Schofield R: The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978, 4: 7-25.
PubMed
CAS
Google Scholar
Kimble JE, White JG: On the control of germ cell development in Caenorhabditis elegans. Dev Biol. 1981, 81: 208-219. 10.1016/0012-1606(81)90284-0.
PubMed
CAS
Google Scholar
Crittenden SL, Leonhard KA, Byrd DT, Kimble J: Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Mol Biol Cell. 2006, 17: 3051-3061. 10.1091/mbc.E06-03-0170.
PubMed
CAS
PubMed Central
Google Scholar
Morgan DE, Crittenden SL, Kimble J: The C. elegans adult male germline: Stem cells and sexual dimorphism. Dev Biol. 2010, 346: 204-214. 10.1016/j.ydbio.2010.07.022.
PubMed
CAS
PubMed Central
Google Scholar
Cinquin O, Crittenden SL, Morgan DE, Kimble J: Progression from a stem cell-like state to early differentiation in the C. elegans germ line. Proc Natl Acad Sci USA. 2010, 107: 2048-2053. 10.1073/pnas.0912704107.
PubMed
CAS
PubMed Central
Google Scholar
Angelo G, Van Gilst M: Starvation protects germline stem cells and extends reproductive longevity in C. elegans. Science. 2009, 326: 954-958. 10.1126/science.1178343.
PubMed
CAS
Google Scholar
Seidel HS, Kimble J: The oogenic germline starvation response in C. elegans. PLoS ONE. 2011, 6: e28074-10.1371/journal.pone.0028074.
PubMed
CAS
PubMed Central
Google Scholar
Byrd DT, Kimble J: Scratching the niche that controls Caenorhabditis elegans germline stem cells. Semin Cell Dev Biol. 2009, 20: 1107-1113. 10.1016/j.semcdb.2009.09.005.
PubMed
CAS
PubMed Central
Google Scholar
Jeong J, Verheyden JM, Kimble J: Cyclin E and Cdk2 control GLD-1, the mitosis/meiosis decision, and germline stem cells in Caenorhabditis elegans. PLoS Genet. 2011, 7: e1001348-10.1371/journal.pgen.1001348.
PubMed
CAS
PubMed Central
Google Scholar
Kimble J, Crittenden SL: Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu Rev Cell Dev Biol. 2007, 23: 405-433. 10.1146/annurev.cellbio.23.090506.123326.
PubMed
CAS
Google Scholar
Kershner AM, Kimble J: Genome-wide analysis of mRNA targets for Caenorhabditis elegans FBF, a conserved stem cell regulator. Proc Natl Acad Sci USA. 2010, 107: 3936-3941. 10.1073/pnas.1000495107.
PubMed
CAS
PubMed Central
Google Scholar
Merritt C, Seydoux G: The Puf RNA-binding proteins FBF-1 and FBF-2 inhibit the expression of synaptonemal complex proteins in germline stem cells. Development. 2010, 137: 1787-1798. 10.1242/dev.050799.
PubMed
CAS
PubMed Central
Google Scholar
Austin J, Kimble J: glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell. 1987, 51: 589-599. 10.1016/0092-8674(87)90128-0.
PubMed
CAS
Google Scholar
Nadarajan S, Govindan JA, McGovern M, Hubbard EJA, Greenstein D: MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans. Development. 2009, 136: 2223-2234. 10.1242/dev.034603.
PubMed
CAS
PubMed Central
Google Scholar
Kimble J, Hirsh D: The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol. 1979, 70: 396-417. 10.1016/0012-1606(79)90035-6.
PubMed
CAS
Google Scholar
Kidd AR, Miskowski JA, Siegfried KR, Sawa H, Kimble J: A β-catenin identified by functional rather than sequence criteria and its role in Wnt/MAPK signaling. Cell. 2005, 121: 761-772. 10.1016/j.cell.2005.03.029.
PubMed
CAS
Google Scholar
Lam N, Chesney MA, Kimble J: Wnt signaling and CEH-22/tinman/Nkx2.5 specify a stem cell niche in C. elegans. Curr Biol. 2006, 16: 287-295. 10.1016/j.cub.2005.12.015.
PubMed
CAS
PubMed Central
Google Scholar
McGovern M, Voutev R, Maciejowski J, Corsi AK, Hubbard EJ: A 'latent niche' mechanism for tumor initiation. Proc Natl Acad Sci USA. 2009, 106: 11617-11622. 10.1073/pnas.0903768106.
