Hershko A, Ciechanover A: The ubiquitin system. Annu Rev Biochem. 1998, 67: 425-479.
CAS
PubMed
Google Scholar
Balch WE, Morimoto RI, Dillin A, Kelly JW: Adapting proteostasis for disease intervention. Science. 2008, 319: 916-919.
CAS
PubMed
Google Scholar
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW: Cancer genome landscapes. Science. 2013, 339: 1546-1558.
CAS
PubMed Central
PubMed
Google Scholar
Weaver BA, Cleveland DW: Does aneuploidy cause cancer?. Curr Opin Cell Biol. 2006, 18: 658-667.
CAS
PubMed
Google Scholar
Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE, Amon A: Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science. 2008, 322: 703-709.
CAS
PubMed Central
PubMed
Google Scholar
Torres EM, Dephoure N, Panneerselvam A, Tucker CM, Whittaker CA, Gygi SP, Dunham MJ, Amon A: Identification of aneuploidy-tolerating mutations. Cell. 2010, 143: 71-83.
CAS
PubMed Central
PubMed
Google Scholar
Warner JR, Mitra G, Schwindinger WF, Studeny M, Fried HM: Saccharomyces cerevisiae coordinates accumulation of yeast ribosomal proteins by modulating mRNA splicing, translational initiation, and protein turnover. Mol Cell Biol. 1985, 5: 1512-1521.
CAS
PubMed Central
PubMed
Google Scholar
Dephoure N, Hwang S, O'Sullivan C, Dodgson SE, Gygi SP, Amon A, Torres EM: Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. eLife. 2014, 3: e03023-
PubMed Central
PubMed
Google Scholar
Williams BR, Amon A: Aneuploidy: cancer's fatal flaw?. Cancer Res. 2009, 69: 5289-5291.
CAS
PubMed Central
PubMed
Google Scholar
Luo J, Solimini NL, Elledge SJ: Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009, 136: 823-837.
CAS
PubMed Central
PubMed
Google Scholar
Whitesell L, Lindquist SL: HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005, 5: 761-772.
CAS
PubMed
Google Scholar
Guo JY, Xia B, White E: Autophagy-mediated tumor promotion. Cell. 2013, 155: 1216-1219.
CAS
PubMed Central
PubMed
Google Scholar
Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, Amon A: Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science. 2007, 317: 916-924.
CAS
PubMed
Google Scholar
Adams J: The proteasome: a suitable antineoplastic target. Nat Rev Cancer. 2004, 4: 349-360.
CAS
PubMed
Google Scholar
Finley D: Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem. 2009, 78: 477-513.
CAS
PubMed Central
PubMed
Google Scholar
Berkers CR, Verdoes M, Lichtman E, Fiebiger E, Kessler BM, Anderson KC, Ploegh HL, Ovaa H, Galardy PJ: Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat Methods. 2005, 2: 357-362.
CAS
PubMed
Google Scholar
Altun M, Galardy PJ, Shringarpure R, Hideshima T, LeBlanc R, Anderson KC, Ploegh HL, Kessler BM: Effects of PS-341 on the activity and composition of proteasomes in multiple myeloma cells. Cancer Res. 2005, 65: 7896-7901.
CAS
PubMed
Google Scholar
Kisselev AF, Callard A, Goldberg AL: Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem. 2006, 281: 8582-8590.
CAS
PubMed
Google Scholar
Matyskiela ME, Lander GC, Martin A: Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol. 2013, 20: 781-788.
CAS
PubMed Central
PubMed
Google Scholar
Hideshima T, Bradner JE, Wong J, Chauhan D, Richardson P, Schreiber SL, Anderson KC: Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci U S A. 2005, 102: 8567-8572.
CAS
PubMed Central
PubMed
Google Scholar
Goy A, Younes A, McLaughlin P, Pro B, Romaguera JE, Hagemeister F, Fayad L, Dang NH, Samaniego F, Wang M, Broglio K, Samuels B, Gilles F, Sarris AH, Hart S, Trehu E, Schenkein D, Cabanillas F, Rodriguez AM: Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin's lymphoma. J Clin Oncol. 2005, 23: 667-675.
