Finkelstein EA, Ruhm CJ, Kosa KM: Economic causes and consequences of obesity. Annu Rev Public Health. 2005, 26: 239-257. 10.1146/annurev.publhealth.26.021304.144628.
PubMed
Google Scholar
Hill JO, Wyatt HR, Reed GW, Peters JC: Obesity and the environment: where do we go from here?. Science. 2003, 299 (5608): 853-855. 10.1126/science.1079857.
CAS
PubMed
Google Scholar
Berthoud HR: Neural control of appetite: cross-talk between homeostatic and non-homeostatic systems. Appetite. 2004, 43 (3): 315-317. 10.1016/j.appet.2004.04.009.
PubMed
Google Scholar
Berridge KC: Modulation of taste affect by hunger, caloric satiety, and sensory-specific satiety in the rat. Appetite. 1991, 16 (2): 103-120. 10.1016/0195-6663(91)90036-R.
CAS
PubMed
Google Scholar
Cornell CE, Rodin J, Weingarten H: Stimulus-induced eating when satiated. Physiol Behav. 1989, 45 (4): 695-704. 10.1016/0031-9384(89)90281-3.
CAS
PubMed
Google Scholar
Fedoroff IC, Polivy J, Herman CP: The effect of pre-exposure to food cues on the eating behavior of restrained and unrestrained eaters. Appetite. 1997, 28 (1): 33-47. 10.1006/appe.1996.0057.
CAS
PubMed
Google Scholar
Gibson EL, Desmond E: Chocolate craving and hunger state: implications for the acquisition and expression of appetite and food choice. Appetite. 1999, 32 (2): 219-240. 10.1006/appe.1998.0207.
CAS
PubMed
Google Scholar
Jansen A, van den Hout M: On being led into temptation: "counterregulation" of dieters after smelling a "preload". Addict Behav. 1991, 16 (5): 247-253. 10.1016/0306-4603(91)90017-C.
CAS
PubMed
Google Scholar
Rogers PJ, Hill AJ: Breakdown of dietary restraint following mere exposure to food stimuli: interrelationships between restraint, hunger, salivation, and food intake. Addict Behav. 1989, 14 (4): 387-397. 10.1016/0306-4603(89)90026-9.
CAS
PubMed
Google Scholar
Hinton EC, Parkinson JA, Holland AJ, Arana FS, Roberts AC, Owen AM: Neural contributions to the motivational control of appetite in humans. Eur J Neurosci. 2004, 20 (5): 1411-1418. 10.1111/j.1460-9568.2004.03589.x.
PubMed
Google Scholar
LaBar KS, Gitelman DR, Parrish TB, Kim YH, Nobre AC, Mesulam MM: Hunger selectively modulates corticolimbic activation to food stimuli in humans. Behav Neurosci. 2001, 115 (2): 493-500. 10.1037/0735-7044.115.2.493.
CAS
PubMed
Google Scholar
Simmons WK, Martin A, Barsalou LW: Pictures of appetizing foods activate gustatory cortices for taste and reward. Cereb Cortex. 2005, 15 (10): 1602-1608. 10.1093/cercor/bhi038.
PubMed
Google Scholar
Tuomisto T, Hetherington MM, Morris MF, Tuomisto MT, Turjanmaa V, Lappalainen R: Psychological and physiological characteristics of sweet food "addiction". Int J Eat Disord. 1999, 25 (2): 169-175. 10.1002/(SICI)1098-108X(199903)25:2<169::AID-EAT6>3.0.CO;2-B.
CAS
PubMed
Google Scholar
Arana FS, Parkinson JA, Hinton E, Holland AJ, Owen AM, Roberts AC: Dissociable contributions of the human amygdala and orbitofrontal cortex to incentive motivation and goal selection. J Neurosci. 2003, 23 (29): 9632-9638.
CAS
PubMed
Google Scholar
Pelchat ML, Johnson A, Chan R, Valdez J, Ragland JD: Images of desire: food-craving activation during fMRI. Neuroimage. 2004, 23 (4): 1486-1493. 10.1016/j.neuroimage.2004.08.023.
PubMed
Google Scholar
Gordon CM, Dougherty DD, Rauch SL, Emans SJ, Grace E, Lamm R, Alpert NM, Majzoub JA, Fischman AJ: Neuroanatomy of human appetitive function: A positron emission tomography investigation. Int J Eat Disord. 2000, 27 (2): 163-171. 10.1002/(SICI)1098-108X(200003)27:2<163::AID-EAT4>3.0.CO;2-Y.
