Skip to main content
Fig. 2 | BMC Biology

Fig. 2

From: An economical and highly adaptable optogenetics system for individual and population-level manipulation of Caenorhabditis elegans

Fig. 2

Building the OptoArm only requires basic knowledge of electronics and thermal management. A The optimal electronic circuitry of the OptoArm. Inset: the variant of the circuitry used in this paper to test and validate the system. The color codes refer to the wires of the LED driver that is used in this paper. B The essential components required to build the electronic circuitry of the OptoArm: 1. Luxeon Rebel LED, 2. Thermal adhesives, 3. Heatsink, 4. Wire harness with potentiometer, 5. DC plug, 6. ON/OFF button, 7. LED driver, 8. lens with case, 9. Several lenses, 10. and 11. Lens holder. C The steps required to construct the OptoArm, detailed instructions per picture can be found in Table 3. STEP 1: connecting the solderless DC plug to the connecting wire harness. STEP 2: mounting the LED on a heatsink and soldering the connecting wire harness to the LED cathode and anode. STEP 3: Connecting the ON/OF switch to the LED driver and connecting the driver to the wire harness. Note, the pictures show a serial set-up, and not the recommend parallel wiring (see 2A, main). STEP 4: mounting the electronic circuitry to a standard flask clamp to finish the OptoArm. By placing the OptoArm in either a D fine-tuner or a E general lab standard, the system can be used for different applications. F The different thermal resistances () in the heat flow between the LED junction, temperature test point, and bottom of the LED assembly

Back to article page