Kung Y, Ando N, Doukov TI, Blasiak LC, Bender G, Seravalli J, Ragsdale SW, Drennan CL: Visualizing molecular juggling within a B12-dependent methyltransferase complex. Nature. 2012, 484: 265-269. 10.1038/nature10916.
PubMed Central
CAS
PubMed
Google Scholar
Bandarian V, Pattridge KA, Lennon BW, Huddler DP, Matthews RG, Ludwig ML: Domain alternation switches B(12)-dependent methionine synthase to the activation conformation. Nat Struct Biol. 2002, 9: 53-56. 10.1038/nsb738.
CAS
PubMed
Google Scholar
Bandarian V, Ludwig ML, Matthews RG: Factors modulating conformational equilibria in large modular proteins: a case study with cobalamin-dependent methionine synthase. Proc Natl Acad Sci U S A. 2003, 100: 8156-8163. 10.1073/pnas.1133218100.
PubMed Central
CAS
PubMed
Google Scholar
Kuriyan J, Krishna TS, Wong L, Guenther B, Pahler A, Williams CH, Model P: Convergent evolution of similar function in two structurally divergent enzymes. Nature. 1991, 352: 172-174. 10.1038/352172a0.
CAS
PubMed
Google Scholar
Waksman G, Krishna TS, Williams CH, Kuriyan J: Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis. J Mol Biol. 1994, 236: 800-816. 10.1006/jmbi.1994.1190.
CAS
PubMed
Google Scholar
Lennon BW, Williams CH, Ludwig ML: Twists in catalysis: alternating conformations of Escherichia coli thioredoxin reductase. Science. 2000, 289: 1190-1194. 10.1126/science.289.5482.1190.
CAS
PubMed
Google Scholar
Gulick AM: Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem Biol. 2009, 4: 811-827. 10.1021/cb900156h.
PubMed Central
CAS
PubMed
Google Scholar
Olsen SK, Capili AD, Lu X, Tan DS, Lima CD: Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature. 2010, 463: 906-912. 10.1038/nature08765.
PubMed Central
CAS
PubMed
Google Scholar
Varshavsky A: The Early History of the Ubiquitin Field. Protein Sci. 2006, 15: 647-654. 10.1110/ps.052012306.
PubMed Central
CAS
PubMed
Google Scholar
Haglund K, Dikic I: Ubiquitylation and cell signaling. EMBO J. 2005, 24: 3353-3359. 10.1038/sj.emboj.7600808.
PubMed Central
CAS
PubMed
Google Scholar
Komander D: The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009, 37: 937-953. 10.1042/BST0370937.
CAS
PubMed
Google Scholar
Kulathu Y, Komander D: Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol. 2012, 13: 508-523. 10.1038/nrm3394.
CAS
PubMed
Google Scholar
van der Veen AG, Ploegh HL: Ubiquitin-like proteins. Annu Rev Biochem. 2012, 81: 323-357. 10.1146/annurev-biochem-093010-153308.
CAS
PubMed
Google Scholar
Hershko A, Ciechanover A: The ubiquitin system. Annu Rev Biochem. 1998, 67: 425-479. 10.1146/annurev.biochem.67.1.425.
CAS
PubMed
Google Scholar
Handley PM, Mueckler M, Siegel NR, Ciechanover A, Schwartz AL: Molecular cloning, sequence, and tissue distribution of the human ubiquitin-activating enzyme E1. Proc Natl Acad Sci U S A. 1991, 88: 258-262. 10.1073/pnas.88.1.258.
PubMed Central
CAS
PubMed
Google Scholar
Jin J, Li X, Gygi SP, Harper JW: Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature. 2007, 447: 1135-1138. 10.1038/nature05902.
CAS
PubMed
Google Scholar
Pelzer C, Kassner I, Matentzoglu K, Singh RK, Wollscheid H-P, Scheffner M, Schmidtke G, Groettrup M: UBE1L2, a novel E1 enzyme specific for ubiquitin. J Biol Chem. 2007, 282: 23010-23014. 10.1074/jbc.C700111200.