CAS
PubMed
Google Scholar
Killgore WD, Young AD, Femia LA, Bogorodzki P, Rogowska J, Yurgelun-Todd DA: Cortical and limbic activation during viewing of high-versus low-calorie foods. Neuroimage. 2003, 19 (4): 1381-1394. 10.1016/S1053-8119(03)00191-5.
PubMed
Google Scholar
Meyer C, Waller G: Subliminal activation of abandonment- and eating-related schemata: relationship with eating disordered attitudes in a nonclinical population. Int J Eat Disord. 2000, 27 (3): 328-334. 10.1002/(SICI)1098-108X(200004)27:3<328::AID-EAT10>3.0.CO;2-U.
CAS
PubMed
Google Scholar
Mitchell SL, Epstein LH: Changes in taste and satiety in dietary-restrained women following stress. Physiol Behav. 1996, 60 (2): 495-499. 10.1016/S0031-9384(96)80024-2.
CAS
PubMed
Google Scholar
Pecina S, Schulkin J, Berridge KC: Nucleus accumbens CRF increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress?. BMC Biol. 2006, 4 (1): 8-10.1186/1741-7007-4-8.
PubMed Central
PubMed
Google Scholar
Roemmich JN, Wright SM, Epstein LH: Dietary restraint and stress-induced snacking in youth. Obes Res. 2002, 10 (11): 1120-1126.
PubMed
Google Scholar
Ango F, Prezeau L, Muller T, Tu JC, Xiao B, Worley PF, Pin JP, Bockaert J, Fagni L: Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature. 2001, 411 (6840): 962-965. 10.1038/35082096.
CAS
PubMed
Google Scholar
Roche KW, Tu JC, Petralia RS, Xiao B, Wenthold RJ, Worley PF: Homer 1b regulates the trafficking of group I metabotropic glutamate receptors. J Biol Chem. 1999, 274 (36): 25953-25957. 10.1074/jbc.274.36.25953.
CAS
PubMed
Google Scholar
Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DJ, Worley PF: Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron. 1998, 21 (4): 717-726. 10.1016/S0896-6273(00)80589-9.
CAS
PubMed
Google Scholar
Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, et al: Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell. 2003, 114 (6): 777-789. 10.1016/S0092-8674(03)00716-5.
CAS
PubMed
Google Scholar
Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N, Kuhl D, Huganir RL, Worley PF: Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron. 2006, 52 (3): 445-459. 10.1016/j.neuron.2006.08.033.
PubMed Central
CAS
PubMed
Google Scholar
Plath N, Ohana O, Dammermann B, Errington ML, Schmitz D, Gross C, Mao X, Engelsberg A, Mahlke C, Welzl H, et al: Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron. 2006, 52 (3): 437-444. 10.1016/j.neuron.2006.08.024.
CAS
PubMed
Google Scholar
Rial Verde EM, Lee-Osbourne J, Worley PF, Malinow R, Cline HT: Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron. 2006, 52 (3): 461-474. 10.1016/j.neuron.2006.09.031.
PubMed Central
PubMed
Google Scholar
Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, Huganir RL, Worley PF: Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron. 2006, 52 (3): 475-484. 10.1016/j.neuron.2006.08.034.
PubMed Central
CAS
PubMed
Google Scholar
Anggadiredja K, Sakimura K, Hiranita T, Yamamoto T: Naltrexone attenuates cue- but not drug-induced methamphetamine seeking: a possible mechanism for the dissociation of primary and secondary reward. Brain Res. 2004, 1021 (2): 272-276. 10.1016/j.brainres.2004.06.051.
CAS
PubMed
Google Scholar
Bakshi VP, Kelley AE: Feeding induced by opioid stimulation of the ventral striatum: role of opiate receptor subtypes. J Pharmacol Exp Ther. 1993, 265 (3): 1253-1260.
CAS
PubMed
Google Scholar
Ciccocioppo R, Martin-Fardon R, Weiss F: Effect of selective blockade of mu(1) or delta opioid receptors on reinstatement of alcohol-seeking behavior by drug-associated stimuli in rats. Neuropsychopharmacology. 2002, 27 (3): 391-399. 10.1016/S0893-133X(02)00302-0.
CAS
PubMed
Google Scholar
Kelley AE, Bakshi VP, Fleming S, Holahan MR: A pharmacological analysis of the substrates underlying conditioned feeding induced by repeated opioid stimulation of the nucleus accumbens. Neuropsychopharmacology. 2000, 23 (4): 455-467. 10.1016/S0893-133X(00)00117-2.
