where morphologically cryptic vectors 
are present, susceptibility bioassays are rarely used to 
measure resistance at the level of individual species and 
do not provide information about mechanisms of resist-
ance. Results can also be sensitive to environmental test-
ing conditions, which are often difficult to standardise in 
the field [10, 11]. Genetic, and in due course genomic, 
surveillance to track the frequency of variants that are 
associated with phenotypic resistance is more scalable, 
insensitive to collection and environmental conditions, 
and can distinguish between different resistance mecha-
nisms across different vector species.

A major challenge for genetic surveillance lies in iden-
tifying variants, or genomic regions, that are important 
determinants of different types of phenotypic resist-
ance [12]. Target-site resistance is an important pyre-
throid resistance mechanism in Anopheles gambiae 
complex mosquitoes [6, 7] and is the most widely moni-
tored genetic mechanism in field malaria vector popula-
tions. It is caused by mutations within the Vgsc gene that 
encodes the voltage-gated sodium channel, which is the 

physiological target of pyrethroid insecticides. Three 
single point mutations (SNPs) within the Vgsc gene are 
known to confer pyrethroid resistance; these include two 
substitutions on the 995 codon, L995F (originally named 
L1014 F[13];) and L995S (originally named L1014S 
[14];), and a third substitution N1570Y (originally named 
N1575Y [15];). The L995F and L995S mutations occur 
in the same codon and they cannot co-occur on a sin-
gle chromosome, while the N1570Y mutation occurs in 
a different codon and has been found to increase resist-
ance in association with L995F [15]. Genome sequencing 
has recently identified numerous other non-synonymous 
SNPs within the Vgsc gene, some apparently subject to 
recent positive selection, indicating that target-site resist-
ance has a complex molecular basis, likely increasingly so 
over time [7].

The extent to which phenotypic resistance in field 
malaria vector populations depends on these multifac-
eted genetic mechanisms remains uncertain [12]. Gen-
otype-phenotype association studies are complicated 
by the polygenic nature of insecticide resistance and the 
complex population structure of African Anopheles gam-
biae mosquitoes [16, 17]. The Anopheles gambiae com-
plex is made up of at least eight individual vector species, 
five of which are major malaria vectors: An. gambiae, 
An. coluzzii, An. arabiensis, An. melus, and An. merus 
[18–20]. The distribution of the different vector species is 
geographically heterogeneous, with gradients in species 
composition occurring across regional and continental 
scales [21]. Mechanisms of insecticide resistance differ 
across these three species [22]. The evolutionary trajecto-
ries of resistance depend on the specific ecology of indi-
vidual species, the selection pressures present in the 
environment, and patterns of dispersal, migration and 
introgression across different populations [16, 23–25].

Spatial modelling analysis is required to interpret spa-
tial and temporal trends in insecticide resistance surveil-
lance data that monitor the prevalence of different types 
of resistance in vector species [5]. This is because sam-
pling locations are heterogeneously distributed across 
Africa and variable across sampling times and across the 
different types of resistance phenotypes and/or genetic 
mechanisms that were tested in the sample. Geospatial 
models can quantify geographically explicit temporal 
trends in resistance [5]. The ability of geospatial models 
to extrapolate predictions across unsampled locations 
can help compensate for sparsity in surveillance data 
and allow anticipation of contemporary resistance lev-
els before new surveillance results become available [9]. 
Further, geospatial models offer a flexible framework 
for combining different datasets that describe separate 
but related aspects of resistance. They can incorporate 
measures of resistance across different vector species, as 
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well as genetic and phenotypic measures of resistance, 
within the same modelling framework [26]. The ability 
of spatial models to predict resistance can benefit greatly 
from incorporating information about environmen-
tal characteristics such as climate, vegetation, and land 
use; importantly, variables describing the distribution of 
insecticide-based vector control interventions across the 
landscape can be included as potential predictors [5].

Here, we develop a Bayesian statistical spatiotempo-
ral model ensemble to interpret species-specific trends 
in the frequency of two target-site resistance mutations 
in the Vgsc gene, 995S and 995F, in three vector species 
An. gambiae, An. coluzzii, and An. arabiensis over the 
period 2005–2017, which encompasses the period of 
major scaling up of ITN distributions. The models are 
informed by 2418 observations of the frequency of each 
mutation in field sampled mosquitoes collected from 
27 countries spanning western and eastern regions of 
Africa. For nine focal countries, we develop a series of 
fine resolution annual predictive maps. These models 
reveal the geographically structured patterns of spread 
of each mutation at both regional and continental scales. 
We use our geospatial predictions of Vgsc allele frequen-
cies to address two questions of importance to malaria 
vector control. Firstly, we analyse associations between 
the Vgsc allele frequencies and phenotypic resistance to 
pyrethroids seen in field vector populations. Secondly, 
we explore the sensitivity of the predicted Vgsc allele fre-
quencies to differences in the coverage of ITNs.

Results
Predictive accuracy of the spatiotemporal model ensemble
Our spatiotemporal model ensemble, based on field-sam-
pled Vgsc resistance allele frequencies in mosquito spe-
cies from the African An. gambiae complex, confirmed 
our ability to interpolate allele frequencies. Predictive 
accuracy was assessed by testing the ability of the model 
ensemble to predict withheld data (using 10-fold out-
of-sample cross-validation; see the “Methods” section), 
which showed a mean absolute prediction error (MAE; 
the average absolute difference between model predic-
tions and observations) of less than 10% (MAE = 0.083) 
across all observed Vgsc allele frequencies (with a root 
mean square error (RMSE) of 0.137; Additional File 1: 
Figure S1 and Table S1).

Spatiotemporal trends in the frequency of target‑site 
resistance mutations
The nine mapped countries were chosen based on their 
number and spatial coverage of sampled Vgsc allele fre-
quencies (see the “Methods” section and Additional File 
1: Figures S2-S5). In western Africa, we developed maps 
of the predicted frequency of the Vgsc-995F mutation for 

Burkina Faso, Benin, Cameroon, and Equatorial Guinea. 
In 2005, the earliest year in the data set, our maps show 
substantial geographic variation in the Vgsc-995F fre-
quency, within each country and between countries. The 
marker frequency also varied markedly across the three 
vector species (Fig.  1). In all four countries, the marker 
frequency in 2005 was highest in An. gambiae and low-
est in An. arabiensis, with frequencies in An. coluzzii also 
being low in large parts of each country. In Burkina Faso, 
Benin, and Cameroon, the marker frequency in 2005 is 
higher in southern compared to northern areas. We note 
that in these three countries the relative abundance of 
An. arabiensis declines southwards with decreasing lati-
tude, with An. gambiae and An. coluzzii becoming more 
dominant (see Additional File 1: Figure S7). It is possible 
that there is a greater selection pressure for the develop-
ment of insecticide resistance acting on An. gambiae and 
An. coluzzii populations, because these two species have 
a stronger tendency towards indoor human biting than 
An. arabiensis and are therefore more likely to encoun-
ter insecticide-treated surfaces (see the “Discussion” 
section).

