Consortium HGS. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–45.
Article
Google Scholar
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.
Article
CAS
PubMed
Google Scholar
Consortium CSaA. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437:69–87.
Article
Google Scholar
Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science. 2007;316:222–34.
Article
CAS
PubMed
Google Scholar
King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science. 1975;188:107–16.
Article
CAS
PubMed
Google Scholar
Nuttall. Blood immunity and blood relationships. Cambridge, UK: Cambridge University Press; 1904.
Google Scholar
Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell. 2008;134:25–36.
Article
CAS
PubMed
Google Scholar
Enard W. Human evolution: enhancing the brain. Curr Biol. 2015;25:R421–3.
Article
CAS
PubMed
Google Scholar
Franchini LF, Pollard KS. Can a few non-coding mutations make a human brain? Bioessays. 2015;37:1054–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franchini LF, Pollard KS. Genomic approaches to studying human-specific developmental traits. Development. 2015;142:3100–12.
Article
CAS
PubMed
Google Scholar
Reilly SK, Noonan JP. Evolution of gene regulation in humans. Annu Rev Genomics Hum Genet. 2016;17:45–67.
Article
CAS
PubMed
Google Scholar
Silver DL. Genomic divergence and brain evolution: How regulatory DNA influences development of the cerebral cortex. Bioessays. 2016;38:162–71.
Article
CAS
PubMed
Google Scholar
Enard W. The molecular basis of human brain evolution. Curr Biol. 2016;26:R1109–R17.
Article
CAS
PubMed
Google Scholar
Hubisz MJ, Pollard KS. Exploring the genesis and functions of Human Accelerated Regions sheds light on their role in human evolution. Curr Opin Genet Dev. 2014;29:15–21.
Article
CAS
PubMed
Google Scholar
O'Bleness M, Searles VB, Varki A, Gagneux P, Sikela JM. Evolution of genetic and genomic features unique to the human lineage. Nat Rev Genet. 2012;13:853–66.
Article
PubMed
PubMed Central
Google Scholar
Preuss TM. Human brain evolution: from gene discovery to phenotype discovery. Proc Natl Acad Sci U S A. 2012;109 Suppl 1:10709–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vallender EJ, Mekel-Bobrov N, Lahn BT. Genetic basis of human brain evolution. Trends Neurosci. 2008;31:637–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, Pedersen JS, et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature. 2006;443:167–72.
Article
CAS
PubMed
Google Scholar
Pollard KS, Salama SR, King B, Kern AD, Dreszer T, Katzman S, et al. Forces shaping the fastest evolving regions in the human genome. PLoS Genet. 2006;2, e168.
Article
PubMed
PubMed Central
Google Scholar
Bird CP, Stranger BE, Liu M, Thomas DJ, Ingle CE, Beazley C, et al. Fast-evolving noncoding sequences in the human genome. Genome Biol. 2007;8:R118.
Article
PubMed
PubMed Central
Google Scholar
Bush EC, Lahn BT. A genome-wide screen for noncoding elements important in primate evolution. BMC Evol Biol. 2008;8:17.
Article
PubMed
PubMed Central
Google Scholar
Lowe CB, Haussler D. 29 mammalian genomes reveal novel exaptations of mobile elements for likely regulatory functions in the human genome. PLoS One. 2012;7, e43128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prabhakar S, Noonan JP, Paabo S, Rubin EM. Accelerated evolution of conserved noncoding sequences in humans. Science. 2006;314:786.
Article
CAS
PubMed
Google Scholar
Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature. 2006;444:499–502.
Article
CAS
PubMed
Google Scholar
Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature. 2009;457:854–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Visel A, Prabhakar S, Akiyama JA, Shoukry M, Lewis KD, Holt A, et al. Ultraconservation identifies a small subset of extremely constrained developmental enhancers. Nat Genet. 2008;40:158–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dickel DE, Visel A, Pennacchio LA. Functional anatomy of distant-acting mammalian enhancers. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120359.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yunis JJ, Prakash O. The origin of man: a chromosomal pictorial legacy. Science. 1982;215:1525–30.
Article
CAS
PubMed
Google Scholar
Marques-Bonet T, Eichler EE. The evolution of human segmental duplications and the core duplicon hypothesis. Cold Spring Harb Symp Quant Biol. 2009;74:355–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sudmant PH, Huddleston J, Catacchio CR, Malig M, Hillier LW, Baker C, et al. Evolution and diversity of copy number variation in the great ape lineage. Genome Res. 2013;23:1373–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dennis MY, Eichler EE. Human adaptation and evolution by segmental duplication. Curr Opin Genet Dev. 2016;41:44–52.