CAS
PubMed
Google Scholar
Liu X, Weiss F: Additive effect of stress and drug cues on reinstatement of ethanol seeking: exacerbation by history of dependence and role of concurrent activation of corticotropin-releasing factor and opioid mechanisms. J Neurosci. 2002, 22 (18): 7856-7861.
CAS
PubMed
Google Scholar
Zhang M, Balmadrid C, Kelley AE: Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat. Behav Neurosci. 2003, 117 (2): 202-211. 10.1037/0735-7044.117.2.202.
CAS
PubMed
Google Scholar
Zhang M, Gosnell BA, Kelley AE: Intake of high-fat food is selectively enhanced by mu opioid receptor stimulation within the nucleus accumbens. J Pharmacol Exp Ther. 1998, 285 (2): 908-914.
CAS
PubMed
Google Scholar
Zhang M, Kelley AE: Opiate agonists microinjected into the nucleus accumbens enhance sucrose drinking in rats. Psychopharmacology (Berl). 1997, 132 (4): 350-360. 10.1007/s002130050355.
CAS
Google Scholar
Zhang M, Kelley AE: Enhanced intake of high-fat food following striatal mu-opioid stimulation: microinjection mapping and fos expression. Neuroscience. 2000, 99 (2): 267-277. 10.1016/S0306-4522(00)00198-6.
CAS
PubMed
Google Scholar
Zhang M, Kelley AE: Intake of saccharin, salt, and ethanol solutions is increased by infusion of a mu opioid agonist into the nucleus accumbens. Psychopharmacology (Berl). 2002, 159 (4): 415-423. 10.1007/s00213-001-0932-y.
CAS
Google Scholar
Salin P, Kachidian P: Thalamo-striatal deafferentation affects preproenkephalin but not preprotachykinin gene expression in the rat striatum. Brain Res Mol Brain Res. 1998, 57 (2): 257-265. 10.1016/S0169-328X(98)00098-9.
CAS
PubMed
Google Scholar
Uhl GR, Navia B, Douglas J: Differential expression of preproenkephalin and preprodynorphin mRNAs in striatal neurons: high levels of preproenkephalin expression depend on cerebral cortical afferents. J Neurosci. 1988, 8 (12): 4755-4764.
CAS
PubMed
Google Scholar
Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA: Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci. 2000, 20 (11): 3993-4001.
CAS
PubMed
Google Scholar
Malkani S, Wallace KJ, Donley MP, Rosen JB: An egr-1 (zif268) antisense oligodeoxynucleotide infused into the amygdala disrupts fear conditioning. Learn Mem. 2004, 11 (5): 617-624. 10.1101/lm.73104.
PubMed Central
PubMed
Google Scholar
Van Keuren-Jensen K, Cline HT: Visual experience regulates metabotropic glutamate receptor-mediated plasticity of AMPA receptor synaptic transmission by homer1a induction. J Neurosci. 2006, 26 (29): 7575-7580. 10.1523/JNEUROSCI.5083-05.2006.
CAS
PubMed
Google Scholar
Yasoshima Y, Sako N, Senba E, Yamamoto T: Acute suppression, but not chronic genetic deficiency, of c-fos gene expression impairs long-term memory in aversive taste learning. Proc Natl Acad Sci USA. 2006
Google Scholar
Forman BM, Umesono K, Chen J, Evans RM: Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell. 1995, 81 (4): 541-550. 10.1016/0092-8674(95)90075-6.
CAS
PubMed
Google Scholar
Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK: Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell. 2004, 116 (4): 527-540. 10.1016/S0092-8674(04)00162-X.
CAS
PubMed
Google Scholar
Vanderschuren LJ, Kalivas PW: Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl). 2000, 151 (2–3): 99-120. 10.1007/s002130000493.
CAS
Google Scholar
Schiltz CA, Kelley AE, Landry CF: Acute Stress and Nicotine Cues Interact to Unveil Locomotor Arousal and Activity-Dependent Gene Expression in the Prefrontal Cortex. Biol Psychiatry. 2007, 61 (1): 127-135. 10.1016/j.biopsych.2006.03.002.
PubMed Central
CAS
PubMed
Google Scholar
Schroeder BE, Binzak JM, Kelley AE: A common profile of prefrontal cortical activation following exposure to nicotine- or chocolate-associated contextual cues. Neuroscience. 2001, 105 (3): 535-545. 10.1016/S0306-4522(01)00221-4.