In all three vector species and all four countries, Vgsc-
995F increased markedly between 2005 and 2017, with 
frequencies in An. gambiae and An. coluzzii in 2017 
exceeding 0.5 in over 80% of the spatial area of each 
country (Fig. 1). A lesser increase occurred in An. arabi-
ensis, with the strongest rise occurring in southern Cam-
eroon. We did not map the Vgsc-995S frequency for the 
countries in western Africa, owing to its general scarcity 
(full reasons for exclusion of countries from each part of 
the modelling analyses are provided in Additional File 1: 
Table S2).

In eastern Africa, we developed maps of the pre-
dicted frequencies of Vgsc-995S and Vgsc-995F for four 
countries: Sudan, Ethiopia, Kenya, and Uganda (Addi-
tional  File  1: Table  S2). For Sudan, we mapped only a 
region in the west of the country (see the “Methods” 
section). The frequency of the Vgsc-995S allele in the 
four eastern African countries shows a dichotomous pat-
tern across species, with much higher frequencies in An. 
gambiae than in An. arabiensis (Fig. 2). In 2005, the fre-
quency was low in An. arabiensis and very heterogeneous 
in An. gambiae. The frequency increased markedly in An. 
gambiae over 2005–2017, reaching very high levels in the 
north-west part of our mapped region in Sudan, south-
east Ethiopia, west Kenya, and most of Uganda. The Vgsc-
995S frequency also increased in An. arabiensis, but to a 
much lesser extent, with the highest frequencies occur-
ring in southern Uganda in the final year of the modelled 
time period.

It is important to note that, in these four eastern Afri-
can countries, the abundance of An. arabiensis relative to 
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that of An. gambiae is typically much higher than in west-
ern Africa (Additional File 1: Figure S7), and An. coluzzii 
is very rarely reported. In Ethiopia and Sudan, the species 
composition is almost entirely dominated by An. arabi-
ensis. In general, the temporal dynamics of Vgsc-995F in 
An. arabiensis in these four countries followed a similar 
pattern to those in western Africa, with the frequency 
in 2005 being lower than that in An. gambiae, and then 
increasing in some areas to reach moderate to high fre-
quencies in 2017 (Fig. 3).

In Ethiopia, Kenya, and Uganda, the frequency of Vgsc-
995F in An. gambiae was typically lower in 2005 com-
pared to the western countries, and there was a lesser 
increase in the frequency over 2005-2017 (Fig.  3). In 
2017, there was still substantial spatial heterogeneity in 
the Vgsc-995F frequency, with regions of high frequency 
in northwest Ethiopia, northwest Kenya, and northern 
Uganda and low frequencies elsewhere. In An. gambiae, 
the historical presence of Vgsc-995S at moderate to high 
frequencies (Fig.  2) is likely to slow the spread of Vgsc-
995F in this species (see the “Discussion” section). In the 
south and west of our mapped region in Sudan, however, 
the Vgsc-995F frequency in An. gambiae was already high 
in 2005. Frequencies increased from 2005 to 2017, par-
ticularly in the north-western part of the region. For all 

four countries, there is a high degree of spatial overlap in 
the areas of relatively high Vgsc-995F frequency between 
An. gambiae and An. arabiensis (Fig. 3).

For the DRC, we developed maps of the frequency 
of Vgsc-995F in An. gambiae only (Additional  File  1: 
Table S2). In the DRC, the spatiotemporal trends in Vgsc-
995F in An. gambiae are more similar to the western 
countries, with a moderate to a high initial frequency in 
2005, followed by a widespread increase to high frequen-
cies in 2017 (Fig. 4).

Associations amongst the allele frequencies in the three 
vector species
The spatial patterns in the increases in Vgsc-995F fre-
quencies in An. gambiae and An. coluzzii in the west-
ern countries over 2005–2017 were closely associated 
with each other, with the increase in An. coluzzii lagging 
behind that in An. gambiae (Fig. 5 and Additional File 1: 
Figure S11). This is consistent with the results of genomic 
studies that show introgression of target-site resistance 
from An. gambiae to An. coluzzii [16]. We found sig-
nificant but less strong associations between the spatial 
patterns in Vgsc-995F frequency in An. arabiensis and 
both An. gambiae and An. coluzzii in the western coun-
tries over the years 2005–2017 (Additional File 1: Figure 

Fig. 1  Predicted frequencies of the Vgsc-995F allele in malaria vector species for four countries in west Africa: Burkina Faso (top row), Benin (second 
row), Cameroon (third row), Equatorial Guinea (bottom row). Allele frequency maps for the first and final year are shown: the year 2005 is shown on 
the left (columns 1, 2, and 3) and the year 2017 is shown on the right (columns 4, 5, and 6). Columns 1 and 4 show maps for An. gambiae, columns 2 
and 5 show maps for An. coluzzii, and columns 3 and 6 show maps for An. arabiensis 
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S8). Moreover, in the eastern countries (Ethiopia, Kenya, 
Uganda, and Sudan), spatial increases in both the Vgsc-
995F and Vgsc-995S frequencies were significantly associ-
ated across An. gambiae and An. arabiensis (Additional 
File 1: Figures S9 & S10).

Associations between resistance allele frequencies 
and the prevalence of resistance phenotypes
We investigated whether the variation in our mapped 
Vgsc mutation frequencies could explain variation in 
phenotypic resistance to pyrethroids in field malaria vec-
tor populations. Specifically, we analysed associations 
between predicted frequencies of the Vsgc-995F muta-
tion in the mosquito samples and phenotypic resistance 
to deltamethrin, the most commonly used insecticide 
in malaria vector control during the period studied. 
Measures of mosquito mortality following exposure to 
deltamethrin were derived from standardised insec-
ticide susceptibility tests (see the “Methods” section). 
We excluded Equatorial Guinea, Uganda, Kenya, and 
the DRC from this analysis (Additional File 1: Table S2). 
We do not consider associations between Vsgc-995S fre-
quencies and the prevalence of deltamethrin resistance 

because Vsgc-995S frequencies are low in the majority of 
our selected countries and strongly segregated across the 
An. gambiae complex species (Fig. 2 and see the “Discus-
sion” section).