Article
CAS
PubMed
Google Scholar
Kostka D, Hahn MW, Pollard KS. Noncoding sequences near duplicated genes evolve rapidly. Genome Biol Evol. 2010;2:518–33.
Article
PubMed
PubMed Central
Google Scholar
Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell. 2015;161:1012–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Symmons O, Pan L, Remeseiro S, Aktas T, Klein F, Huber W, et al. The Shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances. Dev Cell. 2016;39:529–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
Article
Google Scholar
Ponting CP. Biological function in the twilight zone of sequence conservation. BMC Biol. 2017;15:71.
Article
PubMed
PubMed Central
Google Scholar
Capra JA, Erwin GD, McKinsey G, Rubenstein JL, Pollard KS. Many human accelerated regions are developmental enhancers. Philos Trans R Soc Lond B Biol Sci. 2013;368:20130025.
Article
PubMed
PubMed Central
Google Scholar
Gittelman RM, Hun E, Ay F, Madeoy J, Pennacchio L, Noble WS, et al. Comprehensive identification and analysis of human accelerated regulatory DNA. Genome Res. 2015;25:1245–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong X, Wang X, Zhang F, Tian W. Genome-wide identification of regulatory sequences undergoing accelerated evolution in the human genome. Mol Biol Evol. 2016;33:2565–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Consortium EP, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447:799–816.
Article
Google Scholar
Cotney J, Leng J, Yin J, Reilly SK, DeMare LE, Emera D, et al. The evolution of lineage-specific regulatory activities in the human embryonic limb. Cell. 2013;154:185–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reilly SK, Yin J, Ayoub AE, Emera D, Leng J, Cotney J, et al. Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science. 2015;347:1155–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vermunt MW, Tan SC, Castelijns B, Geeven G, Reinink P, de Bruijn E, et al. Epigenomic annotation of gene regulatory alterations during evolution of the primate brain. Nat Neurosci. 2016;19:494–503.
Article
CAS
PubMed
Google Scholar
Prescott SL, Srinivasan R, Marchetto MC, Grishina I, Narvaiza I, Selleri L, et al. Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell. 2015;163:68–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, et al. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature. 2010;463:958–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011;470:279–83.
Article
CAS
PubMed
Google Scholar
Doolittle WF. Is junk DNA bunk? A critique of ENCODE. Proc Natl Acad Sci U S A. 2013;110:5294–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Graur D, Zheng Y, Price N, Azevedo RB, Zufall RA, Elhaik E. On the immortality of television sets: ‘function’ in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol. 2013;5:578–90.
Article
PubMed
PubMed Central
Google Scholar
Sakabe NJ, Nobrega MA. Beyond the ENCODE project: using genomics and epigenomics strategies to study enhancer evolution. Philos Trans R Soc Lond B Biol Sci. 2013;368:20130022.
Article
PubMed
PubMed Central
Google Scholar
Rossant J. Mouse and human blastocyst-derived stem cells: vive les differences. Development. 2015;142:9–12.
Article
CAS
PubMed
Google Scholar
Florio M, Albert M, Taverna E, Namba T, Brandl H, Lewitus E, et al. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science. 2015;347(6229):1465–70.
Article
CAS
PubMed
Google Scholar
Charrier C, Joshi K, Coutinho-Budd J, Kim JE, Lambert N, de Marchena J, et al. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell. 2012;149:923–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schreiweis C, Bornschein U, Burguiere E, Kerimoglu C, Schreiter S, Dannemann M, et al. Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proc Natl Acad Sci U S A. 2014;111:14253–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Enard W, Gehre S, Hammerschmidt K, Holter SM, Blass T, Somel M, et al. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell. 2009;137:961–71.
Article
CAS
PubMed
Google Scholar
McLean CY, Reno PL, Pollen AA, Bassan AI, Capellini TD, Guenther C, et al. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature. 2011;471:216–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyd JL, Skove SL, Rouanet JP, Pilaz LJ, Bepler T, Gordan R, et al. Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. Curr Biol. 2015;25:772–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamm GB, Lopez-Leal R, Lorenzo JR, Franchini LF. A fast-evolving human NPAS3 enhancer gained reporter expression in the developing forebrain of transgenic mice. Philos Trans R Soc Lond B Biol Sci. 2013;368:20130019.