CAS
PubMed
Google Scholar
Schroeder BE, Schiltz CA, Kelley AE: Neural activation profile elicited by cues associated with the anxiogenic drug yohimbine differs from that observed for reward-paired cues. Neuropsychopharmacology. 2003, 28 (1): 14-21. 10.1038/sj.npp.1300007.
CAS
PubMed
Google Scholar
Kiss A, Jezova D, Aguilera G: Activity of the hypothalamic pituitary adrenal axis and sympathoadrenal system during food and water deprivation in the rat. Brain Res. 1994, 663 (1): 84-92. 10.1016/0006-8993(94)90465-0.
CAS
PubMed
Google Scholar
DeVries AC, Taymans SE, Sundstrom JM, Pert A: Conditioned release of corticosterone by contextual stimuli associated with cocaine is mediated by corticotropin-releasing factor. Brain Res. 1998, 786 (1–2): 39-46. 10.1016/S0006-8993(97)01328-0.
CAS
PubMed
Google Scholar
Schiltz CA, Kelley AE, Landry CF: Contextual cues associated with nicotine administration increase arc mRNA expression in corticolimbic areas of the rat brain. Eur J Neurosci. 2005, 21 (6): 1703-1711.
PubMed Central
PubMed
Google Scholar
Valdes JL, Farias P, Ocampo-Garces A, Cortes N, Seron-Ferre M, Torrealba F: Arousal and differential Fos expression in histaminergic neurons of the ascending arousal system during a feeding-related motivated behaviour. Eur J Neurosci. 2005, 21 (7): 1931-1942. 10.1111/j.1460-9568.2005.04013.x.
CAS
PubMed
Google Scholar
Valdes JL, Maldonado P, Recabarren M, Fuentes R, Torrealba F: The infralimbic cortical area commands the behavioral and vegetative arousal during appetitive behavior in the rat. Eur J Neurosci. 2006, 23 (5): 1352-1364. 10.1111/j.1460-9568.2006.04659.x.
PubMed
Google Scholar
Petrovich GD, Ross CA, Gallagher M, Holland PC: Learned contextual cue potentiates eating in rats. Physiol Behav. 2006
Google Scholar
Petrovich GD, Holland PC, Gallagher M: Amygdalar and prefrontal pathways to the lateral hypothalamus are activated by a learned cue that stimulates eating. J Neurosci. 2005, 25 (36): 8295-8302. 10.1523/JNEUROSCI.2480-05.2005.
CAS
PubMed
Google Scholar
Petrovich GD, Gallagher M: Amygdala subsystems and control of feeding behavior by learned cues. Ann N Y Acad Sci. 2003, 985: 251-262.
PubMed
Google Scholar
Petrovich GD, Setlow B, Holland PC, Gallagher M: Amygdalo-hypothalamic circuit allows learned cues to override satiety and promote eating. J Neurosci. 2002, 22 (19): 8748-8753.
CAS
PubMed
Google Scholar
Holland PC, Petrovich GD, Gallagher M: The effects of amygdala lesions on conditioned stimulus-potentiated eating in rats. Physiol Behav. 2002, 76 (1): 117-129. 10.1016/S0031-9384(02)00688-1.
CAS
PubMed
Google Scholar
Weingarten HP: Conditioned cues elicit feeding in sated rats: a role for learning in meal initiation. Science. 1983, 220 (4595): 431-433. 10.1126/science.6836286.
CAS
PubMed
Google Scholar
Zamble E: Classical conditioning of excitement anticipatory to food reward. J Comp Physiol Psychol. 1967, 63 (3): 526-529. 10.1037/h0024626.
CAS
PubMed
Google Scholar
Pecoraro N, Dallman MF: c-Fos after incentive shifts: expectancy, incredulity, and recovery. Behav Neurosci. 2005, 119 (2): 366-387. 10.1037/0735-7044.119.2.366.
PubMed
Google Scholar
Pickens CL, Saddoris MP, Setlow B, Gallagher M, Holland PC, Schoenbaum G: Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. J Neurosci. 2003, 23 (35): 11078-11084.
CAS
PubMed
Google Scholar
Saddoris MP, Gallagher M, Schoenbaum G: Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex. Neuron. 2005, 46 (2): 321-331. 10.1016/j.neuron.2005.02.018.
