Salaun C, Greaves J, Chamberlain LH: The intracellular dynamic of protein palmitoylation. J Cell Biol. 2010, 191: 1229-1238. 10.1083/jcb.201008160.
Article
CAS
PubMed Central
PubMed
Google Scholar
Charollais J, Van Der Goot FG: Palmitoylation of membrane proteins (Review). Mol Membr Biol. 2009, 26: 55-66. 10.1080/09687680802620369.
Article
CAS
PubMed
Google Scholar
Blaskovic S, Blanc M, van der Goot FG: What does S-palmitoylation do to membrane proteins?. FEBS J. 2013, 280: 2766-2774. 10.1111/febs.12263.
Article
CAS
PubMed
Google Scholar
Hang HC, Linder ME: Exploring protein lipidation with chemical biology. Chem Rev. 2011, 111: 6341-6358. 10.1021/cr2001977.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tom CT, Martin BR: Fat chance! Getting a grip on a slippery modification. ACS Chem Biol. 2013, 8: 46-57. 10.1021/cb300607e.
Article
CAS
PubMed Central
PubMed
Google Scholar
Charron G, Zhang MM, Yount JS, Wilson J, Raghavan AS, Shamir E, Hang HC: Robust fluorescent detection of protein fatty-acylation with chemical reporters. J Am Chem Soc. 2009, 131: 4967-4975. 10.1021/ja810122f.
Article
CAS
PubMed
Google Scholar
Yount JS, Moltedo B, Yang YY, Charron G, Moran TM, Lopez CB, Hang HC: Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat Chem Biol. 2010, 6: 610-614. 10.1038/nchembio.405.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yount JS, Zhang MM, Hang HC: Visualization and identification of fatty acylated proteins using chemical reporters. Curr Protoc Chem Biol. 2011, 3: 65-79.
PubMed Central
PubMed
Google Scholar
Yount JS, Charron G, Hang HC: Bioorthogonal proteomics of 15-hexadecynyloxyacetic acid chemical reporter reveals preferential targeting of fatty acid modified proteins and biosynthetic enzymes. Bioorg Med Chem. 2012, 20: 650-654. 10.1016/j.bmc.2011.03.062.
Article
CAS
PubMed
Google Scholar
Hannoush RN, Arenas-Ramirez N: Imaging the lipidome: omega-alkynyl fatty acids for detection and cellular visualization of lipid-modified proteins. ACS Chem Biol. 2009, 4: 581-587. 10.1021/cb900085z.
Article
CAS
PubMed
Google Scholar
Martin BR, Cravatt BF: Large-scale profiling of protein palmitoylation in mammalian cells. Nat Methods. 2009, 6: 135-138. 10.1038/nmeth.1293.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yang YY, Grammel M, Raghavan AS, Charron G, Hang HC: Comparative analysis of cleavable azobenzene-based affinity tags for bioorthogonal chemical proteomics. Chem Biol. 2010, 17: 1212-1222. 10.1016/j.chembiol.2010.09.012.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yount JS, Zhang MM, Hang HC: Emerging roles for protein S-palmitoylation in immunity from chemical proteomics. Curr Opin Chem Biol. 2013, 17: 27-33. 10.1016/j.cbpa.2012.11.008.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yount JS, Karssemeijer RA, Hang HC: S-palmitoylation and ubiquitination differentially regulate interferon-induced transmembrane protein 3 (IFITM3)-mediated resistance to influenza virus. J Biol Chem. 2012, 287: 19631-19641. 10.1074/jbc.M112.362095.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hach JC, McMichael T, Chesarino NM, Yount JS: Palmitoylation on conserved and non-conserved cysteines of murine IFITM1 regulates its stability and anti-influenza A virus activity. J Virol. 2013, 87: 9923-9927. 10.1128/JVI.00621-13.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ivaldi C, Martin BR, Kieffer-Jaquinod S, Chapel A, Levade T, Garin J, Journet A: Proteomic analysis of S-acylated proteins in human B cells reveals palmitoylation of the immune regulators CD20 and CD23. PLoS One. 2012, 7: e37187-10.1371/journal.pone.0037187.
Article
CAS
PubMed Central
PubMed
Google Scholar
Martin BR, Wang C, Adibekian A, Tully SE, Cravatt BF: Global profiling of dynamic protein palmitoylation. Nat Methods. 2011, 9: 84-89. 10.1038/nmeth.1769.
Article
PubMed Central
PubMed
Google Scholar
Kawai T, Akira S: The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009, 21: 317-337. 10.1093/intimm/dxp017.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kawai T, Akira S: The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010, 11: 373-384. 10.1038/ni.1863.
