Handa H: The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res. 2003, 31: 5907-5916. 10.1093/nar/gkg795.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR: Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 2012, 10: e1001241-10.1371/journal.pbio.1001241.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mower JP, Sloan DB, Alverson AJ: Plant mitochondrial genome diversity: the genomics revolution. Plant Genome Diversity. Edited by: Wendel JF, Greilhuber J, Dolezel J, Leitch IJ. 2012, Vienna: Springer Vienna, 1: 123-144.
Chapter
Google Scholar
Chapdelaine Y, Bonen L: The wheat mitochondrial gene for subunit 1 of the NADH dehydrogenase complex: a trans-splicing model for the gene-in-pieces. Cell. 1991, 65: 465-472. 10.1016/0092-8674(91)90464-A.
Article
CAS
PubMed
Google Scholar
Adams KL, Qiu YL, Stoutemyer M, Palmer JD: Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc Natl Acad Sci USA. 2002, 99: 9905-9912. 10.1073/pnas.042694899.
Article
PubMed Central
CAS
PubMed
Google Scholar
Unseld M, Marienfeld JR, Brandt P, Brennicke A: The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet. 1997, 15: 57-61.
Article
CAS
PubMed
Google Scholar
Joyce PB, Gray MW: Chloroplast-like transfer RNA genes expressed in wheat mitochondria. Nucleic Acids Res. 1989, 17: 5461-5476. 10.1093/nar/17.14.5461.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kitazaki K, Kubo T, Kagami H, Matsumoto T, Fujita A, Matsuhira H, Matsunaga M, Mikami T: A horizontally transferred tRNACys gene in the sugar beet mitochondrial genome: evidence that the gene is present in diverse angiosperms and its transcript is aminoacylated. Plant J. 2011, 68: 262-272. 10.1111/j.1365-313X.2011.04684.x.
Article
CAS
PubMed
Google Scholar
Wolfe KH, Li WH, Sharp PM: Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA. 1987, 84: 9054-9058. 10.1073/pnas.84.24.9054.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD: Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol. 2007, 7: 135-10.1186/1471-2148-7-135.
Article
PubMed Central
PubMed
Google Scholar
Cho Y, Mower JP, Qiu YL, Palmer JD: Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci USA. 2004, 101: 17741-17746. 10.1073/pnas.0408302101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sloan DB, Barr CM, Olson MS, Keller SR, Taylor DR: Evolutionary rate variation at multiple levels of biological organization in plant mitochondrial DNA. Mol Biol Evol. 2008, 25: 243-246. 10.1093/molbev/msm266.
Article
CAS
PubMed
Google Scholar
Palmer JD, Herbon LA: Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol. 1988, 28: 87-97. 10.1007/BF02143500.
Article
CAS
PubMed
Google Scholar
Alverson AJ, Wei X, Rice DW, Stern DB, Barry K, Palmer JD: Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol. 2010, 27: 1436-1448. 10.1093/molbev/msq029.
Article
PubMed Central
CAS
PubMed
Google Scholar
Satoh M, Kubo T, Nishizawa S, Estiati A, Itchoda N, Mikami T: The cytoplasmic male-sterile type and normal type mitochondrial genomes of sugar beet share the same complement of genes of known function but differ in the content of expressed ORFs. Mol Genet Genomics. 2004, 272: 247-256. 10.1007/s00438-004-1058-9.
Article
CAS
PubMed
Google Scholar
Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M: The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics. 2005, 272: 603-615. 10.1007/s00438-004-1075-8.
Article
CAS
PubMed
Google Scholar
Perrotta G, Regina T, Quagliariello C, Ceci L: Conservation of the organization of the mitochondrial nad3 and rps12 genes in evolutionarily distant angiosperms. Mol Gen Genet. 1996, 251: 326-337.
CAS
PubMed
Google Scholar
Quiñones V, Zanlungo S, Moenne A, Gómez I, Holuigue L, Litvak S, Jordana X: The rpl5-rps14-cob gene arrangement in Solanum tuberosum: rps14 is a transcribed and unedited pseudogene. Plant Mol Biol. 1996, 31: 937-943. 10.1007/BF00019483.