CAS
PubMed
Google Scholar
Schoenbaum G, Setlow B, Nugent SL, Saddoris MP, Gallagher M: Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn Mem. 2003, 10 (2): 129-140. 10.1101/lm.55203.
PubMed Central
PubMed
Google Scholar
Schoenbaum G, Setlow B, Saddoris MP, Gallagher M: Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron. 2003, 39 (5): 855-867. 10.1016/S0896-6273(03)00474-4.
CAS
PubMed
Google Scholar
Shuler MG, Bear MF: Reward timing in the primary visual cortex. Science. 2006, 311 (5767): 1606-1609. 10.1126/science.1123513.
CAS
PubMed
Google Scholar
Ito R, Everitt BJ, Robbins TW: The hippocampus and appetitive Pavlovian conditioning: effects of excitotoxic hippocampal lesions on conditioned locomotor activity and autoshaping. Hippocampus. 2005, 15 (6): 713-721. 10.1002/hipo.20094.
PubMed
Google Scholar
Han JS, Gallagher M, Holland P: Hippocampal lesions disrupt decrements but not increments in conditioned stimulus processing. J Neurosci. 1995, 15 (11): 7323-7329.
CAS
PubMed
Google Scholar
Holland PC, Fox GD: Effects of hippocampal lesions in overshadowing and blocking procedures. Behav Neurosci. 2003, 117 (3): 650-656. 10.1037/0735-7044.117.3.650.
PubMed
Google Scholar
Radulovic J, Kammermeier J, Spiess J: Relationship between fos production and classical fear conditioning: effects of novelty, latent inhibition, and unconditioned stimulus preexposure. J Neurosci. 1998, 18 (18): 7452-7461.
CAS
PubMed
Google Scholar
McIntosh AR, Gonzalez-Lima F: Network interactions among limbic cortices, basal forebrain, and cerebellum differentiate a tone conditioned as a Pavlovian excitor or inhibitor: fluorodeoxyglucose mapping and covariance structural modeling. J Neurophysiol. 1994, 72 (4): 1717-1733.
CAS
PubMed
Google Scholar
Coutureau E, Blundell PJ, Killcross S: Basolateral amygdala lesions disrupt latent inhibitionin rats. Brain Res Bull. 2001, 56 (1): 49-53. 10.1016/S0361-9230(01)00592-5.
CAS
PubMed
Google Scholar
Mello LE, Tan AM, Finch DM: GABAergic synaptic transmission in projections from the basal forebrain and hippocampal formation to the amygdala: an in vivo iontophoretic study. Brain Res. 1992, 587 (1): 41-48. 10.1016/0006-8993(92)91426-F.
CAS
PubMed
Google Scholar
Mello LE, Tan AM, Finch DM: Convergence of projections from the rat hippocampal formation, medial geniculate and basal forebrain onto single amygdaloid neurons: an in vivo extra- and intracellular electrophysiological study. Brain Res. 1992, 587 (1): 24-40. 10.1016/0006-8993(92)91425-E.
CAS
PubMed
Google Scholar
Morrison F, Poletti CE: Hippocampal influence on amygdala unit activity in awake squirrel monkeys. Brain Res. 1980, 192 (2): 353-369. 10.1016/0006-8993(80)90889-6.
CAS
PubMed
Google Scholar
Rudy JW, Huff NC, Matus-Amat P: Understanding contextual fear conditioning: insights from a two-process model. Neurosci Biobehav Rev. 2004, 28 (7): 675-685. 10.1016/j.neubiorev.2004.09.004.
CAS
PubMed
Google Scholar
Ito R, Robbins TW, McNaughton BL, Everitt BJ: Selective excitotoxic lesions of the hippocampus and basolateral amygdala have dissociable effects on appetitive cue and place conditioning based on path integration in a novel Y-maze procedure. Eur J Neurosci. 2006, 23 (11): 3071-3080. 10.1111/j.1460-9568.2006.04883.x.
PubMed Central
PubMed
Google Scholar
Floresco SB, Ghods-Sharifi S, Vexelman C, Magyar O: Dissociable roles for the nucleus accumbens core and shell in regulating set shifting. J Neurosci. 2006, 26 (9): 2449-2457. 10.1523/JNEUROSCI.4431-05.2006.
CAS
PubMed
Google Scholar
Fuchs RA, Evans KA, Parker MC, See RE: Differential involvement of the core and shell subregions of the nucleus accumbens in conditioned cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl). 2004, 176 (3–4): 459-465. 10.1007/s00213-004-1895-6.