CAS
PubMed
Google Scholar
Chiu Y-H, Sun Q, Chen ZJ: E1-L2 activates both ubiquitin and FAT10. Mol Cell. 2007, 27: 1014-1023. 10.1016/j.molcel.2007.08.020.
CAS
PubMed
Google Scholar
Michelle C, Vourc'h P, Mignon L, Andres CR: What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor?. J Mol Evol. 2009, 68: 616-628. 10.1007/s00239-009-9225-6.
PubMed Central
CAS
PubMed
Google Scholar
Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S, Joazeiro CAP: Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One. 2008, 3: e1487-10.1371/journal.pone.0001487.
PubMed Central
PubMed
Google Scholar
Metzger MB, Hristova VA, Weissman AM: HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci. 2012, 125: 531-537. 10.1242/jcs.091777.
PubMed Central
CAS
PubMed
Google Scholar
Wenzel DMD, Klevit RER: Following Ariadne’s thread: a new perspective on RBR ubiquitin ligases. BMC Biol. 2012, 10: 24-24. 10.1186/1741-7007-10-24.
PubMed Central
CAS
PubMed
Google Scholar
Wenzel DM, Lissounov A, Brzovic PS, Klevit RE: UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature. 2011, 474: 105-108. 10.1038/nature09966.
PubMed Central
CAS
PubMed
Google Scholar
Eddins MJ, Carlile CM, Gomez KM, Pickart CM, Wolberger C: Mms2–Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat Struct Mol Biol. 2006, 13: 915-920. 10.1038/nsmb1148.
CAS
PubMed
Google Scholar
Reverter D, Lima CD: Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature. 2005, 435: 687-692. 10.1038/nature03588.
PubMed Central
CAS
PubMed
Google Scholar
Yunus AA, Lima CD: Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nat Struct Mol Biol. 2006, 13: 491-499. 10.1038/nsmb1104.
CAS
PubMed
Google Scholar
Zimmerman ES, Schulman BA, Zheng N: Structural assembly of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol. 2010, 20: 714-721. 10.1016/j.sbi.2010.08.010.
PubMed Central
CAS
PubMed
Google Scholar
Schulman BA: Twists and turns in ubiquitin-like protein conjugation cascades. Protein Sci. 2011, 20: 1941-1954. 10.1002/pro.750.
PubMed Central
CAS
PubMed
Google Scholar
Dou H, Buetow L, Hock A, Sibbet GJ, Vousden KH, Huang DT: Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl. Nat Struct Mol Biol. 2012, 19: 184-192. 10.1038/nsmb.2231.
CAS
PubMed
Google Scholar
Kobashigawa Y, Tomitaka A, Kumeta H, Noda NN, Yamaguchi M, Inagaki F: Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b. Proc Natl Acad Sci U S A. 2011, 108: 20579-20584. 10.1073/pnas.1110712108.
PubMed Central
CAS
PubMed
Google Scholar
Walden H, Podgorski MS, Schulman BA: Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature. 2003, 422: 330-334. 10.1038/nature01456.
CAS
PubMed
Google Scholar
Walden H, Podgorski MS, Huang DT, Miller DW, Howard RJ, Minor DL, Holton JM, Schulman BA: The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol Cell. 2003, 12: 1427-1437. 10.1016/S1097-2765(03)00452-0.
CAS
PubMed
Google Scholar
Huang DT, Miller DW, Mathew R, Cassell R, Holton JM, Roussel MF, Schulman BA: A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nat Struct Mol Biol. 2004, 11: 927-935. 10.1038/nsmb826.
PubMed Central
CAS
PubMed
Google Scholar
Huang DT, Paydar A, Zhuang M, Waddell MB, Holton JM, Schulman BA: Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8’s E1. Mol Cell. 2005, 17: 341-350. 10.1016/j.molcel.2004.12.020.