Article
PubMed
Google Scholar
Takemura M, Oda K, Yamato K, Ohta E, Nakamura Y, Nozato N, Akashi K, Ohyama K: Gene clusters for ribosomal proteins in the mitochondrial genome of a liverwort, Marchantia polymorpha. Nucleic Acids Res. 1992, 20: 3199-3205. 10.1093/nar/20.12.3199.
Article
PubMed Central
CAS
PubMed
Google Scholar
Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T: Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA - a primitive form of plant mitochondrial genome. J Mol Biol. 1992, 223: 1-7. 10.1016/0022-2836(92)90708-R.
Article
CAS
PubMed
Google Scholar
Giegé P, Brennicke A: RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Natl Acad Sci USA. 1999, 96: 15324-15329. 10.1073/pnas.96.26.15324.
Article
PubMed Central
PubMed
Google Scholar
Covello PS, Gray MW: RNA editing in plant mitochondria. Nature. 1989, 341: 662-666. 10.1038/341662a0.
Article
CAS
PubMed
Google Scholar
Hiesel R, Wissinger B, Schuster W, Brennicke A: RNA editing in plant mitochondria. Science. 1989, 246: 1632-1634. 10.1126/science.2480644.
Article
CAS
PubMed
Google Scholar
Gualberto JM, Lamattina L, Bonnard G, Weil J-H, Grienenberger J-M: RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature. 1989, 341: 660-662. 10.1038/341660a0.
Article
CAS
PubMed
Google Scholar
Sloan DB, MacQueen AH, Alverson AJ, Palmer JD, Taylor DR: Extensive loss of RNA editing sites in rapidly evolving Silene mitochondrial genomes: selection vs. retroprocessing as the driving force. Genetics. 2010, 185: 1369-1380. 10.1534/genetics.110.118000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mower JP: Modeling sites of RNA editing as a fifth nucleotide state reveals progressive loss of edited sites from angiosperm mitochondria. Mol Biol Evol. 2008, 25: 52-61.
Article
CAS
PubMed
Google Scholar
Shields DC, Wolfe KH: Accelerated evolution of sites undergoing mRNA editing in plant mitochondria and chloroplasts. Mol Biol Evol. 1997, 14: 344-349. 10.1093/oxfordjournals.molbev.a025768.
Article
CAS
PubMed
Google Scholar
Chaw SM, Shih AC, Wang D, Wu YW, Liu SM, Chou TY: The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol Biol Evol. 2008, 25: 603-615. 10.1093/molbev/msn009.
Article
CAS
PubMed
Google Scholar
Salmans M, Chaw S-M, Lin C-P, Shih A, Wu Y-W, Mulligan R: Editing site analysis in a gymnosperm mitochondrial genome reveals similarities with angiosperm mitochondrial genomes. Curr Genet. 2010, 56: 439-446. 10.1007/s00294-010-0312-4.
Article
PubMed Central
CAS
PubMed
Google Scholar
Magallón S: Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. Syst Biol. 2010, 59: 384-399. 10.1093/sysbio/syq027.
Article
PubMed
Google Scholar
Smith SA, Beaulieu JM, Donoghue MJ: An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Natl Acad Sci USA. 2010, 107: 5897-5902. 10.1073/pnas.1001225107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grewe F, Viehoever P, Weisshaar B, Knoop V: A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucleic Acids Res. 2009, 37: 5093-5104. 10.1093/nar/gkp532.
Article
PubMed Central
CAS
PubMed
Google Scholar
Angiosperm Phylogeny Group: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc. 2009, 161: 105-121.
Article
Google Scholar
Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner MA, Sytsma KJ, Qiu Y-L, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS: Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot. 2011, 98: 704-730. 10.3732/ajb.1000404.
Article
PubMed
Google Scholar
Bendich AJ: Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis. J Mol Biol. 1996, 255: 564-588. 10.1006/jmbi.1996.0048.