CAS
Google Scholar
Ito R, Robbins TW, Everitt BJ: Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci. 2004, 7 (4): 389-397. 10.1038/nn1217.
CAS
PubMed
Google Scholar
Parkinson JA, Olmstead MC, Burns LH, Robbins TW, Everitt BJ: Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J Neurosci. 1999, 19 (6): 2401-2411.
CAS
PubMed
Google Scholar
Jongen-Relo AL, Kaufmann S, Feldon J: A differential involvement of the shell and core subterritories of the nucleus accumbens of rats in attentional processes. Neuroscience. 2002, 111 (1): 95-109. 10.1016/S0306-4522(01)00521-8.
CAS
PubMed
Google Scholar
Tai CT, Cassaday HJ, Feldon J, Rawlins JN: Both electrolytic and excitotoxic lesions of nucleus accumbens disrupt latent inhibition of learning in rats. Neurobiol Learn Mem. 1995, 64 (1): 36-48. 10.1006/nlme.1995.1042.
CAS
PubMed
Google Scholar
Weiner I, Gal G, Rawlins JN, Feldon J: Differential involvement of the shell and core subterritories of the nucleus accumbens in latent inhibition and amphetamine-induced activity. Behav Brain Res. 1996, 81 (1–2): 123-133. 10.1016/S0166-4328(96)00051-4.
CAS
PubMed
Google Scholar
Mora F, Rolls ET, Burton MJ: Modulation during learning of the responses of neurons in the lateral hypothalamus to the sight of food. Exp Neurol. 1976, 53 (2): 508-519. 10.1016/0014-4886(76)90089-3.
CAS
PubMed
Google Scholar
Rolls ET, Burton MJ, Mora F: Neurophysiological analysis of brain-stimulation reward in the monkey. Brain Res. 1980, 194 (2): 339-357. 10.1016/0006-8993(80)91216-0.
CAS
PubMed
Google Scholar
Harris GC, Wimmer M, Aston-Jones G: A role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005, 437 (7058): 556-559. 10.1038/nature04071.
CAS
PubMed
Google Scholar
Woods SC, Schwartz MW, Baskin DG, Seeley RJ: Food intake and the regulation of body weight. Annu Rev Psychol. 2000, 51: 255-277. 10.1146/annurev.psych.51.1.255.
CAS
PubMed
Google Scholar
DeFalco J, Tomishima M, Liu H, Zhao C, Cai X, Marth JD, Enquist L, Friedman JM: Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science. 2001, 291 (5513): 2608-2613. 10.1126/science.1056602.
CAS
PubMed
Google Scholar
Morl F, Groschel M, Leemhuis J, Meyer DK: Intrinsic GABA neurons inhibit proenkephalin gene expression in slice cultures of rat neostriatum. Eur J Neurosci. 2002, 15 (7): 1115-1124. 10.1046/j.1460-9568.2002.01950.x.
PubMed
Google Scholar
Ferguson SM, Robinson TE: Amphetamine-evoked gene expression in striatopallidal neurons: regulation by corticostriatal afferents and the ERK/MAPK signaling cascade. J Neurochem. 2004, 91 (2): 337-348. 10.1111/j.1471-4159.2004.02712.x.
CAS
PubMed
Google Scholar
Miyachi S, Hasegawa YT, Gerfen CR: Coincident stimulation of convergent cortical inputs enhances immediate early gene induction in the striatum. Neuroscience. 2005, 134 (3): 1013-1022. 10.1016/j.neuroscience.2005.02.051.
CAS
PubMed
Google Scholar
Uslaner JM, Crombag HS, Ferguson SM, Robinson TE: Cocaine-induced psychomotor activity is associated with its ability to induce c-fos mRNA expression in the subthalamic nucleus: effects of dose and repeated treatment. Eur J Neurosci. 2003, 17 (10): 2180-2186. 10.1046/j.1460-9568.2003.02638.x.
PubMed
Google Scholar
Uslaner JM, Norton CS, Watson SJ, Akil H, Robinson TE: Amphetamine-induced c-fos mRNA expression in the caudate-putamen and subthalamic nucleus: interactions between dose, environment, and neuronal phenotype. J Neurochem. 2003, 85 (1): 105-114.
CAS
PubMed
Google Scholar
Arabia AM, Shen PJ, Gundlach AL: Increased striatal proenkephalin mRNA subsequent to production of spreading depression in rat cerebral cortex: activation of corticostriatal pathways?. Brain Res Mol Brain Res. 1998, 61 (1–2): 195-202. 10.1016/S0169-328X(98)00189-2.