For three countries in western Africa (Burkina Faso, 
Benin, and Cameroon) and two countries in eastern 
Africa (Ethiopia and Sudan), the mortality to deltame-
thrin is consistently high when the Vgsc-995F frequency 
is close to zero, and there is a trend of decreasing mean 
mortality to deltamethrin with increasing Vgsc-995F 
frequency (Fig. 6A, B). For each country, we fitted ordi-
nary least-squares (OLS) linear regression models to the 
mean mortality values using the predicted Vgsc-995F 
frequency as a covariate (see the “Methods” section). 
The relationship with the Vgsc-995F covariate was sig-
nificant for all countries except Sudan, in which case the 
95% credible interval (CI) had a borderline overlap with 
zero (Table 1).

Despite the uncertainty associated with estimating fre-
quencies of both phenotypic resistance and Vgsc alleles 
across multiple mosquito species in field populations, 
the interpolated Vgsc-995F allele frequency is able to par-
tially explain the variation in mortality to deltamethrin. 

Fig. 2  Predicted frequencies of the Vgsc-995S allele in malaria vector species for four countries in east Africa: Sudan (top row; the mapped area is 
confined to a region in the west (see the “Methods” section)), Ethiopia (second row), Kenya (third row), and Uganda (bottom row). Allele frequency 
maps for the first and final year are shown: the year 2005 is shown on the left (columns 1 and 2) and the year 2017 is shown on the right (columns 3 
and 4). Columns 1 and 3 show maps for An. gambiae, and columns 2 and 4 show maps for An. arabiensis 
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The level of explained variation varies across countries; 
adjusted R2 values were close to 0.3 for Burkina Faso, 
Cameroon, and Ethiopia, but less than 0.1 for Benin and 
Sudan (Table 1). Moreover, the form of the relationship 

varies across countries. In Benin, many mortality values 
remain high across increasing Vgsc-995F frequencies 
(Fig.  6), consistent with the poor explanatory value of 
the model, despite a significant negative slope (Table 1).

Fig. 3  Predicted frequencies of the Vgsc-995F allele in malaria vector species for four countries in east Africa: Sudan (top row; the mapped area is 
confined to a region in the west (see the “Methods” section)), Ethiopia (second row), Kenya (third row), and Uganda (bottom row). Allele frequency 
maps for the first and final year are shown: the year 2005 is shown on the left (columns 1 and 2) and the year 2017 is shown on the right (columns 3 
and 4). Columns 1 and 3 show maps for An. gambiae, and columns 2 and 4 show maps for An. arabiensis 

Fig. 4  Predicted frequencies of the Vgsc-995F allele in An. gambiae in the Democratic Republic of the Congo (DRC). Allele frequency maps for the 
first and final year are shown: 2005 (left) and 2017 (right)
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Fig. 5  Associations between the predicted frequency of the Vgsc-995F allele in An. gambiae and An. coluzzii. Bagplots show the distribution across 
all mapped pixels within four countries in west Africa: Burkina Faso, Benin, Cameroon, and Equatorial Guinea. The red asterisk shows the median, the 
dark blue shaded area contains 50% of all data points, and the light blue shaded area contains all data points. Plots for four years are shown (from 
left to right): 2006, 2010, 2014, and 2017

Fig. 6  The mean mortality to deltamethrin and the frequency of the Vgsc-995F allele in Gambiae Complex mosquitoes at sampled locations 
in countries in west Africa (A) and east Africa (B). In the west (A), results for three countries are shown: Burkina Faso (green dots; n = 159), Benin 
(purple triangles; n = 297), and Cameroon (brown diamonds; n = 184). In the east (B), results for two countries are shown: Ethiopia (blue squares; 
n = 134) and Sudan (dark red diamonds; n = 256)

Table 1  OLS regression model results for each country. The model is fitted to mean mortality to deltamethrin across sets of bioassay 
sampling locations using the frequency of the Vgsc-995F allele in the Gambiae Complex as a covariate. The asterisk denotes statistical 
significance assessed by the 95% credible interval (CI)

Data set Intercept (95% CI) Vgsc-995F (95% CI) Adjusted R2 Degrees of 
freedom 
(df)

Burkina Faso 1.37* (1.06, 1.67) − 0.65* (− 0.8, − 0.51) 0.34 157

Benin 2.1* (1.1, 3.1) − 0.6* (− 1.06 − 0.14) 0.07 294

Cameroon 1.5* (1.3, 1.7) − 0.54 (− 0.72, − 0.37) 0.33 182

Ethiopia − 0.27 (− 0.6, 0.06) − 0.8 (− 1.1, − 0.52) 0.28 132

Sudan 1.1* (0.86, 1.5) − 0.3 (− 0.61, 0.11) 0.03 254
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Relationships with predictor variables
Our model ensemble included 99 predictor variables 
describing environmental and biological processes that 
could potentially drive selection for insecticide resist-
ance (see the “Methods” section). We analysed which of 
these variables were the most influential predictors of 
Vgsc allele frequencies using variable importance meas-
ures, which describe the influence of each variable in 
terms of its impact on model predictions, relative to 
all other predictor variables (see the “Methods” sce-
tion). Our model ensemble included three constituent 
models: an extreme gradient boosting model (XGB), a 
random forest model (RF), and a neural network model 
(NN). For each model, we obtained a ranking of the 
most influential variables using a variable importance 
measure that was chosen based on the type of model 
(see the “Methods” section).

For all three models, the highest-ranked predictor vari-
able was related to climate, with solar radiation ranking 
highest for the XGB and RF models and relative humidity 
ranking highest for the NN model (Table  2). These two 
variables may be influential because they segregate dry 
arid areas and wetter tropical regions (see the “Discus-
sion” section). The coverage of insecticide-treated bed 
nets (ITNs) was strongly influential in the XGB and RF 
models, with variables describing ITN coverage at dif-
ferent time lags ranking second, fifth, and ninth in both 
models (Table 2). In the NN model, the coverage of ever-
green broadleaf forest was highly influential, with differ-
ent time lags of this variable ranking second, fourth, and 
eighth. In general, with the exception of ITN coverage, 
the highest-ranked variables for the XGB and RF mod-
els are related to climate and elevation, and the high-
est ranked variables for the NN model include variables 
relating to land cover, climate, and elevation.