PubMed
CAS
PubMed Central
Google Scholar
Hall DH, Winfrey VP, Blaeuer G, Hoffman LH, Furuta T, Rose KL, Hobert O, Greenstein D: Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: Relations between the germ line and soma. Dev Biol. 1999, 212: 101-123. 10.1006/dbio.1999.9356.
PubMed
CAS
Google Scholar
Morrison SJ, Spradling AC: Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008, 132: 598-611. 10.1016/j.cell.2008.01.038.
PubMed
CAS
PubMed Central
Google Scholar
Marshman E, Booth C, Potten CS: The intestinal epithelial stem cell. Bioessays. 2002, 24: 91-98. 10.1002/bies.10028.
PubMed
Google Scholar
van der Flier LG, van Gijn ME, Hatzis P, Kujala P, Haegebarth A, Stange DE, Begthel H, van den Born M, Guryev V, Oving I, van Es JH, Barker N, Peters PJ, van de Wetering M, Clevers H: Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell. 2009, 136: 903-912. 10.1016/j.cell.2009.01.031.
PubMed
CAS
Google Scholar
Cheng H, Leblond CP: Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat. 1974, 141: 461-479. 10.1002/aja.1001410403.
PubMed
CAS
Google Scholar
Cheng H, Leblond CP: Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat. 1974, 141: 537-561. 10.1002/aja.1001410407.
PubMed
CAS
Google Scholar
Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H: Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007, 449: 1003-1007. 10.1038/nature06196.
PubMed
CAS
Google Scholar
Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, Poppleton H, Zakharenko S, Ellison DW, Gilbertson RJ: Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature. 2009, 457: 603-607. 10.1038/nature07589.
PubMed
CAS
PubMed Central
Google Scholar
Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009, 459: 262-265. 10.1038/nature07935.
PubMed
CAS
Google Scholar
Bjerknes M, Cheng H: The stem-cell zone of the small intestinal epithelium. I. Evidence from Paneth cells in the adult mouse. Am J Anat. 1981, 160: 51-63. 10.1002/aja.1001600105.
PubMed
CAS
Google Scholar
Schofield R: The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978, 4: 7-25.
PubMed
CAS
Google Scholar
Fuchs E: The Tortoise and the Hair: slow-cycling cells in the stem cell race. Cell. 2009, 137: 811-819. 10.1016/j.cell.2009.05.002.
PubMed
CAS
PubMed Central
Google Scholar
Cotsarelis G, Sun TT, Lavker RM: Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell. 1990, 61: 1329-1337. 10.1016/0092-8674(90)90696-C.
PubMed
CAS
Google Scholar
Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y: Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001, 104: 233-245. 10.1016/S0092-8674(01)00208-2.
PubMed
CAS
Google Scholar
Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, Jackson IJ, Barrandon Y, Miyachi Y, Nishikawa S: Dominant role of the niche in melanocyte stem-cell fate determination. Nature. 2002, 416: 854-860. 10.1038/416854a.
PubMed
CAS
Google Scholar
Tanimura S, Tadokoro Y, Inomata K, Binh NT, Nishie W, Yamazaki S, Nakauchi H, Tanaka Y, McMillan JR, Sawamura D, Yancey K, Shimizu H, Nishimura EK: Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell. 2011, 8: 177-187. 10.1016/j.stem.2010.11.029.
PubMed
CAS
Google Scholar
Fujiwara H, Ferreira M, Donati G, Marciano DK, Linton JM, Sato Y, Hartner A, Sekiguchi K, Reichardt LF, Watt FM: The basement membrane of hair follicle stem cells Is a muscle cell niche. Cell. 2011, 144: 577-589. 10.1016/j.cell.2011.01.014.
PubMed
CAS
PubMed Central
Google Scholar
Gat U, DasGupta R, Degenstein L, Fuchs E: De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell. 1998, 95: 605-614. 10.1016/S0092-8674(00)81631-1.
PubMed
CAS
Google Scholar
Van Mater D, Kolligs FT, Dlugosz AA, Fearon ER: Transient activation of beta-catenin signaling in cutaneous keratinocytes is to trigger the active growth phase of the hair cycle in mice. Genes Dev. 2003, 17: 1219-1224. 10.1101/gad.1076103.
PubMed
CAS
PubMed Central
Google Scholar
Lo Celso C, Prowse DM, Watt FM: Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development. 2004, 131: 1787-1799. 10.1242/dev.01052.