CAS
PubMed
Google Scholar
Berretta S, Parthasarathy HB, Graybiel AM: Local release of GABAergic inhibition in the motor cortex induces immediate-early gene expression in indirect pathway neurons of the striatum. J Neurosci. 1997, 17 (12): 4752-4763.
CAS
PubMed
Google Scholar
Campbell K, Bjorklund A: Neurotransmitter-related gene expression in intrastriatal striatal transplants. III. Regulation by host cortical and dopaminergic afferents. Brain Res Mol Brain Res. 1995, 29 (2): 263-272.
CAS
PubMed
Google Scholar
Parthasarathy HB, Graybiel AM: Cortically driven immediate-early gene expression reflects modular influence of sensorimotor cortex on identified striatal neurons in the squirrel monkey. J Neurosci. 1997, 17 (7): 2477-2491.
CAS
PubMed
Google Scholar
Steiner H, Gerfen CR: Enkephalin regulates acute D2 dopamine receptor antagonist-induced immediate-early gene expression in striatal neurons. Neuroscience. 1999, 88 (3): 795-810. 10.1016/S0306-4522(98)00241-3.
CAS
PubMed
Google Scholar
Will MJ, Vanderheyden WM, Kelley AE: Striatal opioid peptide gene expression differentially tracks short-term satiety but does not vary with negative energy balance in a manner opposite to hypothalamic NPY. Am J Physiol Regul Integr Comp Physiol. 2007, 292 (1): R217-226.
CAS
PubMed
Google Scholar
Narayanan S, Lam H, Christian L, Levine MS, Grandy D, Rubinstein M, Maidment NT: Endogenous opioids mediate basal hedonic tone independent of dopamine D-1 or D-2 receptor activation. Neuroscience. 2004, 124 (1): 241-246. 10.1016/j.neuroscience.2003.11.011.
CAS
PubMed
Google Scholar
Skoubis PD, Lam HA, Shoblock J, Narayanan S, Maidment NT: Endogenous enkephalins, not endorphins, modulate basal hedonic state in mice. Eur J Neurosci. 2005, 21 (5): 1379-1384. 10.1111/j.1460-9568.2005.03956.x.
CAS
PubMed
Google Scholar
Kelley AE, Baldo BA, Pratt WE: A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J Comp Neurol. 2005, 493 (1): 72-85. 10.1002/cne.20769.
CAS
PubMed
Google Scholar
Kelley AE, Baldo BA, Pratt WE, Will MJ: Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav. 2005, 86 (5): 773-795. 10.1016/j.physbeh.2005.08.066.
CAS
PubMed
Google Scholar
Levine AS, Billington CJ: Opioids as agents of reward-related feeding: a consideration of the evidence. Physiol Behav. 2004, 82 (1): 57-61. 10.1016/j.physbeh.2004.04.032.
CAS
PubMed
Google Scholar
Pecina S, Berridge KC: Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness?. J Neurosci. 2005, 25 (50): 11777-11786. 10.1523/JNEUROSCI.2329-05.2005.
CAS
PubMed
Google Scholar
Nieto MM, Wilson J, Cupo A, Roques BP, Noble F: Chronic morphine treatment modulates the extracellular levels of endogenous enkephalins in rat brain structures involved in opiate dependence: a microdialysis study. J Neurosci. 2002, 22 (3): 1034-1041.
CAS
PubMed
Google Scholar
Borsook D, Hyman SE: Proenkephalin gene regulation in the neuroendocrine hypothalamus: a model of gene regulation in the CNS. Am J Physiol. 1995, 269 (3 Pt 1): E393-408.
CAS
PubMed
Google Scholar
Mocchetti I, Giorgi O, Schwartz JP, Costa E: A reduction of the tone of 5-hydroxytryptamine neurons decreases utilization rates of striatal and hypothalamic enkephalins. Eur J Pharmacol. 1984, 106 (2): 427-430. 10.1016/0014-2999(84)90734-9.
CAS
PubMed
Google Scholar
Tang F, Costa E, Schwartz JP: Increase of proenkephalin mRNA and enkephalin content of rat striatum after daily injection of haloperidol for 2 to 3 weeks. Proc Natl Acad Sci USA. 1983, 80 (12): 3841-3844. 10.1073/pnas.80.12.3841.