Impacts of increasing ITN coverage on predicted Vgsc 
mutation frequencies
Relationships between ITN coverage and the develop-
ment of insecticide resistance have significant implica-
tions for malaria vector control (see the “Discussion” 
section). We further examined the relationship between 
ITN coverage and the interpolated frequencies of the 
Vgsc-995F allele by calculating the independent con-
ditional expectation (ICE) of the predicted frequency 
under changing ITN coverage [27, 28]. The ICE can be 
calculated for any of the locations (pixels) of our predic-
tive maps, and we selected a single location in each coun-
try to evaluate the ICE (see the “Methods” section). We 
chose to analyse these relationships for the year 2005, 
because up until this time the resistance allele frequen-
cies were unlikely to be affected by widespread ITN usage 
(the reported ITN coverage in this year and the 3 years 
prior is very close to zero). We varied the ITN coverage in 
the years 2002-2005 from zero to 0.9, or 0–90% of people 
slept under an ITN the preceding night, in increments of 
0.1 (because the predictor variables include three annual 
time lags; see the “Methods” section). It is important to 
note that this variation in ITN coverage that we simulate 
was never actually observed in the period 2002–2005. We 
did not analyse relationships between ITN coverage and 
the Vgsc-995S allele frequency because Vgsc-995S shows 
low frequencies for all years in most of the countries 
included in our model.

For the four countries in western Africa, increasing 
the ITN coverage causes the model to predict increas-
ing Vgsc-995F frequencies in 2005 in all three mosquito 
species (Fig. 7A). The impact of increasing ITN coverage 
varies geographically across countries and also between 
mosquito species. In An. gambiae, the Vgsc-995F fre-
quency at the selected location was already high (> 0.4) 

Table 2  The top ten highest ranked variables, as determined by variable importance measures, for the three machine learning models 
included in the model ensemble. Variable name suffixes (-1), (-2), and (-3) denote time lags of 1, 2, and 3 years, respectively. One, two, 
and three asterisks denote the first, second, and third principal component, respectively, for variables available on a monthly time step 
(see the “Methods” section)

* The first principal component was used, ** The second principal component was used, *** The third principal component was used

Rank XGB RF NN

1 Solar radiation*** Solar radiation*** Relative humidity*

2 ITN coverage (-1) ITN coverage (-1) Evergreen broadleaf forest (-3)

3 Elevation Elevation Wind speed*

4 Daytime temperature**(-2) Tassel cap brightness**(-2) Evergreen broadleaf forest (-1)

5 ITN coverage (-2) ITN coverage (-2) Elevation

6 Night time temperature* (-2) Wind speed* Cropping factor

7 Enhanced vegetation index**(-1) Tassel cap brightness**(-3) Cation exchange capacity

8 Rainfall*(-3) Temperature diurnal difference*(-2) Evergreen broadleaf forest (-2)

9 ITN coverage ITN coverage Tropical fruit

10 Night time temperature** (-2) Tassel cap brightness** Daytime temperature*(-1)



Page 9 of 17Hancock et al. BMC Biology           (2022) 20:46 	

in 2005 for all countries except Benin. Increasing the ITN 
coverage from zero to 0.9 resulted in further increases in 
frequencies to very high values, with the largest increases 
occurring when the frequency at zero ITN coverage was 
lower (Fig.  7A). In An. coluzzii, Vgsc-995F frequencies 
in 2005 were relatively low at zero ITN coverage, and 
predicted frequencies increased strongly as ITN cover-
age increased to high values. An. arabiensis showed the 
lowest Vgsc-995F frequencies in 2005 under zero ITN 
coverage, and the impact of increasing ITN coverage on 
predicted frequencies was much less than in An. gam-
biae and An. coluzzii. This behaviour is consistent with 
the trends in Vgsc-995F in An. arabiensis over the years 
2005–2017 (Fig. 1), with frequencies remaining relatively 
low while the coverage of ITNs increased from 2005 
onwards in all four countries to reach moderate to high 
values (Additional File 1: Figures S12-S14).

For the four countries in eastern Africa, the impact 
of increasing ITN coverage on the model predictions of 
Vgsc-995F frequencies is relatively small (Fig. 7B), reflect-
ing the differences in malaria vector species composition, 
and the different types of insecticide resistance mecha-
nisms present, between the eastern and western regions 
of Africa (see the “Discussion” section). In Ethiopia and 
Sudan, the species composition consists mostly of An. 
arabiensis (see Additional File 1: Figure S7); the Vgsc-
995F frequencies in An. arabiensis were low in 2005 and 
increasing ITN coverage resulted in only a small increase 
in frequencies. In Kenya and Uganda, the predicted Vgsc-
995F frequencies were almost unchanged by increasing 
ITN coverage. This is consistent with the trends in Vgsc-
995F frequencies in both An. arabiensis and An. gambiae 
in eastern Africa from 2005 to 2017 (Fig. 3), with Vgsc-
995F frequencies increasing by a small amount in some 

Fig. 7  The variation in the model-predicted Vgsc-995F frequency in malaria vector species for the year 2005 as the coverage of insecticide treated 
bed nets (ITNs) is increased. Within each country, the predicted frequency for a single point location is shown (see text). Solid circles represent the 
predicted frequency corresponding to an ITN coverage of zero over the years 2002–2005, which is close to the recorded ITN coverage over this 
period. Solid lines show the range of variation in the predicted frequency at these locations for the year 2005 as the ITN coverage is increased from 
0 to 0.9. Results for four countries in west Africa (A) and five countries in central and east Africa (B) are shown. Black, blue, and green lines and circles 
represent predicted frequencies in An. gambiae, An. coluzzii, and An. arabiensis, respectively
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areas and not increasing at all in other areas, although 
ITN coverage did increase in these countries over the 
period (Additional File 1: Figures S12-S14). In An. gam-
biae, the earlier increases in the frequencies of Vgsc-995S 
may have reduced the selection pressures driving the 
spread of the Vgsc-995F allele (see the “Discussion” sec-
tion). In the DRC, the variation in predicted Vgsc-995F 
frequencies with increasing ITN coverage shows a similar 
pattern to the western countries, with predicted frequen-
cies in An. gambiae in 2005 increasing from an interme-
diate value at zero ITN coverage to a very high value with 
increasing ITN coverage (Fig. 7B).

Discussion
Our annual maps of the frequencies of target-site insecti-
cide resistance mutations in the three dominant malaria 
vector species of the African An. gambiae complex have 
characterised the species-specific spread dynamics of 
target-site resistance, showing how these dynamics have 
varied geographically, across national and continental 
scales. Our geospatial machine learning model ensem-
ble brings together data sets describing multiple, multi-
faceted processes affecting insecticide resistance in field 
vector populations. Relationships between mutation fre-
quencies and the prevalence of resistance phenotypes can 
be explored, as well as relationships with the coverage of 
vector control interventions such as ITNs. In this study, 
we have used these models to investigate questions of 
importance to malaria vector control.