PubMed
CAS
Google Scholar
Oshimori N, Fuchs E: Paracrine TGF-beta signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell. 2012, 10: 63-75. 10.1016/j.stem.2011.11.005.
PubMed
CAS
PubMed Central
Google Scholar
Kobielak K, Stokes N, de la Cruz J, Polak L, Fuchs E: Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci USA. 2007, 104: 10063-10068. 10.1073/pnas.0703004104.
PubMed
CAS
PubMed Central
Google Scholar
Andl T, Ahn K, Kairo A, Chu EY, Wine-Lee L, Reddy ST, Croft NJ, Cebra-Thomas JA, Metzger D, Chambon P, Lyons KM, Mishina Y, Seykora JT, Crenshaw EB, Millar SE: Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development. 2004, 131: 2257-2268. 10.1242/dev.01125.
PubMed
CAS
Google Scholar
Greco V, Chen T, Rendl M, Schober M, Pasolli HA, Stokes N, Dela Cruz-Racelis J, Fuchs E: A Two-Step Mechanism for Stem Cell Activation during Hair Regeneration. Cell Stem Cell. 2009, 4: 155-169. 10.1016/j.stem.2008.12.009.
PubMed
CAS
PubMed Central
Google Scholar
Rabbani P, Takeo M, Chou W, Myung P, Bosenberg M, Chin L, Taketo MM, Ito M: Coordinated activation of wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell. 2011, 145: 941-955. 10.1016/j.cell.2011.05.004.
PubMed
CAS
PubMed Central
Google Scholar
Zhang J, He XC, Tong WG, Johnson T, Wiedemann LM, Mishina Y, Feng JQ, Li L: Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion. Stem Cells. 2006, 24: 2826-2839. 10.1634/stemcells.2005-0544.
PubMed
CAS
Google Scholar
Zhang YV, Cheong J, Ciapurin N, McDermitt DJ, Tumbar T: Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell. 2009, 5: 267-278. 10.1016/j.stem.2009.06.004.
PubMed
CAS
PubMed Central
Google Scholar
Hsu YC, Pasolli HA, Fuchs E: Dynamics between stem cells, niche, and progeny in the hair follicle. Cell. 2011, 144: 92-105. 10.1016/j.cell.2010.11.049.
PubMed
CAS
PubMed Central
Google Scholar
Plikus MV, Mayer JA, de la Cruz D, Baker RE, Maini PK, Maxson R, Chuong CM: Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature. 2008, 451: 340-344. 10.1038/nature06457.
PubMed
CAS
PubMed Central
Google Scholar
Plikus MV, Baker RE, Chen CC, Fare C, de la Cruz D, Andl T, Maini PK, Millar SE, Widelitz R, Chuong CM: Self-organizing and stochastic behaviors during the regeneration of hair stem cells. Science. 2011, 332: 586-589. 10.1126/science.1201647.
PubMed
CAS
PubMed Central
Google Scholar
Festa E, Fretz J, Berry R, Schmidt B, Rodeheffer M, Horowitz M, Horsley V: Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell. 2011, 146: 761-771. 10.1016/j.cell.2011.07.019.
PubMed
CAS
PubMed Central
Google Scholar
Buckingham M, Montarras D: Skeletal muscle stem cells. Curr Opin Genet Dev. 2008, 4: 330-336.
Google Scholar
Mauro A: Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961, 9: 493-495. 10.1083/jcb.9.2.493.
PubMed
CAS
PubMed Central
Google Scholar
Wokke JH, Van den Oord CJ, Leppink GJ, Jennekens FG: Perisynaptic satellite cells in human external intercostal muscle: a quantitative and qualitative study. Anat Rec. 1989, 223: 174-180. 10.1002/ar.1092230209.
PubMed
CAS
Google Scholar
Mounier R, Chrétien F, Chazaud B: Blood vessels and the satellite cell niche. Curr Top Dev Biol. 2011, 96: 121-138.
PubMed
CAS
Google Scholar
Bjornson CR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Rando TA: Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells. 2011, 30: 232-242.
Google Scholar
Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizarro V, Tajbakhsh S: A critical requirement for Notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells. 2011, 30: 243-252.
Google Scholar
Conboy IM, Conboy MJ, Smythe GM, Rando TA: Notch mediated restoration of regenerative potential potential to aged muscle. Science. 2003, 302: 1575-1577. 10.1126/science.1087573.