CAS
PubMed
Google Scholar
Huang DT, Hunt HW, Zhuang M, Ohi MD, Holton JM, Schulman BA: Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity. Nature. 2007, 445: 394-398. 10.1038/nature05490.
PubMed Central
CAS
PubMed
Google Scholar
Souphron J, Waddell MB, Paydar A, Tokgöz-Gromley Z, Roussel MF, Schulman BA: Structural dissection of a gating mechanism preventing misactivation of ubiquitin by NEDD8’s E1. Biochemistry. 2008, 47: 8961-8969. 10.1021/bi800604c.
PubMed Central
CAS
PubMed
Google Scholar
Lois LM, Lima CD: Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 2005, 24: 439-451. 10.1038/sj.emboj.7600552.
PubMed Central
CAS
PubMed
Google Scholar
Lee I, Schindelin H: Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell. 2008, 134: 268-278. 10.1016/j.cell.2008.05.046.
CAS
PubMed
Google Scholar
Schulman BA, Harper JW: Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol. 2009, 10: 319-331. 10.1038/nrm2673.
PubMed Central
CAS
PubMed
Google Scholar
Taherbhoy AM, Tait SW, Kaiser SE, Williams AH, Deng A, Nourse A, Hammel M, Kurinov I, Rock CO, Green DR, Schulman BA: Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol Cell. 2011, 44: 451-461. 10.1016/j.molcel.2011.08.034.
PubMed Central
CAS
PubMed
Google Scholar
Hong SB, Kim B-W, Lee K-E, Kim SW, Jeon H, Kim J, Song HK: Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat Struct Mol Biol. 2011, 18: 1323-1330. 10.1038/nsmb.2165.
CAS
PubMed
Google Scholar
Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K, Nakatogawa H, Ohsumi Y, Inagaki F: Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell. 2011, 44: 462-475. 10.1016/j.molcel.2011.08.035.
CAS
PubMed
Google Scholar
Kaiser SE, Mao K, Taherbhoy AM, Yu S, Olszewski JL, Duda DM, Kurinov I, Deng A, Fenn TD, Klionsky DJ, Schulman BA: Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol. 2012, 19: 1242-1249. 10.1038/nsmb.2415.
PubMed Central
CAS
PubMed
Google Scholar
Brownell JE, Sintchak MD, Gavin JM, Liao H, Bruzzese FJ, Bump NJ, Soucy TA, Milhollen MA, Yang X, Burkhardt AL, Ma J, Loke H-K, Lingaraj T, Wu D, Hamman KB, Spelman JJ, Cullis CA, Langston SP, Vyskocil S, Sells TB, Mallender WD, Visiers I, Li P, Claiborne CF, Rolfe M, Bolen JB, Dick LR: Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol Cell. 2010, 37: 102-111. 10.1016/j.molcel.2009.12.024.
CAS
PubMed
Google Scholar
Taylor SV, Kelleher NL, Kinsland C, Chiu HJ, Costello CA, Backstrom AD, McLafferty FW, Begley TP: Thiamin biosynthesis in Escherichia coli. Identification of ThiS thiocarboxylate as the immediate sulfur donor in the thiazole formation. J Biol Chem. 1998, 273: 16555-16560. 10.1074/jbc.273.26.16555.
CAS
PubMed
Google Scholar
Appleyard MV, Sloan J, Kana'n GJ, Heck IS, Kinghorn JR, Unkles SE: The Aspergillus nidulans cnxF gene and its involvement in molybdopterin biosynthesis. Molecular characterization and analysis of in vivo generated mutants. J Biol Chem. 1998, 273: 14869-14876. 10.1074/jbc.273.24.14869.
CAS
PubMed
Google Scholar
Wang C, Xi J, Begley TP, Nicholson LK: Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nat Struct Biol. 2001, 8: 47-51. 10.1038/83041.