Article
CAS
PubMed
Google Scholar
Sloan DB, Müller K, McCauley DE, Taylor DR, Štorchová H: Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. New Phytol. 2012, 196: 1228-1239. 10.1111/j.1469-8137.2012.04340.x.
Article
CAS
PubMed
Google Scholar
Lohse M, Drechsel O, Bock R: OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet. 2007, 52: 267-274. 10.1007/s00294-007-0161-y.
Article
CAS
PubMed
Google Scholar
Alverson AJ, Rice DW, Dickinson S, Barry K, Palmer JD: Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber. Plant Cell. 2011, 23: 2499-2513. 10.1105/tpc.111.087189.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sloan DB, Alverson AJ, Storchova H, Palmer JD, Taylor DR: Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. BMC Evol Biol. 2010, 10: 274-10.1186/1471-2148-10-274.
Article
PubMed Central
PubMed
Google Scholar
Alverson AJ, Zhuo S, Rice DW, Sloan DB, Palmer JD: The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. PLoS One. 2011, 6: e16404-10.1371/journal.pone.0016404.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sanchez-Puerta MV, Cho Y, Mower JP, Alverson AJ, Palmer JD: Frequent, phylogenetically local horizontal transfer of the cox1 group I intron in flowering plant mitochondria. Mol Biol Evol. 2008, 25: 1762-1777. 10.1093/molbev/msn129.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cho Y, Qiu YL, Kuhlman P, Palmer JD: Explosive invasion of plant mitochondria by a group I intron. Proc Natl Acad Sci USA. 1998, 95: 14244-14249. 10.1073/pnas.95.24.14244.
Article
PubMed Central
CAS
PubMed
Google Scholar
Qiu YL, Palmer JD: Many independent origins of trans splicing of a plant mitochondrial group II intron. J Mol Evol. 2004, 59: 80-89.
Article
CAS
PubMed
Google Scholar
Regina T, Picardi E, Lopez L, Pesole G, Quagliariello C: A novel additional group II intron distinguishes the mitochondrial rps3 gene in gymnosperms. J Mol Evol. 2005, 60: 196-206. 10.1007/s00239-004-0098-4.
Article
CAS
PubMed
Google Scholar
Regina TM, Quagliariello C: Lineage-specific group II intron gains and losses of the mitochondrial rps3 gene in gymnosperms. Plant Physiol Biochem. 2010, 48: 646-654. 10.1016/j.plaphy.2010.05.003.
Article
CAS
PubMed
Google Scholar
Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T: The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res. 2000, 28: 2571-2576. 10.1093/nar/28.13.2571.
Article
PubMed Central
CAS
PubMed
Google Scholar
Forner J, Weber B, Thuss S, Wildum S, Binder S: Mapping of mitochondrial mRNA termini in Arabidopsis thaliana: t-elements contribute to 5′ and 3′ end formation. Nucleic Acids Res. 2007, 35: 3676-3692. 10.1093/nar/gkm270.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sloan DB, Alverson AJ, Wu M, Palmer JD, Taylor DR: Recent acceleration of plastid sequence and structural evolution coincides with extreme mitochondrial divergence in the angiosperm genus Silene. Genome Biol Evol. 2012, 4: 294-306. 10.1093/gbe/evs006.
Article
PubMed Central
PubMed
Google Scholar
Nie Z-L, Wen J, Azuma H, Qiu Y-L, Sun H, Meng Y, Sun W-B, Zimmer EA: Phylogenetic and biogeographic complexity of Magnoliaceae in the Northern Hemisphere inferred from three nuclear data sets. Mol Phylogen Evol. 2008, 48: 1027-1040. 10.1016/j.ympev.2008.06.004.
Article
CAS
Google Scholar
Parks C, Wendel JF: Molecular divergence between Asian and North American species of Liriodendron (Magnoliaceae) with implications for interpretation of fossil floras. Am J Bot. 1990, 77: 1243-1256. 10.2307/2444585.
Article
CAS
Google Scholar
Drouin G, Daoud H, Xia J: Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogen Evol. 2008, 49: 827-831. 10.1016/j.ympev.2008.09.009.