Article
PubMed
PubMed Central
Google Scholar
Kamm GB, Pisciottano F, Kliger R, Franchini LF. The developmental brain gene NPAS3 contains the largest number of accelerated regulatory sequences in the human genome. Mol Biol Evol. 2013;30:1088–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prabhakar S, Visel A, Akiyama JA, Shoukry M, Lewis KD, Holt A, et al. Human-specific gain of function in a developmental enhancer. Science. 2008;321:1346–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doan RN, Bae BI, Cubelos B, Chang C, Hossain AA, Al-Saad S, et al. Mutations in human accelerated regions disrupt cognition and social behavior. Cell. 2016;167:341–54. e12.
Article
CAS
PubMed
Google Scholar
Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L, Rogov P, et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat Biotechnol. 2012;30:271–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patwardhan RP, Hiatt JB, Witten DM, Kim MJ, Smith RP, May D, et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat Biotechnol. 2012;30:265–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fortna A, Kim Y, MacLaren E, Marshall K, Hahn G, Meltesen L, et al. Lineage-specific gene duplication and loss in human and great ape evolution. PLoS Biol. 2004;2, E207.
Article
PubMed
PubMed Central
Google Scholar
Davis JM, Searles VB, Anderson N, Keeney J, Dumas L, Sikela JM. DUF1220 dosage is linearly associated with increasing severity of the three primary symptoms of autism. PLoS Genet. 2014;10, e1004241.
Article
PubMed
PubMed Central
Google Scholar
Dennis MY, Nuttle X, Sudmant PH, Antonacci F, Graves TA, Nefedov M, et al. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell. 2012;149:912–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu K, Schadt EE, Pollard KS, Roussos P, Dudley JT. Genomic and network patterns of schizophrenia genetic variation in human evolutionary accelerated regions. Mol Biol Evol. 2015;32:1148–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cubelos B, Sebastian-Serrano A, Beccari L, Calcagnotto ME, Cisneros E, Kim S, et al. Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron. 2010;66:523–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fullwood MJ, Han Y, Wei CL, Ruan X, Ruan Y. Chromatin interaction analysis using paired-end tag sequencing. Curr Protoc Mol Biol. 2010;Chapter 21:Unit 21 15 1–25.
Grueber WB, Jan LY, Jan YN. Different levels of the homeodomain protein cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell. 2003;112:805–18.
Article
CAS
PubMed
Google Scholar
Li G, Fullwood MJ, Xu H, Mulawadi FH, Velkov S, Vega V, et al. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol. 2010;11:R22.
Article
PubMed
PubMed Central
Google Scholar
Cantsilieris S, Stessman HA, Shendure J, Eichler EE. Targeted Capture and high-throughput sequencing using molecular inversion probes (MIPs). Methods Mol Biol. 2017;1492:95–106.
Article
PubMed
PubMed Central
Google Scholar
Domene S, Bumaschny VF, de Souza FS, Franchini LF, Nasif S, Low MJ, et al. Enhancer turnover and conserved regulatory function in vertebrate evolution. Philos Trans R Soc Lond B Biol Sci. 2013;368:20130027.
Article
PubMed
PubMed Central
Google Scholar
Harmston N, Baresic A, Lenhard B. The mystery of extreme non-coding conservation. Philos Trans R Soc Lond B Biol Sci. 2013;368:20130021.
Article
PubMed
PubMed Central
Google Scholar
Maeso I, Irimia M, Tena JJ, Casares F, Gomez-Skarmeta JL. Deep conservation of cis-regulatory elements in metazoans. Philos Trans R Soc Lond B Biol Sci. 2013;368:20130020.
Article
PubMed
PubMed Central
Google Scholar
de Souza FS, Franchini LF, Rubinstein M. Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong? Mol Biol Evol. 2013;30:1239–51.
Article
PubMed
PubMed Central
Google Scholar
Franchini LF, Lopez-Leal R, Nasif S, Beati P, Gelman DM, Low MJ, et al. Convergent evolution of two mammalian neuronal enhancers by sequential exaptation of unrelated retroposons. Proc Natl Acad Sci U S A. 2011;108(37):15270–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frankel N, Davis GK, Vargas D, Wang S, Payre F, Stern DL. Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature. 2010;466:490–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lam DD, de Souza FS, Nasif S, Yamashita M, Lopez-Leal R, Otero-Corchon V, et al. Partially redundant enhancers cooperatively maintain Mammalian pomc expression above a critical functional threshold. PLoS Genet. 2015;11, e1004935.