Firstly, we found significant relationships between fre-
quencies of the target-site resistance mutation Vgsc-995F 
and phenotypic resistance to the pyrethroid deltamethrin 
in field samples. This demonstrates explanatory power 
of target-site resistance for phenotypic variation in field 
An. gambiae complex populations, supporting the rela-
tionships between target-site and phenotypic resistance 
shown by functional [14, 29] and genomic [6, 7] studies. 
Our maps show substantial spatial heterogeneity in Vgsc 
allele frequencies in recent years, with frequencies in 
2017 varying both across vector species and geographic 
regions. Continued surveillance of these target-site mark-
ers is therefore important to track current and future 
regional temporal trends in resistance.

A substantial amount of phenotypic variation was 
unexplained by the Vgsc-995F frequencies, however, 
which is in part due to the fact that the sample mortal-
ity is often not disaggregated by the individual species 
within the An. gambiae complex. Our maps show how 
target-site resistance frequencies differ across these spe-
cies depending on geographic region, with dichotomous 
differences in some regions. This highlights that species-
specific trends in phenotypic resistance cannot be fully 
understood using susceptibility test mortality values at 

the An. gambiae complex level. According to our Vgsc 
allele frequency maps, in Kenya and Uganda, there is a 
close coupling between vector species and which type of 
target-site resistance mechanism is more prevalent (995F 
or 995S); therefore, errors due to aggregating across spe-
cies will be particularly high in these countries. For this 
reason, we were unable to assess associations between 
phenotypic pyrethroid resistance and frequencies of the 
Vgsc-995S mutation, which has a high frequency in these 
two countries and relatively low frequencies in our other 
focal countries.

We modelled the association between the frequency 
of Vgsc-995F and the mortality to deltamethrin using a 
linear relationship, but in wild mosquito populations, 
the relationship is unlikely to be straightforward. The 
frequencies of different Vgsc genotypes are not avail-
able for most of the samples in our database, and so our 
models cannot capture differences in phenotypes associ-
ated with heterozygous and homozygous genotypes. An 
experimental study that used gene editing to investigate 
the functional relationship between Vgsc-995F and mor-
tality to pyrethroids found significant resistance to per-
methrin and a-cypermethrin only in homozygosity [29], 
as measured by WHO standard susceptibility tests. The 
molecular basis of target site resistance to pyrethroids is, 
however, likely to depend on other mutations in the Vgsc 
gene, as shown by whole genome analyses that identified 
three clusters of novel non-synonymous variants within 
the Vgsc gene showing signals of recent positive selection 
[7]. Thus, the two target site resistance alleles considered 
in this study do not act in isolation in influencing resist-
ance phenotypes.

In addition to target-site resistance, geospatial analysis 
of the distribution of metabolic resistance mechanisms 
could greatly improve our ability to understand spati-
otemporal trends in resistance. Metabolic resistance, 
the insect’s increased ability to metabolise insecticide, 
is another important mechanism that can generate high 
levels of pyrethroid resistance in An. gambiae [30, 31], 
and especially Anopheles funestus, which lacks resistance-
associated Vgsc mutations [32]. Metabolic resistance 
occurs through the upregulation of metabolic genes that 
encode detoxification enzymes. Many metabolic genes 
have shown associations with pyrethroid resistance, with 
genomic studies of the An. gambiae complex finding 
strong signals of positive selection around gene clusters 
implicated in insecticide metabolism [6, 33]. Amplicon 
sequencing panels, which screen a panel of markers of 
interest across many loci [34, 35], can incorporate target-
site as well as metabolic resistance markers, including 
known mutations in the Gtse2 and Cyp6p gene clusters 
[6]. The anticipated increased use of amplicon sequenc-
ing panels in genetic surveillance of vector populations 
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in the coming years will lead to exciting opportunities to 
better quantify the polygenic nature of resistance.

Secondly, our models indicate that the coverage of 
ITNs is influential in predicting Vgsc allele frequencies, 
but that the strength of this influence varies both geo-
graphically and across vector species. These relation-
ships between ITN coverage and Vgsc allele frequencies 
produced by our models need to be interpreted with cau-
tion, because the machine learning approaches that we 
have applied do not allow causal inferences to be made, 
and correlations amongst predictor variables can make 
relationships with any given variable difficult to identify. 
Nonetheless, our results are consistent with evidence 
from field studies showing changes in Vgsc allele frequen-
cies following the implementation of ITN interventions. 
Our results showed that ITN coverage had the great-
est influence on Vgsc-995F frequencies in the western 
African countries in An. gambiae and An. coluzzii. Field 
studies have also shown increases in Vgsc-995F frequen-
cies in these two species following the scale-up of ITNs 
in Cameroon [36], Ghana [37], and Mali [38]. In Kenya 
and Uganda, we found no influence of ITN coverage on 
predicted Vgsc-995F frequencies in An. gambiae, which 
reflects the more limited spread of the 995F mutation in 
eastern An. gambiae populations. It is possible that the 
spread of Vgsc-995F in An. gambiae in eastern Africa 
was inhibited by the presence of the Vgsc-995S mutation, 
which is known to have been present in Kenyan An. gam-
biae populations since 1986 [14]. Resistance conferred by 
Vgsc-995S could lead to reduced selection for Vgsc-995F, 
and it is also possible that the strength of selection could 
have been reduced if other mechanisms, such as meta-
bolic resistance, were already present.

The influence of ITN coverage on predicted allele fre-
quencies is consistently lower in An. arabiensis across all 
nine countries compared to the other two species, which 
reflects the more limited spread of both Vgsc alleles in 
An. arabiensis across the western and eastern countries. 
An. arabiensis have a greater tendency towards biting 
outdoors than An. gambiae and An. coluzzii, and their 
peak biting times occur earlier in the evening while the 
other two species bite most commonly in the middle of 
the night [39–41]. An. arabiensis also has a lower human 
blood index than An. gambiae and An. coluzzii, indicat-
ing a relatively high proportion of bites taken on animals 
rather than humans [42]. It is therefore plausible that An. 
arabiensis has lower exposure to ITNs, and thus ITN 
coverage has a lesser impact on selection for resistance 
in this species. Observed shifts in vector species compo-
sition towards higher proportions of An. arabiensis fol-
lowing the scaling up of ITN interventions supports this 
hypothesis [21, 40]. The evolutionary pathway of resist-
ance differs across the three vector species, however, and 

we expect greater divergence in the case of An. arabiensis 
which has lower rates of hybridisation with the other two 
species [43], with higher rates of hybridisation occurring 
between An. gambiae and An. coluzzii [44]. For example, 
hybridisation led to the introgression of target-site resist-
ance from An. gambiae to An. coluzzii [16, 38], accelerat-
ing the development and spread of target-site resistance 
in An. coluzzii.