PubMed
Google Scholar
Leimkühler S, Wuebbens MM, Rajagopalan KV: Characterization of Escherichia coli MoeB and its involvement in the activation of molybdopterin synthase for the biosynthesis of the molybdenum cofactor. J Biol Chem. 2001, 276: 34695-34701. 10.1074/jbc.M102787200.
PubMed
Google Scholar
Lake MW, Wuebbens MM, Rajagopalan KV, Schindelin H: Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature. 2001, 414: 325-329. 10.1038/35104586.
CAS
PubMed
Google Scholar
Duda DM, Walden H, Sfondouris J, Schulman BA: Structural analysis of Escherichia coli ThiF. J Mol Biol. 2005, 349: 774-786. 10.1016/j.jmb.2005.04.011.
CAS
PubMed
Google Scholar
Lehmann C, Begley TP, Ealick SE: Structure of the Escherichia coli ThiS-ThiF complex, a key component of the sulfur transfer system in thiamin biosynthesis. Biochemistry. 2006, 45: 11-19. 10.1021/bi051502y.
PubMed Central
CAS
PubMed
Google Scholar
Hochstrasser M: Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol. 2000, 2: E153-E157. 10.1038/35019643.
CAS
PubMed
Google Scholar
Bohnsack RN, Haas AL: Conservation in the mechanism of Nedd8 activation by the human AppBp1-Uba3 heterodimer. J Biol Chem. 2003, 278: 26823-26830. 10.1074/jbc.M303177200.
CAS
PubMed
Google Scholar
Whitby FG, Xia G, Pickart CM, Hill CP: Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes. J Biol Chem. 1998, 273: 34983-34991. 10.1074/jbc.273.52.34983.
CAS
PubMed
Google Scholar
Madden MM, Song W, Martell PG, Ren Y, Feng J, Lin Q: Substrate properties of ubiquitin carboxyl-terminally derived peptide probes for protein ubiquitination. Biochemistry. 2008, 47: 3636-3644. 10.1021/bi702078m.
CAS
PubMed
Google Scholar
Haas AL, Rose IA: The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis. J Biol Chem. 1982, 257: 10329-10337.
CAS
PubMed
Google Scholar
Haas AL, Warms JV, Hershko A, Rose IA: Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. J Biol Chem. 1982, 257: 2543-2548.
CAS
PubMed
Google Scholar
Pickart CM, Kasperek EM, Beal R, Kim A: Substrate properties of site-specific mutant ubiquitin protein (G76A) reveal unexpected mechanistic features of ubiquitin-activating enzyme (E1). J Biol Chem. 1994, 269: 7115-7123.
CAS
PubMed
Google Scholar
Durfee LA, Kelley ML, Huibregtse JM: The basis for selective E1-E2 interactions in the ISG15 conjugation system. J Biol Chem. 2008, 283: 23895-23902. 10.1074/jbc.M804069200.
PubMed Central
CAS
PubMed
Google Scholar
Wang J, Taherbhoy AM, Hunt HW, Seyedin SN, Miller DW, Miller DJ, Huang DT, Schulman BA: Crystal structure of UBA2(ufd)-Ubc9: insights into E1-E2 interactions in Sumo pathways. PLoS One. 2010, 5: e15805-10.1371/journal.pone.0015805.
PubMed Central
CAS
PubMed
Google Scholar
Tokgöz Z, Siepmann TJ, Streich F, Kumar B, Klein JM, Haas AL: E1-E2 interactions in ubiquitin and Nedd8 ligation pathways. J Biol Chem. 2012, 287: 311-321. 10.1074/jbc.M111.294975.
PubMed Central
PubMed
Google Scholar
Huang L, Kinnucan E, Wang G, Beaudenon S, Howley PM, Huibregtse JM, Pavletich NP: Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science. 1999, 286: 1321-1326. 10.1126/science.286.5443.1321.
CAS
PubMed
Google Scholar
Verdecia MA, Joazeiro CAP, Wells NJ, Ferrer J-L, Bowman ME, Hunter T, Noel JP: Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol Cell. 2003, 11: 249-259. 10.1016/S1097-2765(02)00774-8.