Article
CAS
Google Scholar
Eyre-Walker A, Gaut BS: Correlated rates of synonymous site evolution across plant genomes. Mol Biol Evol. 1997, 14: 455-460. 10.1093/oxfordjournals.molbev.a025781.
Article
CAS
PubMed
Google Scholar
Guisinger MM, Kuehl JV, Boore JL, Jansen RK: Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions. Proc Natl Acad Sci USA. 2008, 105: 18424-18429. 10.1073/pnas.0806759105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang D, Wu Y-W, Shih AC, Wu C-S, Wang Y-N, Chaw S-M: Transfer of chloroplast genomic DNA to mitochondrial genome occurred at least 300 mya. Mol Biol Evol. 2007, 24: 2040-2048. 10.1093/molbev/msm133.
Article
CAS
PubMed
Google Scholar
Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K: The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics. 2002, 268: 434-445. 10.1007/s00438-002-0767-1.
Article
CAS
PubMed
Google Scholar
Kubo T, Mikami T: Organization and variation of angiosperm mitochondrial genome. Physiol Plant. 2007, 129: 6-13. 10.1111/j.1399-3054.2006.00768.x.
Article
CAS
Google Scholar
Clifton SW, Minx P, Fauron CM, Gibson M, Allen JO, Sun H, Thompson M, Barbazuk WB, Kanuganti S, Tayloe C, Meyer L, Wilson RK, Newton KJ: Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol. 2004, 136: 3486-3503. 10.1104/pp.104.044602.
Article
PubMed Central
CAS
PubMed
Google Scholar
Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG: Sequence and organization of the human mitochondrial genome. Nature. 1981, 290: 457-465. 10.1038/290457a0.
Article
CAS
PubMed
Google Scholar
Green RE, Malaspinas A-S, Krause J, Briggs AW, Johnson PL, Uhler C, Meyer M, Good JM, Maricic T, Stenzel U, Prüfer K, Siebauer M, Burbano HA, Ronan M, Rothberg JM, Egholm M, Rudan P, Brajković D, Kućan Z, Gusić I, Wikström M, Laakkonen L, Kelso J, Slatkin M, Pääbo S: A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell. 2008, 134: 416-426. 10.1016/j.cell.2008.06.021.
Article
PubMed Central
CAS
PubMed
Google Scholar
Krause J, Fu Q, Good JM, Viola B, Shunkov MV, Derevianko AP, Pääbo S: The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature. 2010, 464: 894-897. 10.1038/nature08976.
Article
CAS
PubMed
Google Scholar
Horai S, Hayasaka K, Kondo R, Tsugane K, Takahata N: Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci USA. 1995, 92: 532-536. 10.1073/pnas.92.2.532.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bell CD, Soltis DE, Soltis PS: The age and diversification of the angiosperms re-revisited. Am J Bot. 2010, 97: 1296-1303. 10.3732/ajb.0900346.
Article
PubMed
Google Scholar
Wikström N, Savolainen V, Chase MW: Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond, Ser B: Biol Sci. 2001, 268: 2211-2220. 10.1098/rspb.2001.1782.
Article
Google Scholar
Frumin SI, Friis EM: Liriodendroid seeds from the late cretaceous of Kazakhstan and North Carolina, USA. Rev Palaeobot Palynol. 1996, 94: 39-55. 10.1016/0034-6667(95)00136-0.
Article
Google Scholar
Friis EM, Crane PR, Pederson KR: Fossil History of magnoliid angiosperms. Evolution and Diversification of Land Plants. Edited by: Iwatsuki K, Raven PH. 1997, Tokyo: Springer, 121-156.
Chapter
Google Scholar
Smith SA, Donoghue MJ: Rates of molecular evolution are linked to life history in flowering plants. Science. 2008, 322: 86-89. 10.1126/science.1163197.
Article
CAS
PubMed
Google Scholar
Gaut B, Yang L, Takuno S, Eguiarte LE: The patterns and causes of variation in plant nucleotide substitution rates. Annu Rev Ecol Evol Syst. 2011, 42: 245-266. 10.1146/annurev-ecolsys-102710-145119.