Variables describing solar radiation and humidity were 
the highest ranking in terms of their impact on predicted 
allele frequencies. While we cannot identify a mechanis-
tic explanation for this result, we note that these climate 
variables provide a broadscale spatial separation of areas 
that are arid from those that are wet and tropical. They 
may, therefore, represent unmeasured differences in mos-
quito population structure and genetics that give rise to 
regional differences in resistance patterns. We also found, 
however, that the most influential variables were different 
across the different machine learning models, with the 
neural network model showing less commonality with 
the two regression tree-based models (extreme gradient 
boosting and random forest). Lucas et al. [28] found that 
variable importance measures for neural network mod-
els are not replicable, with different variable importance 
rankings being produced each time the model is fitted 
to the same data set. This emphasises that models fitted 
by machine learning algorithms do not represent a single 
unique optimal solution, and there may be many differ-
ent ways that a machine learning model can combine the 
predictor variables to produce similarly accurate results, 
as measured by out-of-sample testing [45]. The machine 
learning models do not specify any mechanistic interac-
tions between predictor variables and the target outcome 
and are based on learning a series of high dimensional 
predictive relationships that do not distinguish between 
mechanistic processes and non-causal associations.

Conclusions
Our geospatial analyses illustrate how insecticide target-
site resistance dynamics in African malaria vectors vary 
across species and geographic regions, emphasising that 
resistance management strategies need to be based on 
local information about resistance genetics and vector 
species composition, as well as phenotype surveillance. 
Our results demonstrate that genetic surveillance of 
resistance can help to predict resistance phenotypes in 
field vector populations and understand their mechanis-
tic drivers. This capacity would be improved by surveil-
lance of resistance phenotypes at the level of individual 
vector species. In addition to target-site resistance, sur-
veillance of other genetic resistance mechanisms, such 
as metabolic resistance, is needed to understand, predict 
and manage the spread of resistance.
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Methods
Summary
We analysed trends in the frequencies of target-site 
insecticide resistance mutations across space and time 
in three African malaria vector species: An. gambiae, An. 
coluzzii, and An. arabiensis. We use spatiotemporal mod-
elling approaches that apply both Bayesian statistics and 
machine learning methods in order to predict mutation 
frequencies jointly across the three species over a spatial 
grid of approximately 5 km resolution. Our model predic-
tions are based on surveillance data that records observed 
frequencies in mosquitoes sampled widely throughout 
west and northeast Africa. The machine learning meth-
ods predict the proportions of each allele in each mos-
quito sample, and they are informed by 99 potential 
predictor variables that represent environmental and bio-
logical processes which may influence selection for resist-
ance. A Bayesian multinomial metamodel then combines 
predictions across the multiple machine learning models 
in order to make more accurate and robust predictions 
(a methodology known as stacked generalisation [46]). 
Using the metamodel, we predict the frequencies of each 
mutation in all grid cells within our nine selected coun-
tries for all years in the period 2005–2017.

Vgsc allele frequency data
Our models are informed by a database containing fre-
quencies of Vgsc mutations in mosquito samples belong-
ing to the Anopheles gambiae species complex collected 
from within western and eastern Africa over the period 
2005–2017 (Additional File 1: Figures S2-S6). This data-
base is an updated version of a publicly available data set 
containing Vgsc allele frequencies [47] and collates data 
sets from multiple contributors, including published and 
unpublished sources. The database records the number 
of mosquitoes tested in each sample, together with the 
frequencies of the Vgsc-995 L, Vgsc-995F, and Vgsc-995S 
alleles in the sample. Some, but not all, data sets in the 
database record the Vgsc genotype of the sampled mos-
quitoes. The database also records information about the 
mosquito species tested, the molecular screening meth-
ods used for species identification and Vgsc allele iden-
tification, and the geographic coordinates of the sample 
collection location. We only included samples that are 
representative of the An. gambiae population sampled at 
each place and time (i.e. randomly sampled from the pop-
ulation). We also only included samples that contained 
five or more mosquitoes. The final data set included 2418 
samples distributed across 27 countries.

We developed predictive maps of Vgsc allele frequen-
cies for a focal selection of countries which had the high-
est number of samples, excluding those countries for 

which the spatial distribution of samples was strongly 
clustered (Additional File 1: Figures S2 and S3). In select-
ing countries for inclusion in our mapping analysis, we 
subdivided the African continent into western and east-
ern regions, with Cameroon and countries further west 
of Cameroon falling within our western region and coun-
tries that lie east of the Central African Republic falling 
within our eastern region. Within the western region, 
we selected the five countries with the greatest number 
of samples (Additional File 1: Figure S4), excluding Sen-
egal because of a tight clustering of sampling locations 
around the border with The Gambia (Additional File 1: 
Figure S2). In the eastern region, we selected all countries 
that had samples that were included in our modelling 
analysis (Additional File 1: Figure S5), excluding Tan-
zania due to a strong spatial clustering of the sampling 
observations (Additional File 1: Figure S3). Sudan is the 
most data-rich country included in our study (Additional 
File 1: Figure S5), but it covers a large spatial area and 
the sampling locations are all located in a region in the 
eastern part (Additional File 1: Figure S3). Therefore, we 
developed predictive maps only for a region in the east of 
Sudan that does not extend further west than a longitude 
of 29.5° E or further north of 17° N. In the case of Ethio-
pia, we excluded the region east of a longitude of 44° E 
because we have no samples located in this region.

We included one central African country, the Demo-
cratic Republic of Congo (DRC), in our mapping analy-
sis. Although the Vgsc allele frequency data is sparse 
throughout the country (Additional File 1: Figures S2, S3 
and S5), we included the DRC because it covers a region 
that is rarely studied. In the case of the DRC, our model-
ling analysis is restricted to predicting the frequency of 
the Vsgc-995F mutation only, and we do not predict Vsgc-
995S frequencies (see below). We excluded the data on 
Vsgc-995S frequencies from the DRC analysis because 
most studies from the DRC only perform an assay capa-
ble of detecting L995F, which can lead to erroneous 
genotypes when both resistant alleles are present, which 
appears typical in DRC (Loonen 2020 [48], Lynd et  al. 
2018).