PubMed
CAS
Google Scholar
Pallafacchina G, François S, Regnault B, Czarny B, Dive V, Cumano A, Montarras D, Buckingham M: An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res. 2010, 4: 77-91. 10.1016/j.scr.2009.10.003.
PubMed
CAS
Google Scholar
Langsdorf A, Do AT, Kusche-Gullberg M, Emerson CP, Ai X: Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration. Dev Biol. 2007, 311: 464-477. 10.1016/j.ydbio.2007.08.053.
PubMed
CAS
Google Scholar
Altman J: Autoradiographic study of degenerative and regenerative proliferation of neuroglia cells with tritiated thymidine. Exp Neurol. 1962, 5: 302-318. 10.1016/0014-4886(62)90040-7.
PubMed
CAS
Google Scholar
Altman J: Are new neurons formed in the brains of adult mammals?. Science. 1962, 135: 1127-1128. 10.1126/science.135.3509.1127.
PubMed
CAS
Google Scholar
Altman J, Das GD: Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965, 124: 319-335. 10.1002/cne.901240303.
PubMed
CAS
Google Scholar
Doetsch F: A niche for adult neural stem cells. Curr Opin Genet Dev. 2003, 13: 543-550. 10.1016/j.gde.2003.08.012.
PubMed
CAS
Google Scholar
Alvarez-Buylla A, Lim DA: For the long run: maintaining germinal niches in the adult brain. Neuron. 2004, 41: 683-686. 10.1016/S0896-6273(04)00111-4.
PubMed
CAS
Google Scholar
Moore KA, Lemischka IR: Stem cells and their niches. Science. 2006, 311: 1880-1885. 10.1126/science.1110542.
PubMed
CAS
Google Scholar
Riquelme PA, Drapeau E, Doetsch F: Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci. 2008, 363: 123-137. 10.1098/rstb.2006.2016.
PubMed
PubMed Central
Google Scholar
Ferrón SR, Charalambous M, Radford E, McEwen K, Wildner H, Hind E, Morante-Redolat JM, Laborda J, Guillemot F, Bauer SR, Fariñas I, Ferguson-Smith AC: Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature. 2011, 475: 381-385. 10.1038/nature10229.
PubMed
PubMed Central
Google Scholar
Gomez-Gaviro MV, Scott CE, Sesay AK, Matheu A, Booth S, Galichet C, Lovell-Badge R: Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. Proc Natl Acad Sci USA. 2012, 109: 1317-1322. 10.1073/pnas.1016199109.
PubMed
CAS
PubMed Central
Google Scholar
Ihrie RA, Alvarez-Buylla A: Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron. 2011, 70: 674-686. 10.1016/j.neuron.2011.05.004.
PubMed
CAS
PubMed Central
Google Scholar
Gokoffski KK, Kawauchi S, Wu HH, Santos R, Hollenbeck PLW, Lander AD, Calof AL: Feedback regulation of neurogenesis in the mammalian olfactory epithelium: new insights from genetics and systems biology. The Neurobiology of Olfaction. Edited by: Menini A. 2010, Boca Raton: CRC Press, 241-266.
Google Scholar
Kawauchi S, Beites CL, Crocker CE, Wu HH, Bonnin A, Murray R, Calof AL: Molecular signals regulating proliferation of stem and progenitor cells in mouse olfactory epithelium. Dev Neurosci. 2004, 26: 166-180. 10.1159/000082135.
PubMed
CAS
Google Scholar
Beites CL, Kawauchi S, Crocker CE, Calof AL: Identification and molecular regulation of neural stem cells in the olfactory epithelium. Exp Cell Res. 2005, 306: 309-316. 10.1016/j.yexcr.2005.03.027.
PubMed
CAS
Google Scholar
Mumm JS, Shou J, Calof AL: Colony-forming progenitors from mouse olfactory epithelium: evidence for feedback regulation of neuron production. Proc Natl Acad Sci USA. 1996, 93: 11167-11172. 10.1073/pnas.93.20.11167.
PubMed
CAS
PubMed Central
Google Scholar
Wu HH, Ivkovic S, Murray RC, Jaramillo S, Lyons KM, Johnson JE, Calof AL: Autoregulation of neurogenesis by GDF11. Neuron. 2003, 37: 197-207. 10.1016/S0896-6273(02)01172-8.
PubMed
CAS
Google Scholar
Lander AD, Gokoffski KK, Wan FY, Nie Q, Calof AL: Cell lineages and the logic of proliferative control. PLoS Biol. 2009, 7: e15-10.1371/journal.pbio.1000015.