Article
CAS
PubMed
Google Scholar
Muzio M, Bosisio D, Polentarutti N, D'amico G, Stoppacciaro A, Mancinelli R, van't Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A: Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol. 2000, 164: 5998-6004. 10.4049/jimmunol.164.11.5998.
Article
CAS
PubMed
Google Scholar
Borrello S, Nicolo C, Delogu G, Pandolfi F, Ria F: Tlr2: a crossroads between infections and autoimmunity?. Int J Immunopathol Pharmacol. 2011, 24: 549-556.
CAS
PubMed
Google Scholar
Takeuchi O, Hoshino K, Akira S: Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol. 2000, 165: 5392-5396. 10.4049/jimmunol.165.10.5392.
Article
CAS
PubMed
Google Scholar
Hawn TR, Smith KD, Aderem A, Skerrett SJ: Myeloid differentiation primary response gene (88)- and toll-like receptor 2-deficient mice are susceptible to infection with aerosolized Legionella pneumophila. J Infect Dis. 2006, 193: 1693-1702. 10.1086/504525.
Article
CAS
PubMed
Google Scholar
Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A: TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med. 2005, 202: 1715-1724. 10.1084/jem.20051782.
Article
CAS
PubMed Central
PubMed
Google Scholar
Thuong NT, Hawn TR, Thwaites GE, Chau TT, Lan NT, Quy HT, Hieu NT, Aderem A, Hien TT, Farrar JJ, Dunstan SJ: A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun. 2007, 8: 422-428. 10.1038/sj.gene.6364405.
Article
CAS
PubMed
Google Scholar
Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA: A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun. 2000, 68: 6398-6401. 10.1128/IAI.68.11.6398-6401.2000.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wilson JP, Raghavan AS, Yang YY, Charron G, Hang HC: Proteomic analysis of fatty-acylated proteins in mammalian cells with chemical reporters reveals S-acylation of histone H3 variants. Mol Cell Proteomics. 2011, 10: M110 001198-10.1074/mcp.M110.001198.
Article
PubMed Central
PubMed
Google Scholar
Dowal L, Yang W, Freeman MR, Steen H, Flaumenhaft R: Proteomic analysis of palmitoylated platelet proteins. Blood. 2011, 118: e62-e73. 10.1182/blood-2011-05-353078.
Article
CAS
PubMed Central
PubMed
Google Scholar
Li Y, Martin BR, Cravatt BF, Hofmann SL: DHHC5 protein palmitoylates flotillin-2 and is rapidly degraded on induction of neuronal differentiation in cultured cells. J Biol Chem. 2012, 287: 523-530. 10.1074/jbc.M111.306183.
Article
CAS
PubMed Central
PubMed
Google Scholar
Merrick BA, Dhungana S, Williams JG, Aloor JJ, Peddada S, Tomer KB, Fessler MB: Proteomic profiling of S-acylated macrophage proteins identifies a role for palmitoylation in mitochondrial targeting of phospholipid scramblase 3. Mol Cell Proteomics. 2011, 10: M110 006007-10.1074/mcp.M110.006007.
Article
PubMed Central
PubMed
Google Scholar
Kang R, Wan J, Arstikaitis P, Takahashi H, Huang K, Bailey AO, Thompson JX, Roth AF, Drisdel RC, Mastro R, Green WN, Yates JR, Davis NG, El-Husseini A: Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature. 2008, 456: 904-909. 10.1038/nature07605.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW, Su AI: BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 2009, 10: R130-10.1186/gb-2009-10-11-r130.
Article
PubMed Central
PubMed
Google Scholar
Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB: A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004, 101: 6062-6067. 10.1073/pnas.0400782101.
Article
CAS
PubMed Central
PubMed
Google Scholar
Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Moqrich A, Patapoutian A, Hampton GM, Schultz PG, Hogenesch JB: Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci U S A. 2002, 99: 4465-4470. 10.1073/pnas.012025199.
Article
CAS
PubMed Central
PubMed
Google Scholar
Greaves J, Chamberlain LH: DHHC palmitoyl transferases: substrate interactions and (patho)physiology. Trends Biochem Sci. 2011, 36: 245-253. 10.1016/j.tibs.2011.01.003.
Article
CAS
PubMed
Google Scholar
Linder ME, Jennings BC: Mechanism and function of DHHC S-acyltransferases. Biochem Soc Trans. 2013, 41: 29-34. 10.1042/BST20120328.
Article
CAS
PubMed
Google Scholar
Greaves J, Chamberlain LH: New links between S-acylation and cancer. J Pathol. 2014, 233: 4-6. 10.1002/path.4339.