Potential predictor variables
Our set of predictors is similar to that described in Han-
cock et al. [5, 9] and includes 99 variables describing envi-
ronmental characteristics that could potentially be related 
to the development and spread of insecticide resistance 
in populations of Anopheles gambiae complex mosquito 
species. These variables describe the coverage of insec-
ticide-based vector control interventions, agricultural 
land use [49, 50], and the environmental fate of agricul-
tural insecticides [51], other types of land use [49, 52–54], 
climate [49, 55, 56], and relative species abundance. A 



Page 13 of 17Hancock et al. BMC Biology           (2022) 20:46 	

detailed description of this set of predictor variables is 
provided in Additional File 1: Table S3. Our vector con-
trol intervention data includes a variable estimating ITN 
coverage in terms of the proportion of people who slept 
under a net the preceding night, at each ~ 5 km pixel loca-
tion for each year [57, 58]. Relative species abundance is 
represented by a variable estimating the abundance of 
An. arabiensis relative to the abundance of An. gambiae 
and An. coluzzii [21]. For all variables, we obtained spa-
tially explicit data on a grid with a 2.5 arc-minute resolu-
tion (which is approximately 5 km at the equator) covering 
sub-Saharan Africa. For variables for which temporal data 
were available at an annual resolution, we included time-
lagged representations with lags of 0, 1, 2, and 3 years.

Stacked generalization ensemble modelling approach
We used stacked generalization to develop a model ensem-
ble that combines the predictions generated by multiple 
machine learning models [46, 59]. Stacked generalization 
uses a meta-model, or “generalizer”, that learns a weighted 
combination of the predictions across each model in the 
ensemble, where the predictions of each model are the 
out-of-sample predictions derived from K-fold cross vali-
dation. The predictions produced by the generalizer cor-
rect for the biases of each model and are expected to have 
improved prediction accuracy relative to any of the indi-
vidual models included in the ensemble [46, 59, 60].

Machine learning models
Our model ensemble included three different machine 
learning models that predicted the frequencies of the 
Vgsc-995 L, Vgsc-995F, and Vgsc-995S at each pixel within 
our mapped countries for each year within the period 
2005–2017. The three machine learning models were 
an extreme gradient boosting (XGB) model, a random 
forest (RF) model, and a neural network (NN) model. 
These models were chosen due to their demonstrated 
high predictive performance [60, 61], which derives from 
their ability to represent non-linear relationships and 
high-level interactions across the model features [5, 60]. 
The XGB model was implemented using the R package 
xgboost [62], and the RF and NN models were imple-
mented using the sklearn [63] and keras packages [64] 
in Python. The label for these models was a categorical 
variable corresponding to whether the Vgsc-995 L, Vgsc-
995F, or Vsgc-995S mutation was detected across all the 
alleles screened in each sample. All Vgsc allele frequency 
observations from the 27 countries in our data set were 
used to inform the model (see above). The models predict 
the expected frequencies of each allele at each mapped 
pixel. The features used in the models included the 99 
environmental predictor variables together with the 
1-, 2-, and 3-year lags for those variables that vary on a 

yearly time step. A factor variable representing the mos-
quito species (An. gambiae, An. coluzzii, An. arabiensis, 
or An. gambiae s.l) was also included as a feature, where 
the An. gambiae s.l. category describes individuals within 
samples for which species within the Anopheles gambiae 
complex were not identified. Finally, the year in which 
the bioassay and allele frequency samples were collected 
was also included as a feature. For each machine learning 
model, parameter tuning was performed using out-of-
sample validation by subdividing the data into training, 
validation, and test subsets (see Additional File 1).

We developed an additional model ensemble that pre-
dicted only the frequency of Vsgc-995F, which we used 
to develop predictive maps of the Vsgc-995F frequency 
for the DRC. This model ensemble included the three 
machine learning models as described above, and the 
label was a categorical variable corresponding to whether 
the Vsgc-995F mutation was detected across all the alleles 
screened in the sample. The label included the full data 
set containing the Vsgc-995F frequencies in the 2418 
samples. The features used were the same as those used 
in the above models, and parameter tuning was per-
formed as described above.

Model stacking and multinomial logistic regression
We use a Bayesian multinomial logit regression model 
as our meta-model to combine the out-of-sample pre-
dictions obtained from performing K-fold cross-vali-
dation on each of the three machine learning models in 
the model ensemble [65–67] (see www.r-​inla.​org). The 
multinomial logit model represents observations where 
the sampling unit corresponds to one of a set of mutu-
ally exclusive alternatives j ∈ {1, …, J}; in our case J  = 3, 
with the alternatives being the Vgsc-995 L, Vgsc-995F, or 
Vgsc-995S marker (we do not account for diploid geno-
types in our model). Our observations yij are the numbers 
of Vgsc-995 L alleles (j = 1), Vsgc-995F alleles (j = 2), and 
Vsgc-995S alleles (j = 3) in sample i, with i = 1,….,N sam-
ples in total. Our model has three covariates which are 
the out-of-sample predictions of the frequencies of each 
allele in each sample given by the three machine learning 
models, transformed using the empirical logit transform 
to avoid discontinuities at 0 and 1. We store these covari-
ates in the matrices X1, X2, and X3, which have dimension 
N × J, with each matrix containing the predictions of fre-
quencies of the three alleles for one of the three machine 
learning models. Our multinomial logit model uses the 
following linear predictor:

where there are three sets of three coefficients β1
j  , β2

j

and β3
j  (j = 1,2,3); we combine these into the vector Β. 

Vij = β1
j X

1
ij + β2

j X
2
ij + β3

j X
3
ij
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For each observation i, the expected probabilities of each 
alternative are:

where gij(Β) =  exp (Vij)  and Gi =
∑J

j=1 gij(B) (see 
Croissant [66] and www.r-​inla.​org). We use the mul-
tinomial-Poisson transformation [67], which gives the 
following expression for the Poisson likelihood [67]:

where φi are N additional parameters that need to be 
estimated in order to use the multinomial-Poisson 
transformation. Posterior distributions of the parame-
ters Β and φi are obtained by fitting the model using 
the R-INLA package [65] (see www.r-​inla.​org), with 
the coefficients Β as fixed effects and the intercepts 
φi  as an independent (iid) random effect. Our imple-
mentation constrains each of the nine coefficients to 
be positive 

(

β
q
j ≥ 0, ∀j, q, q = 1, 2, 3

)

 [60]. Once the 
parameter estimation has been performed, the final set 
of predictions given by the model ensemble are 
obtained by replacing the elements of X1, X2, and X3 
with the in-sample predictions of the machine learning 
models obtained by fitting each of these models to all 
the data (all the labels and the corresponding sets of 
features). For our second model ensemble for predict-
ing only Vsgc-995F frequencies, the formulation of the 
meta-model is the same as described above, with J = 2.