CAS
PubMed
Google Scholar
Kamadurai HB, Souphron J, Scott DC, Duda DM, Miller DJ, Stringer D, Piper RC, Schulman BA: Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex. Mol Cell. 2009, 36: 1095-1102. 10.1016/j.molcel.2009.11.010.
PubMed Central
CAS
PubMed
Google Scholar
Kim HC, Steffen AM, Oldham ML, Chen J, Huibregtse JM: Structure and function of a HECT domain ubiquitin-binding site. EMBO Rep. 2011, 12: 334-341. 10.1038/embor.2011.23.
PubMed Central
CAS
PubMed
Google Scholar
Ogunjimi AA, Briant DJ, Pece-Barbara N, Le Roy C, Di Guglielmo GM, Kavsak P, Rasmussen RK, Seet BT, Sicheri F, Wrana JL: Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell. 2005, 19: 297-308. 10.1016/j.molcel.2005.06.028.
CAS
PubMed
Google Scholar
Pandya RK, Partridge JR, Love KR, Schwartz TU, Ploegh HL: A structural element within the HUWE1 HECT domain modulates self-ubiquitination and substrate ubiquitination activities. J Biol Chem. 2010, 285: 5664-5673. 10.1074/jbc.M109.051805.
PubMed Central
CAS
PubMed
Google Scholar
Maspero E, Mari S, Valentini E, Musacchio A, Fish A, Pasqualato S, Polo S: Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep. 2011, 12: 342-349. 10.1038/embor.2011.21.
PubMed Central
CAS
PubMed
Google Scholar
Diao J, Zhang Y, Huibregtse JM, Zhou D, Chen J: Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nat Struct Mol Biol. 2008, 15: 65-70. 10.1038/nsmb1346.
CAS
PubMed
Google Scholar
Lin DY-W, Diao J, Zhou D, Chen J: Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157:H7. J Biol Chem. 2011, 286: 441-449. 10.1074/jbc.M110.167643.
PubMed Central
CAS
PubMed
Google Scholar
Lin DY-W, Diao J, Chen J: Crystal structures of two bacterial HECT-like E3 ligases in complex with a human E2 reveal atomic details of pathogen-host interactions. Proc Natl Acad Sci U S A. 2012, 109: 1925-1930. 10.1073/pnas.1115025109.
PubMed Central
CAS
PubMed
Google Scholar
Wang M, Pickart CM: Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. EMBO J. 2005, 24: 4324-4333. 10.1038/sj.emboj.7600895.
PubMed Central
CAS
PubMed
Google Scholar
Kim HC, Huibregtse JM: Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol Cell Biol. 2009, 29: 3307-3318. 10.1128/MCB.00240-09.
PubMed Central
CAS
PubMed
Google Scholar
Gallagher E, Gao M, Liu Y-C, Karin M: Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. Proc Natl Acad Sci U S A. 2006, 103: 1717-1722. 10.1073/pnas.0510664103.
PubMed Central
CAS
PubMed
Google Scholar
Wiesner S, Ogunjimi AA, Wang H-R, Rotin D, Sicheri F, Wrana JL, Forman-Kay JD: Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell. 2007, 130: 651-662. 10.1016/j.cell.2007.06.050.
CAS
PubMed
Google Scholar
Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, Shaw GS, Walden H: Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 2011, 30: 2853-2867. 10.1038/emboj.2011.204.
PubMed Central
CAS
PubMed
Google Scholar
Duda DM, Scott DC, Calabrese MF, Zimmerman ES, Zheng N, Schulman BA: Structural regulation of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol. 2011, 21: 257-264. 10.1016/j.sbi.2011.01.003.
PubMed Central
CAS
PubMed
Google Scholar
Saha A, Deshaies RJ: Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol Cell. 2008, 32: 21-31. 10.1016/j.molcel.2008.08.021.