PubMed
Google Scholar
Gokoffski KK, Wu HH, Beites CL, Kim J, Kim EJ, Matzuk MM, Johnson JE, Lander AD, Calof AL: Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate. Development. 2011, 138: 4131-4142. 10.1242/dev.065870.
PubMed
CAS
PubMed Central
Google Scholar
Lo WC, Chou CS, Gokoffski KK, Wan FY, Lander AD, Calof AL, Nie Q: Feedback regulation in multistage cell lineages. Math Biosci Eng. 2009, 6: 59-82.
PubMed
PubMed Central
Google Scholar
Wilson A, Trumpp A: Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006, 6: 93-106. 10.1038/nri1779.
PubMed
CAS
Google Scholar
Ehninger A, Trumpp A: The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med. 208: 421-428.
Trumpp A, Essers M, Wilson A: Awakening dormant haematopoietic stem cells. Nat Rev Immunol. 2010, 10: 201-209. 10.1038/nri2726.
PubMed
CAS
Google Scholar
Purton LE, Scadden DT: Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell. 2007, 1: 263-270. 10.1016/j.stem.2007.08.016.
PubMed
CAS
Google Scholar
Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lió P, Macdonald HR, Trumpp A: Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell. 2008, 135: 1118-1129. 10.1016/j.cell.2008.10.048.
PubMed
CAS
Google Scholar
Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, Trumpp A: IFNα activates dormant haematopoietic stem cells in vivo. Nature. 2009, 458: 904-908. 10.1038/nature07815.
PubMed
CAS
Google Scholar
Takizawa H, Regoes RR, Boddupalli CS, Bonhoeffer S, Manz MG: Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J Exp Med. 2011, 208: 273-284. 10.1084/jem.20101643.
PubMed
CAS
PubMed Central
Google Scholar
King KY, Goodell MA: Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat Rev Immunol. 11: 685-692.
Kiel MJ, Morrison SJ: Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol. 2008, 8: 290-301. 10.1038/nri2279.
PubMed
CAS
Google Scholar
Park D, Sykes DB, Scadden DT: The hematopoietic stem cell niche. Front Biosci. 17: 30-39.
Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T: The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010, 33: 387-399. 10.1016/j.immuni.2010.08.017.
PubMed
CAS
Google Scholar
Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma'ayan A, Enikolopov GN, Frenette PS: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010, 466: 829-834. 10.1038/nature09262.
PubMed
CAS
PubMed Central
Google Scholar
Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H: Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 147: 1146-1158.
Ding L, Saunders TL, Enikolopov G, Morrison SJ: Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 481: 457-462.
Nagasawa T, Omatsu Y, Sugiyama T: Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends Immunol. 32: 315-320.
Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T: Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004, 118: 149-161. 10.1016/j.cell.2004.07.004.
PubMed
CAS
Google Scholar
Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, Gomei Y, Iwasaki H, Matsuoka S, Miyamoto K, Miyazaki H, Takahashi T, Suda T: Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007, 1: 685-697. 10.1016/j.stem.2007.10.020.
PubMed
CAS
Google Scholar
Yamazaki S, Iwama A, Takayanagi S, Eto K, Ema H, Nakauchi H: TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood. 2009, 113: 1250-1256. 10.1182/blood-2008-04-146480.
PubMed
CAS
Google Scholar
Pantel K, Alix-Panabieres C, Riethdorf S: Cancer micrometastases. Nat Rev Clin Onc. 2009, 6: 339-351. 10.1038/nrclinonc.2009.44.
CAS
Google Scholar
Cabarcas SM, Mathews LA, Farrar WL: The cancer stem cell niche - there goes the neighborhood?. Int J Cancer. 2011, 129: 2315-2327. 10.1002/ijc.26312.
PubMed
CAS
Google Scholar
Joyce JA, Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009, 9: 239-252. 10.1038/nrc2618.
PubMed
CAS
PubMed Central
Google Scholar
Korkaya H, Liu S, Wicha MS: Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest. 2011, 121: 3804-3809. 10.1172/JCI57099.
PubMed
CAS
PubMed Central
Google Scholar
Takebe N, Harris PJ, Warren RQ, Ivy SP: Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Onc. 2011, 8: 97-106. 10.1038/nrclinonc.2010.196.
CAS
Google Scholar
Dreesen O, Brivanlou AH: Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 2007, 3: 7-17. 10.1007/s12015-007-0004-8.