PubMed Central
CAS
PubMed
Google Scholar
Uhl GR, Appleby D, Nishimori T, Buzzi MG, Moskowitz MA: Synaptic regulation of the enkephalin gene and transcription factors in vivo: possible roles in drug abuse. NIDA Res Monogr. 1990, 105: 123-129.
CAS
PubMed
Google Scholar
Uhl GR, Nishimori T: Neuropeptide gene expression and neural activity: assessing a working hypothesis in nucleus caudalis and dorsal horn neurons expressing preproenkephalin and preprodynorphin. Cell Mol Neurobiol. 1990, 10 (1): 73-98. 10.1007/BF00733637.
CAS
PubMed
Google Scholar
Hayward MD, Pintar JE, Low MJ: Selective reward deficit in mice lacking beta-endorphin and enkephalin. J Neurosci. 2002, 22 (18): 8251-8258.
CAS
PubMed
Google Scholar
Hayward MD, Schaich-Borg A, Pintar JE, Low MJ: Differential involvement of endogenous opioids in sucrose consumption and food reinforcement. Pharmacol Biochem Behav. 2006
Google Scholar
Lucas GA, Timberlake W: Negative anticipatory contrast and preference conditioning: flavor cues support preference conditioning, and environmental cues support contrast. J Exp Psychol Anim Behav Process. 1992, 18 (1): 34-40. 10.1037/0097-7403.18.1.34.
CAS
PubMed
Google Scholar
Feltenstein MW, See RE: Potentiation of cue-induced reinstatement of cocaine-seeking in rats by the anxiogenic drug yohimbine. Behav Brain Res. 2006
Google Scholar
Goddard B, Leri F: Reinstatement of conditioned reinforcing properties of cocaine-conditioned stimuli. Pharmacol Biochem Behav. 2006, 83 (4): 540-546. 10.1016/j.pbb.2006.03.015.
CAS
PubMed
Google Scholar
Lu L, Shepard JD, Scott Hall F, Shaham Y: Effect of environmental stressors on opiate and psychostimulant reinforcement, reinstatement and discrimination in rats: a review. Neurosci Biobehav Rev. 2003, 27 (5): 457-491. 10.1016/S0149-7634(03)00073-3.
CAS
PubMed
Google Scholar
Schiltz CA, Kelley AE, Landry CF: Acute stress uncovers drug-cue reactivity and increased IEG expression in the prefrontal cortex of rats exposed to low-dose nicotine cues. Program No. 121.9. 2004 Abstract Viewer/Itinerary Planner. 2004, Washington, DC: Society for Neuroscience
Google Scholar
Haberny SL, Carr KD: Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats. Neuroscience. 2005, 132 (4): 1035-1043. 10.1016/j.neuroscience.2005.02.006.
CAS
PubMed
Google Scholar
Berke JD, Paletzki RF, Aronson GJ, Hyman SE, Gerfen CR: A complex program of striatal gene expression induced by dopaminergic stimulation. J Neurosci. 1998, 18 (14): 5301-5310.
CAS
PubMed
Google Scholar
Guzowski JF, Setlow B, Wagner EK, McGaugh JL: Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci. 2001, 21 (14): 5089-5098.
CAS
PubMed
Google Scholar
Guzowski JF, McNaughton BL, Barnes CA, Worley PF: Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci. 1999, 2 (12): 1120-1124. 10.1038/16046.
CAS
PubMed
Google Scholar
Ramanan N, Shen Y, Sarsfield S, Lemberger T, Schutz G, Linden DJ, Ginty DD: SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. Nat Neurosci. 2005, 8 (6): 759-767. 10.1038/nn1462.
CAS
PubMed
Google Scholar
Barrett D, Shumake J, Jones D, Gonzalez-Lima F: Metabolic mapping of mouse brain activity after extinction of a conditioned emotional response. J Neurosci. 2003, 23 (13): 5740-5749.
CAS
PubMed
Google Scholar
Nair HP, Gonzalez-Lima F: Extinction of behavior in infant rats: development of functional coupling between septal, hippocampal, and ventral tegmental regions. J Neurosci. 1999, 19 (19): 8646-8655.
CAS
PubMed
Google Scholar
Schiltz CA, Kelley AE, Landry CF: Exposure to cues associated with palatable food increases immediate-early gene (IEG) mRNA and proenkephalin (PENK) premRNA expression in the rat brain. Neuropsychopharmacology. 2005, 30 (Supplement): S213-
Google Scholar
Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinates. 1998, San Diego: Academic Press
Google Scholar