PubMed Central
CAS
PubMed
Google Scholar
Yamoah K, Oashi T, Sarikas A, Gazdoiu S, Osman R, Pan Z-Q: Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1's C-terminal tail. Proc Natl Acad Sci U S A. 2008, 105: 12230-12235. 10.1073/pnas.0806155105.
PubMed Central
CAS
PubMed
Google Scholar
Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA: Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell. 2008, 134: 995-1006. 10.1016/j.cell.2008.07.022.
PubMed Central
CAS
PubMed
Google Scholar
Feltham R, Bettjeman B, Budhidarmo R, Mace PD, Shirley S, Condon SM, Chunduru SK, McKinlay MA, Vaux DL, Silke J, Day CL: Smac mimetics activate the E3 ligase activity of cIAP1 protein by promoting RING domain dimerization. J Biol Chem. 2011, 286: 17015-17028. 10.1074/jbc.M111.222919.
PubMed Central
CAS
PubMed
Google Scholar
Dueber EC, Schoeffler AJ, Lingel A, Elliott JM, Fedorova AV, Giannetti AM, Zobel K, Maurer B, Varfolomeev E, Wu P, Wallweber HJA, Hymowitz SG, Deshayes K, Vucic D, Fairbrother WJ: Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination. Science. 2011, 334: 376-380. 10.1126/science.1207862.
CAS
PubMed
Google Scholar
Yin Q, Lin S-C, Lamothe B, Lu M, Lo Y-C, Hura G, Zheng L, Rich RL, Campos AD, Myszka DG, Lenardo MJ, Darnay BG, Wu H: E2 interaction and dimerization in the crystal structure of TRAF6. Nat Struct Mol Biol. 2009, 16: 658-666. 10.1038/nsmb.1605.
PubMed Central
CAS
PubMed
Google Scholar
Swaminathan G, Tsygankov AY: The Cbl family proteins: ring leaders in regulation of cell signaling. J Cell Physiol. 2006, 209: 21-43. 10.1002/jcp.20694.
CAS
PubMed
Google Scholar
Ryan PE, Davies GC, Nau MM, Lipkowitz S: Regulating the regulator: negative regulation of Cbl ubiquitin ligases. Trends Biochem Sci. 2006, 31: 79-88. 10.1016/j.tibs.2005.12.004.
CAS
PubMed
Google Scholar
Meng W, Sawasdikosol S, Burakoff SJ, Eck MJ: Structure of the amino-terminal domain of Cbl complexed to its binding site on ZAP-70 kinase. Nature. 1999, 398: 84-90. 10.1038/18050.
CAS
PubMed
Google Scholar
Kuriyan J, Darnell JE: An SH2 domain in disguise. Nature. 1999, 398: 22-3-25.
Google Scholar
Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, Lipkowitz S, Yarden Y: Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell. 1999, 4: 1029-1040. 10.1016/S1097-2765(00)80231-2.
CAS
PubMed
Google Scholar
Rao N, Lupher ML, Ota S, Reedquist KA, Druker BJ, Band H: The linker phosphorylation site Tyr292 mediates the negative regulatory effect of Cbl on ZAP-70 in T cells. J Immunol. 2000, 164: 4616-4626.
CAS
PubMed
Google Scholar
Schmidt MHH, Dikic I: The Cbl interactome and its functions. Nat Rev Mol Cell Biol. 2005, 6: 907-918. 10.1038/nrm1762.
CAS
PubMed
Google Scholar
Zheng N, Wang P, Jeffrey PD, Pavletich NP: Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell. 2000, 102: 533-539. 10.1016/S0092-8674(00)00057-X.
CAS
PubMed
Google Scholar
Umebayashi K, Stenmark H, Yoshimori T: Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation. Mol Biol Cell. 2008, 19: 3454-3462. 10.1091/mbc.E07-10-0988.
PubMed Central
CAS
PubMed
Google Scholar
Huang A, de Jong RN, Wienk H, Winkler GS, Timmers HTM, Boelens R: E2-c-Cbl recognition is necessary but not sufficient for ubiquitination activity. J Mol Biol. 2009, 385: 507-519. 10.1016/j.jmb.2008.10.044.