Article
CAS
PubMed
Google Scholar
Henry SC, Schmidt EA, Fessler MB, Taylor GA: Palmitoylation of the immunity related GTPase, Irgm1: impact on membrane localization and ability to promote mitochondrial fission. PLoS One. 2014, 9: e95021-10.1371/journal.pone.0095021.
Article
PubMed Central
PubMed
Google Scholar
Kupzig S, Korolchuk V, Rollason R, Sugden A, Wilde A, Banting G: Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology. Traffic. 2003, 4: 694-709. 10.1034/j.1600-0854.2003.00129.x.
Article
CAS
PubMed
Google Scholar
Rotin D, Kumar S: Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol. 2009, 10: 398-409. 10.1038/nrm2690.
Article
CAS
PubMed
Google Scholar
Scheffner M, Kumar S: Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. Biochim Biophys Acta. 2014, 1843: 61-74. 10.1016/j.bbamcr.2013.03.024.
Article
CAS
PubMed
Google Scholar
Imro MA, Dellabona P, Manici S, Heltai S, Consogno G, Bellone M, Rugarli C, Protti MP: Human melanoma cells transfected with the B7-2 co-stimulatory molecule induce tumor-specific CD8+ cytotoxic T lymphocytes in vitro. Hum Gene Ther. 1998, 9: 1335-1344. 10.1089/hum.1998.9.9-1335.
Article
CAS
PubMed
Google Scholar
Hollsberg P, Scholz C, Anderson DE, Greenfield EA, Kuchroo VK, Freeman GJ, Hafler DA: Expression of a hypoglycosylated form of CD86 (B7-2) on human T cells with altered binding properties to CD28 and CTLA-4. J Immunol. 1997, 159: 4799-4805.
CAS
PubMed
Google Scholar
Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA, Lombard LA, Gray GS, Nadler LM: Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science. 1993, 262: 909-911. 10.1126/science.7694363.
Article
CAS
PubMed
Google Scholar
Bulut Y, Faure E, Thomas L, Equils O, Arditi M: Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol. 2001, 167: 987-994. 10.4049/jimmunol.167.2.987.
Article
CAS
PubMed
Google Scholar
Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S: Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol. 2002, 169: 6668-6672. 10.4049/jimmunol.169.12.6668.
Article
CAS
PubMed
Google Scholar
Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X: CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel. 2008, 21: 639-644. 10.1093/protein/gzn039.
Article
CAS
PubMed Central
PubMed
Google Scholar
Latz E, Visintin A, Lien E, Fitzgerald KA, Monks BG, Kurt-Jones EA, Golenbock DT, Espevik T: Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem. 2002, 277: 47834-47843. 10.1074/jbc.M207873200.
Article
CAS
PubMed
Google Scholar
Sandor F, Latz E, Re F, Mandell L, Repik G, Golenbock DT, Espevik T, Kurt-Jones EA, Finberg RW: Importance of extra- and intracellular domains of TLR1 and TLR2 in NFkappa B signaling. J Cell Biol. 2003, 162: 1099-1110. 10.1083/jcb.200304093.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fukata Y, Iwanaga T, Fukata M: Systematic screening for palmitoyl transferase activity of the DHHC protein family in mammalian cells. Methods. 2006, 40: 177-182. 10.1016/j.ymeth.2006.05.015.
Article
CAS
PubMed
Google Scholar
Fukata M, Fukata Y, Adesnik H, Nicoll RA, Bredt DS: Identification of PSD-95 palmitoylating enzymes. Neuron. 2004, 44: 987-996. 10.1016/j.neuron.2004.12.005.
Article
CAS
PubMed
Google Scholar
Mill P, Lee AW, Fukata Y, Tsutsumi R, Fukata M, Keighren M, Porter RM, McKie L, Smyth I, Jackson IJ: Palmitoylation regulates epidermal homeostasis and hair follicle differentiation. PLoS Genet. 2009, 5: e1000748-10.1371/journal.pgen.1000748.
Article
PubMed Central
PubMed
Google Scholar
Tsutsumi R, Fukata Y, Noritake J, Iwanaga T, Perez F, Fukata M: Identification of G protein alpha subunit-palmitoylating enzyme. Mol Cell Biol. 2009, 29: 435-447. 10.1128/MCB.01144-08.
Article
CAS
PubMed Central
PubMed
Google Scholar
Webb Y, Hermida-Matsumoto L, Resh MD: Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J Biol Chem. 2000, 275: 261-270. 10.1074/jbc.275.1.261.
Article
CAS
PubMed
Google Scholar
Davda D, El Azzouny MA, Tom CT, Hernandez JL, Majmudar JD, Kennedy RT, Martin BR: Profiling targets of the irreversible palmitoylation inhibitor 2-bromopalmitate. ACS Chem Biol. 2013, 8: 1912-1917. 10.1021/cb400380s.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zheng BH, DeRan M, Li XY, Liao XB, Fukata M, Wu X: 2-Bromopalmitate analogues as activity-based probes to explore palmitoyl acyltransferases. J Am Chem Soc. 2013, 135: 7082-7085. 10.1021/ja311416v.