Article
Google Scholar
Takenaka M, Verbitskiy D, Vandermerwe J, Zehrmann A, Brennicke A: The process of RNA editing in plant mitochondria. Mitochondrion. 2008, 8: 35-46. 10.1016/j.mito.2007.09.004.
Article
CAS
PubMed
Google Scholar
Lynch M, Koskella B, Schaack S: Mutation pressure and the evolution of organelle genomic architecture. Science. 2006, 311: 1727-1730. 10.1126/science.1118884.
Article
CAS
PubMed
Google Scholar
Gray MW, Covello PS: RNA editing in plant mitochondria and chloroplasts. FASEB J. 1993, 7: 64-71.
CAS
PubMed
Google Scholar
Gray MW, Lukeš J, Archibald JM, Keeling PJ, Doolittle WF: Irremediable complexity?. Science. 2010, 330: 920-921. 10.1126/science.1198594.
Article
CAS
PubMed
Google Scholar
Stoltzfus A: On the possibility of constructive neutral evolution. J Mol Evol. 1999, 49: 169-181. 10.1007/PL00006540.
Article
CAS
PubMed
Google Scholar
Mower JP: PREP-Mt: predictive RNA editor for plant mitochondrial genes. BMC Bioinforma. 2005, 6: 96-10.1186/1471-2105-6-96.
Article
Google Scholar
Liu Y, Wang B, Cui P, Li L, Xue J-Y, Yu J, Qiu Y-L: The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants. PLoS One. 2012, 7: e35168-10.1371/journal.pone.0035168.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jansen RK, Cai Z, Raubeson LA, Daniell H, de Pamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL: Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA. 2007, 104: 19369-19374. 10.1073/pnas.0709121104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sandbrink JM, Vellekoop P, Vanham R, Vanbrederode J: A method for evolutionary studies on RFLP of chloroplast DNA, applicable to a range of plant species. Biochem Syst Ecol. 1989, 17: 45-49. 10.1016/0305-1978(89)90041-0.
Article
CAS
Google Scholar
Sambrook J, Russell D: Molecular Cloning: A Laboratory Manual. 2001, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 3
Google Scholar
Huang X, Madan A: CAP3: A DNA sequence assembly program. Genome Res. 1999, 9: 868-877. 10.1101/gr.9.9.868.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goecks J, Nekrutenko A, Taylor J, Team TG: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010, 11: R86-10.1186/gb-2010-11-8-r86.
Article
PubMed Central
PubMed
Google Scholar
Bahloul M, Burkard G: An improved method for the isolation of total RNA from spruce tissues. Plant Mol Biol Rep. 1993, 11: 212-215. 10.1007/BF02669847.
Article
CAS
Google Scholar
Doyle JJ, Doyle JL: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987, 19: 11-15.
Google Scholar
Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD: Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA. 2004, 101: 17747-17752. 10.1073/pnas.0408336102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999, 41: 95-98.
CAS
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680. 10.1093/nar/22.22.4673.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pond SL, Frost SD, Muse SV: HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005, 21: 676-679. 10.1093/bioinformatics/bti079.
Article
CAS
PubMed
Google Scholar
Muse SV, Gaut BS: A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol. 1994, 11: 715-724.
CAS
PubMed
Google Scholar
Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007, 7: 214-10.1186/1471-2148-7-214.
Article
PubMed Central
PubMed
Google Scholar
Doyle JA, Hotton CL: Diversification of early angiosperm pollen in a cladistic context. Pollen and Spores: Patterns of Diversification. Edited by: Blackmore S, Barnes SH. 1991, Oxford, UK: Clarendon Press, 169-195.
Google Scholar
Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA: The age of the grasses and clusters of origins of C4 photosynthesis. Global Change Biol. 2008, 14: 2963-2977. 10.1111/j.1365-2486.2008.01688.x.
Article
Google Scholar
Csűös M: Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 2010, 26: 1910-1912. 10.1093/bioinformatics/btq315.
Article
Google Scholar