PubMed
CAS
Google Scholar
Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, Richel DJ, Stassi G, Medema JP: Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA. 2008, 105: 13427-13432. 10.1073/pnas.0805706105.
PubMed
CAS
PubMed Central
Google Scholar
Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL, Weinberg RA: Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 2011, 145: 926-940. 10.1016/j.cell.2011.04.029.
PubMed
CAS
PubMed Central
Google Scholar
Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, Brooks M, Reinhardt F, Su Y, Polyak K, Arendt LM, Kuperwasser C, Bierie B, Weinberg RA: Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA. 2011, 108: 7950-7955. 10.1073/pnas.1102454108.
PubMed
CAS
PubMed Central
Google Scholar
Iliopoulos D, Hirsch HA, Wang G, Struhl K: Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA. 2011, 108: 1397-1402. 10.1073/pnas.1018898108.
PubMed
CAS
PubMed Central
Google Scholar
Wong CW, Lee A, Shientag L, Yu J, Dong Y, Kao G, Al-Mehdi AB, Bernhard EJ, Muschel RJ: Apoptosis: an early event in metastatic inefficiency. Cancer Res. 2001, 61: 333-338.
PubMed
CAS
Google Scholar
Cameron MD, Schmidt EE, Kerkvliet N, Nadkarni KV, Morris VL, Groom AC, Chambers AF, MacDonald IC: Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res. 2000, 60: 2541-2546.
PubMed
CAS
Google Scholar
Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005, 438: 820-827. 10.1038/nature04186.
PubMed
CAS
PubMed Central
Google Scholar
Psaila B, Lyden D: The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009, 9: 285-293. 10.1038/nrc2621.
PubMed
CAS
PubMed Central
Google Scholar
Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM, Pienta MJ, Song J, Wang J, Loberg RD, Krebsbach PH, Pienta KJ, Taichman RS: Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 2011, 121: 1298-1312. 10.1172/JCI43414.
PubMed
CAS
PubMed Central
Google Scholar
Ara T, Tokoyoda K, Sugiyama T, Egawa T, Kawabata K, Nagasawa T: Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity. 2003, 19: 257-267. 10.1016/S1074-7613(03)00201-2.
PubMed
CAS
Google Scholar
Sun YX, Schneider A, Jung Y, Wang J, Dai J, Wang J, Cook K, Osman NI, Koh-Paige AJ, Shim H, Pienta KJ, Keller ET, McCauley LK, Taichman RS: Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res. 2005, 20: 318-329.
PubMed
CAS
Google Scholar
Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, Foekens JA, Massague J: Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer cell. 2009, 16: 67-78. 10.1016/j.ccr.2009.05.017.
PubMed
CAS
PubMed Central
Google Scholar
Zlotnik A, Burkhardt AM, Homey B: Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol. 2011, 11: 597-606. 10.1038/nri3049.
PubMed
CAS
Google Scholar
Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA: Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005, 121: 335-348. 10.1016/j.cell.2005.02.034.
PubMed
CAS
Google Scholar
Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC: Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004, 10: 858-864. 10.1038/nm1075.
PubMed
CAS
Google Scholar
Hynes RO: The extracellular matrix: not just pretty fibrils. Science. 2009, 326: 1216-1219. 10.1126/science.1176009.
PubMed
CAS
PubMed Central
Google Scholar
Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E: Defining the epithelial stem cell niche in skin. Science. 2004, 303: 359-363. 10.1126/science.1092436.
PubMed
CAS
PubMed Central
Google Scholar
Garcion E, Halilagic A, Faissner A, ffrench-Constant C: Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development. 2004, 131: 3423-3432. 10.1242/dev.01202.
PubMed
CAS
Google Scholar
Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, Downey RJ, Manova-Todorova K, Brogi E, Massague J: Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med. 2011, 17: 867-874. 10.1038/nm.2379.
PubMed
CAS
PubMed Central
Google Scholar
O'Connell JT, Sugimoto H, Cooke VG, MacDonald BA, Mehta AI, LeBleu VS, Dewar R, Rocha RM, Brentani RR, Resnick MB, Neilson EG, Zeisberg M, Kalluri R: VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci USA. 2011, 108: 16002-16007. 10.1073/pnas.1109493108.
PubMed
PubMed Central
Google Scholar
Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J: Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012, 481: 85-89.
CAS
Google Scholar
Oskarsson T, Massague J: Extracellular matrix players in metastatic niches. EMBO J. 2011, 31: 254-256. 10.1038/emboj.2011.469.
PubMed
PubMed Central
Google Scholar