Article
CAS
PubMed
Google Scholar
Yount JS, Kraus TA, Horvath CM, Moran TM, Lopez CB: A novel role for viral-defective interfering particles in enhancing dendritic cell maturation. J Immunol. 2006, 177: 4503-4513. 10.4049/jimmunol.177.7.4503.
Article
CAS
PubMed
Google Scholar
Yount JS, Moran TM, Lopez CB: Cytokine-independent upregulation of MDA5 in viral infection. J Virol. 2007, 81: 7316-7319. 10.1128/JVI.00545-07.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yount JS, Gitlin L, Moran TM, Lopez CB: MDA5 participates in the detection of paramyxovirus infection and is essential for the early activation of dendritic cells in response to Sendai Virus defective interfering particles. J Immunol. 2008, 180: 4910-4918. 10.4049/jimmunol.180.7.4910.
Article
CAS
PubMed
Google Scholar
Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S: Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006, 441: 101-105. 10.1038/nature04734.
Article
CAS
PubMed
Google Scholar
Lopez CB, Yount JS, Moran TM: Toll-like receptor-independent triggering of dendritic cell maturation by viruses. J Virol. 2006, 80: 3128-3134. 10.1128/JVI.80.7.3128-3134.2006.
Article
CAS
PubMed Central
PubMed
Google Scholar
Brandt KJ, Fickentscher C, Kruithof EK, de Moerloose P: TLR2 ligands induce NF-kappaB activation from endosomal compartments of human monocytes. PLoS One. 2013, 8: e80743-10.1371/journal.pone.0080743.
Article
PubMed Central
PubMed
Google Scholar
Barbalat R, Lau L, Locksley RM, Barton GM: Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat Immunol. 2009, 10: 1200-1207. 10.1038/ni.1792.
Article
CAS
PubMed Central
PubMed
Google Scholar
Triantafilou M, Gamper FG, Haston RM, Mouratis MA, Morath S, Hartung T, Triantafilou K: Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem. 2006, 281: 31002-31011. 10.1074/jbc.M602794200.
Article
CAS
PubMed
Google Scholar
Roth AF, Wan J, Bailey AO, Sun B, Kuchar JA, Green WN, Phinney BS, Yates JR, Davis NG: Global analysis of protein palmitoylation in yeast. Cell. 2006, 125: 1003-1013. 10.1016/j.cell.2006.03.042.
Article
CAS
PubMed Central
PubMed
Google Scholar
Steinman RM, Banchereau J: Taking dendritic cells into medicine. Nature. 2007, 449: 419-426. 10.1038/nature06175.
Article
CAS
PubMed
Google Scholar
Aicart-Ramos C, Valero RA, Rodriguez-Crespo I: Protein palmitoylation and subcellular trafficking. Biochim Biophys Acta. 1808, 2011: 2981-2994.
Google Scholar
Hernandez JL, Majmudar JD, Martin BR: Profiling and inhibiting reversible palmitoylation. Curr Opin Chem Biol. 2013, 17: 20-26. 10.1016/j.cbpa.2012.11.023.
Article
CAS
PubMed Central
PubMed
Google Scholar
Charron G, Tsou LK, Maguire W, Yount JS, Hang HC: Alkynyl-farnesol reporters for detection of protein S-prenylation in cells. Mol Biosyst. 2011, 7: 67-73. 10.1039/c0mb00183j.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ingenuity pathway analysis software. ., [www.ingenuity.com]
Jiang Z, Georgel P, Li C, Choe J, Crozat K, Rutschmann S, Du X, Bigby T, Mudd S, Sovath S, Wilson IA, Olson A, Beutler B: Details of Toll-like receptor:adapter interaction revealed by germ-line mutagenesis. Proc Natl Acad Sci U S A. 2006, 103: 10961-10966. 10.1073/pnas.0603804103.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lopez CB, Yount JS, Hermesh T, Moran TM: Sendai virus infection induces efficient adaptive immunity independently of type I interferons. J Virol. 2006, 80: 4538-4545. 10.1128/JVI.80.9.4538-4545.2006.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yount JS, Hang HC: Proteins purified from DC2.4 cells labeled with DMSO or alk-16. PeptideAtlas 2014, ., [http://www.peptideatlas.org/PASS/PASS00594]
Yount JS, Hang HC: Proteins purified from MEFs labeled with DMSO or alk-16. PeptideAtlas, 2014, ., [http://www.peptideatlas.org/PASS/PASS00595]