Article
PubMed
PubMed Central
Google Scholar
Levine M. Transcriptional enhancers in animal development and evolution. Curr Biol. 2010;20:R754–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubinstein M, de Souza FS. Evolution of transcriptional enhancers and animal diversity. Philos Trans R Soc Lond B Biol Sci. 2013;368:20130017.
Article
PubMed
PubMed Central
Google Scholar
Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159:647–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng Q, Cai X, Tan MH, Schaffert S, Arnold CP, Gong X, et al. Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells. Biotechniques. 2014;57:115–24.
Article
CAS
PubMed
Google Scholar
Cheng Z, Ventura M, She X, Khaitovich P, Graves T, Osoegawa K, et al. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature. 2005;437:88–93.
Article
CAS
PubMed
Google Scholar
Vietri Rudan M, Barrington C, Henderson S, Ernst C, Odom DT, Tanay A, et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 2015;10:1297–309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Acemel RD, Maeso I, Gomez-Skarmeta JL. Topologically associated domains: a successful scaffold for the evolution of gene regulation in animals. Wiley Interdiscip Rev Dev Biol. 2017;6.
Maeso I, Acemel RD, Gomez-Skarmeta JL. Cis-regulatory landscapes in development and evolution. Curr Opin Genet Dev. 2017;43:17–22.
Article
CAS
PubMed
Google Scholar
Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20:110–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kostka D, Hubisz MJ, Siepel A, Pollard KS. The role of GC-biased gene conversion in shaping the fastest evolving regions of the human genome. Mol Biol Evol. 2012;29:1047–57.
Article
CAS
PubMed
Google Scholar
Katzman S, Kern AD, Pollard KS, Salama SR, Haussler D. GC-biased evolution near human accelerated regions. PLoS Genet. 2010;6, e1000960.
Article
PubMed
PubMed Central
Google Scholar
Sumiyama K, Saitou N. Loss-of-function mutation in a repressor module of human-specifically activated enhancer HACNS1. Mol Biol Evol. 2011;28:3005–7.
Article
CAS
PubMed
Google Scholar
Sikela JM. The jewels of our genome: the search for the genomic changes underlying the evolutionarily unique capacities of the human brain. PLoS Genet. 2006;2, e80.
Article
PubMed
PubMed Central
Google Scholar
Varki A, Altheide TK. Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Res. 2005;15:1746–58.
Article
CAS
PubMed
Google Scholar
Herculano-Houzel S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci U S A. 2012;109 Suppl 1:10661–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Preuss TM. Primate brain evolution in phylogenetic context. In: Kaas J, editor. Evolution of nervous systems. 4. Oxford, UK: Elsevier; 2007. p. 1–34.
Semendeferi K, Lu A, Schenker N, Damasio H. Humans and great apes share a large frontal cortex. Nat Neurosci. 2002;5:272–6.
Article
CAS
PubMed
Google Scholar
Gabi M, Neves K, Masseron C, Ribeiro PF, Ventura-Antunes L, Torres L, et al. No relative expansion of the number of prefrontal neurons in primate and human evolution. Proc Natl Acad Sci U S A. 2016;113:9617–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Semendeferi K, Teffer K, Buxhoeveden DP, Park MS, Bludau S, Amunts K, et al. Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb Cortex. 2011;21:1485–97.
Article
PubMed
Google Scholar
Bianchi S, Stimpson CD, Duka T, Larsen MD, Janssen WG, Collins Z, et al. Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans. Proc Natl Acad Sci U S A. 2013;110 Suppl 2:10395–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spocter MA, Hopkins WD, Barks SK, Bianchi S, Hehmeyer AE, Anderson SM, et al. Neuropil distribution in the cerebral cortex differs between humans and chimpanzees. J Comp Neurol. 2012;520:2917–29.
Article
PubMed
PubMed Central
Google Scholar
Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature. 2011;478:476–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cook EC, Nelson JK, Sorrentino V, Koenis D, Moeton M, Scheij S, et al. Identification of the ER-resident E3 ubiquitin ligase RNF145 as a novel LXR-regulated gene. PLoS One. 2017;12, e0172721.
Article
PubMed
PubMed Central
Google Scholar