CAS
PubMed
Google Scholar
Yokouchi M, Kondo T, Sanjay A, Houghton A, Yoshimura A, Komiya S, Zhang H, Baron R: Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J Biol Chem. 2001, 276: 35185-35193. 10.1074/jbc.M102219200.
CAS
PubMed
Google Scholar
Liu J, Kimura A, Baumann CA, Saltiel AR: APS facilitates c-Cbl tyrosine phosphorylation and GLUT4 translocation in response to insulin in 3T3-L1 adipocytes. Mol Cell Biol. 2002, 22: 3599-3609. 10.1128/MCB.22.11.3599-3609.2002.
PubMed Central
CAS
PubMed
Google Scholar
Kassenbrock CK, Anderson SM: Regulation of ubiquitin protein ligase activity in c-Cbl by phosphorylation-induced conformational change and constitutive activation by tyrosine to glutamate point mutations. J Biol Chem. 2004, 279: 28017-28027. 10.1074/jbc.M404114200.
CAS
PubMed
Google Scholar
Bartkiewicz M, Houghton A, Baron R: Leucine zipper-mediated homodimerization of the adaptor protein c-Cbl. A role in c-Cbl’s tyrosine phosphorylation and its association with epidermal growth factor receptor. J Biol Chem. 1999, 274: 30887-30895. 10.1074/jbc.274.43.30887.
CAS
PubMed
Google Scholar
Peschard P, Kozlov G, Lin T, Mirza IA, Berghuis AM, Lipkowitz S, Park M, Gehring K: Structural basis for ubiquitin-mediated dimerization and activation of the ubiquitin protein ligase Cbl-b. Mol Cell. 2007, 27: 474-485. 10.1016/j.molcel.2007.06.023.
CAS
PubMed
Google Scholar
Kozlov G, Peschard P, Zimmerman B, Lin T, Moldoveanu T, Mansur-Azzam N, Gehring K, Park M: Structural basis for UBA-mediated dimerization of c-Cbl ubiquitin ligase. J Biol Chem. 2007, 282: 27547-27555. 10.1074/jbc.M703333200.
CAS
PubMed
Google Scholar
Fischer ES, Scrima A, Böhm K, Matsumoto S, Lingaraju GM, Faty M, Yasuda T, Cavadini S, Wakasugi M, Hanaoka F, Iwai S, Gut H, Sugasawa K, Thomä NH: The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell. 2011, 147: 1024-1039. 10.1016/j.cell.2011.10.035.
CAS
PubMed
Google Scholar
Calabrese MF, Scott DC, Duda DM, Grace CRR, Kurinov I, Kriwacki RW, Schulman BA: A RING E3-substrate complex poised for ubiquitin-like protein transfer: structural insights into cullin-RING ligases. Nat Struct Mol Biol. 2011, 18: 947-949. 10.1038/nsmb.2086.
PubMed Central
CAS
PubMed
Google Scholar
Liu J, Nussinov R: Flexible cullins in cullin-RING E3 ligases allosterically regulate ubiquitination. J Biol Chem. 2011, 286: 40934-40942. 10.1074/jbc.M111.277236.
PubMed Central
CAS
PubMed
Google Scholar
Chao WCH, Kulkarni K, Zhang Z, Kong EH, Barford D: Structure of the mitotic checkpoint complex. Nature. 2012, 484: 208-213. 10.1038/nature10896.
CAS
PubMed
Google Scholar
Herzog F, Primorac I, Dube P, Lenart P, Sander B, Mechtler K, Stark H, Peters J-M: Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex. Science. 2009, 323: 1477-1481. 10.1126/science.1163300.
PubMed Central
CAS
PubMed
Google Scholar
Olsen SK, Lima CD: Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer. Mol Cell. 2013, 49: 884-896. 10.1016/j.molcel.2013.01.013.
PubMed Central
CAS
PubMed
Google Scholar