Posterior validation
To assess the ability of our model to accurately represent 
the data, we performed posterior validation of our model 
ensemble using 10-fold out-of-sample cross-validation. 
Specifically, the data were divided into 10 subsets (or 
“test” sets, using random sampling without replacement), 
and 10 successive model fits were performed, each with-
holding a different test set. The test sets were withheld 
from each of the three machine learning models included 
in the ensemble, as well as from the multinomial logit 
metamodel. The root mean squared error (RMSE) across 
all (withheld) Vgsc allele frequency observations con-
firmed that the model ensemble delivered higher predic-
tion accuracy than each of the three machine learning 
model constituents (Additional File 1: Table S1).

Insecticide resistance bioassay data
To analyse relationships between our predicted resistance 
allele frequencies and resistance phenotypes observed in
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field vector populations, we utilised a database of insecti-
cide resistance bioassay data [5] including samples tested 
over the period 2005–2017. All species included in the 
samples are from the Anopheles gambiae complex and the 
composition of sibling species is unknown for the major-
ity of samples. The data record the number of mosqui-
toes in the sample and the proportional sample mortality 
resulting from the bioassay, as well as variables describ-
ing the mosquitoes tested, the sample collection site, 
and the bioassay conditions and protocol. We selected 
the bioassay results for standard diagnostic dose WHO 
susceptibility tests performed using deltamethrin for all 
samples collected within the five countries included in 
our analysis (see the “Results” section), resulting in 159 
results for Burkina Faso, 297 results for Benin, 184 results 
for Cameroon, 134 results for Ethiopia– and 256 results 
for Sudan. The bioassay data set included only two bioas-
say results for Equatorial Guinea and 22 bioassay results 
for Uganda, so we excluded these countries from our 
analysis of associations between our mapped Vgsc allele 
frequencies and the prevalence of insecticide resistance 
phenotypes. Susceptibility tests have a high measurement 
error; Hancock et al. [5] estimated that the measurement 
error associated with the sample proportional mortality 
had a standard deviation (sd) = 0.25 for bioassays per-
formed using deltamethrin. Therefore, we used the pre-
dicted mean mortality to deltamethrin for Anopheles 
gambiae complex mosquitoes obtained from a series of 
annual predictive maps [5], using the predicted value for 
each sample collection location and year in our analysis.

Regression models of associations between resistance 
allele frequencies and mortality following exposure 
to deltamethrin
We assessed associations between the predicted mean 
mortality following exposure to deltamethrin and the 
predicted frequency of the Vsgc-995F allele. Mean mor-
tality measurements represent the entire Anopheles 
gambiae complex, so we combined our species-specific 
predictions of Vsgc-995F frequencies across An. gambiae, 
An. coluzzii, and An. arabiensis to estimate the Vsgc-995F 
frequency in the An. gambiae complex for each sample 
collection location and year, fC, i:

where Ra,i is the abundance of An. arabiensis at location 
i relative to the combined abundance of An. gambiae and 
An. coluzzii, and fa, i, fg, i, and fz, i are the predicted frequen-
cies of the Vsgc-995F allele in An. arabiensis, An. gambiae, 
and An. coluzzii at location i, respectively. Values of the 
relative abundance of An. arabiensis at each geographic 
location were obtained from the maps developed by [21]. 
We do not have spatially explicit estimates of the relative 

(1)fC ,i = Ra,ifa,i +
(

1− Ra,i
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abundances of An. gambiae and An. coluzzii, so we used 
the mean frequency across these two species in our cal-
culation. We excluded Kenya from our regression analysis 
because frequencies of Vsgc-995F are low at our sampled 
locations (observed Vsgc-995F frequencies are less than 
0.07 across 90% of samples). We tested the accuracy of 
our estimated Vgsc-995F frequencies for the An. gambiae 
complex (Eq.  1) against 797 of the observed Vgsc-995F 
sample frequencies in our data set that were representa-
tive of the An. gambiae complex [47] and found a good 
level of accuracy (Additional File 1: Figure S15).

We fitted OLS linear regression models to predict mean 
mortality to deltamethrin using fC, i as a covariate. Before 
model fitting, we applied the empirical logit transforma-
tion to both the independent variable and the covariate. 
To allow for serial autocorrelation in the data, we calcu-
lated Newey-West robust standard errors [68–70], using 
the sandwich package in R [70–72], specifying automated 
calculation of the bandwidth parameter.

Importance of potential explanatory variables
In order to identify which of our potential predictor 
variables were having the most impact on our modelled 
Vgsc allele frequencies, we calculated measures of the 
importance of each predictor variable for each of the 
machine-learning models used in our model ensemble. It 
is important to note that variable importance measures 
cannot be used to infer causality, and they can be difficult 
to interpret when predictor variables are correlated. For 
XGB, we used the gain measure calculated for each vari-
able using the xgboost package [62], which is the frac-
tional total reduction in the training error gained across 
all of that variable’s splits. For RF, we use the Gini impor-
tance, which is calculated using the sklearn package [63]. 
The Gini importance measures the influence of a variable 
in discriminating between classes in a classification algo-
rithm [73]. For NN, we use the permutation importance, 
again calculated using the sklearn package. The permu-
tation importance of a variable is obtained by randomly 
shuffling the values of the variable across all observations 
and recalculating the model score, which in our case is 
the prediction error across all data points.

Independent conditional expectation (ICE) analysis 
across varying ITN coverage
We studied how variation in ITN coverage impacted our 
model-predicted resistance allele frequencies using ICE 
analysis. For a single chosen location in each country, we 
calculated the ICE [27] of the model predicted Vsgc-995F 
frequency with varying ITN coverage for the year 2005. 
The ICE simply calculates the predicted response value 
from the model across a range of a focal predictor variable, 
keeping all other predictor variables fixed at their original 

values. This can be used to explore how the focal covari-
ate influences the model predictions, by examining the 
shape and magnitude of the relationship. It is important to 
be aware, however, that the variation in the focal covariate 
is artificial and does not represent the actual variation in 
that particular covariate over space or time. Our ICE cal-
culations represent variation in the model predictions for a 
single location and year only. The selected location within 
each country was chosen at random from the Vgsc allele 
frequency sampling locations for that country (the coor-
dinates of each location are shown in Additional File 1: 
Table S4). We used our model ensemble to calculated pre-
dicted Vsgc-995F frequencies across values of the ITN cov-
erage in the year 2005 from zero to one in intervals of 0.1.
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