Skip to main content
Fig. 5 | BMC Biology

Fig. 5

From: TBX3 is dynamically expressed in pancreatic organogenesis and fine-tunes regeneration

Fig. 5

Whole transcriptome analysis uncovers a potential role of Tbx3 to fine-tune fibroinflammatory stimuli. a Principal component analysis of n=3 mice per genotype (control littermates of Tbx3-KO (epi) and Tbx3fl/fl; Ptf1aCre/+ (Tbx3-KO (epi))) at 72 and 168h after induction of acute pancreatitis. b Differentially expressed genes (DEG) in Tbx3-KO (epi) mice at indicated timepoints. c Gene set enrichment analysis (GSEA) in Tbx3-KO (epi) of different hallmark (HM) gene sets and one acinar-specific upregulated gene set in response to NF-KB (Supplementary Table 1) [64] at 72h. d Volcano plot of the enriched IL-6-JAK-STAT3-Signaling in Tbx3-KO (epi) mice at 72h. e GSEA of immune cell signatures [65] in Tbx3-KO (epi) mice at 72h. f Immunohistochemistry staining for B220+ B cells at 72h after induction of acute pancreatitis . g Immunohistochemistry staining for MPO+ neutrophils at 72h after induction of acute pancreatitis. h Quantification of percentages of B220+ B cell area per field of view in n=7 control (littermates of Tbx3-KO (epi)) pancreata and n=6 Ptf1a-Cre-driven Tbx3-KO (epi) pancreata. i Quantification of MPO+ neutrophils per field of view in n=8 control (littermates of Tbx3-KO (epi)) pancreata and n=9 Ptf1a-Cre-driven Tbx3-KO (epi) pancreata. Graphs present individual data points and mean with SEM. Mann-Whitney test was performed to assess significance. *, p < 0.05. j Heatmap of log2 fold changes of Tbx genes at 72h in Tbx3-KO (epi) pancreata compared to control pancreata. k Heatmap of log2 fold changes of known interaction partners of Tbx3 at 72h in Tbx3-KO (epi) pancreata compared to control pancreata. l DNA footprint analysis of putative DNA binding sites in the promoter of Lef1 at −18bp from TSS. PWM-based score 0.82, p-value=0.0009. m Proposed mechanism for Tbx3-related fine-tuning of acute pancreatitis. *, adjusted p < 0.05. Scale bars represent 100 μm. MPO, myeloperoxidase.

Back to article page