CAS
PubMed
Google Scholar
O'Connor OA, Wright J, Moskowitz C, Muzzy J, MacGregor-Cortelli B, Stubblefield M, Straus D, Portlock C, Hamlin P, Choi E, Dumetrescu O, Esseltine D, Trehu E, Adams J, Schenkein D, Zelenetz AD: Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin's lymphoma and mantle cell lymphoma. J Clin Oncol. 2005, 23: 676-684.
PubMed
Google Scholar
Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau JL, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, San-Miguel JF, Bladé J, Boccadoro M, Cavenagh J, Dalton WS, Boral AL, Esseltine DL, Porter JB, Schenkein D, Anderson KC: Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005, 352: 2487-2498.
CAS
PubMed
Google Scholar
ClinicalTrials.gov, search term "bortezomib". In [], [http://clinicaltrials.gov/ct2/results?term=bortezomib&Search=Search]
Demo SD, Kirk CJ, Aujay MA, Buchholz TJ, Dajee M, Ho MN, Jiang J, Laidig GJ, Lewis ER, Parlati F, Shenk KD, Smyth MS, Sun CM, Vallone MK, Woo TM, Molineaux CJ, Bennett MK: Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res. 2007, 67: 6383-6391.
CAS
PubMed
Google Scholar
Ni H, Ergin M, Huang Q, Qin JZ, Amin HM, Martinez RL, Saeed S, Barton K, Alkan S: Analysis of expression of nuclear factor kappa B (NF-kappa B) in multiple myeloma: downregulation of NF-kappa B induces apoptosis. Br J Haematol. 2001, 115: 279-286.
CAS
PubMed
Google Scholar
Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F, Lenz G, Hanamura I, Wright G, Xiao W, Dave S, Hurt EM, Tan B, Zhao H, Stephens O, Santra M, Williams DR, Dang L, Barlogie B, Shaughnessy JD, Kuehl WM, Staudt LM: Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell. 2007, 12: 115-130.
CAS
PubMed Central
PubMed
Google Scholar
Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ, Van Wier S, Tiedemann R, Shi CX, Sebag M, Braggio E, Henry T, Zhu YX, Fogle H, Price-Troska T, Ahmann G, Mancini C, Brents LA, Kumar S, Greipp P, Dispenzieri A, Bryant B, Mulligan G, Bruhn L, Barrett M, Valdez R, Trent J, Stewart AK, Carpten J, Bergsagel PL: Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell. 2007, 12: 131-144.
CAS
PubMed Central
PubMed
Google Scholar
Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, Sougnez C, Knoechel B, Gould J, Saksena G, Cibulskis K, McKenna A, Chapman MA, Straussman R, Levy J, Perkins LM, Keats JJ, Schumacher SE, Getz G, Rosenberg M, Golub TR: Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014, 25: 91-101.
CAS
PubMed Central
PubMed
Google Scholar
Palombella VJ, Rando OJ, Goldberg AL, Maniatis T: The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell. 1994, 78: 773-785.
CAS
PubMed
Google Scholar
Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V, Adams J, Anderson KC: NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem. 2002, 277: 16639-16647.
CAS
PubMed
Google Scholar
Hideshima T, Ikeda H, Chauhan D, Okawa Y, Raje N, Podar K, Mitsiades C, Munshi NC, Richardson PG, Carrasco RD, Anderson KC: Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood. 2009, 114: 1046-1052.
CAS
PubMed Central
PubMed
Google Scholar
Yang DT, Young KH, Kahl BS, Markovina S, Miyamoto S: Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma. Mol Cancer. 2008, 7: 40-
PubMed Central
PubMed
Google Scholar
Obeng EA, Carlson LM, Gutman DM, Harrington WJ, Lee KP, Boise LH: Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 2006, 107: 4907-4916.
CAS
PubMed Central
PubMed
Google Scholar
Walter P, Ron D: The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011, 334: 1081-1086.
CAS
PubMed
Google Scholar
Smith MH, Ploegh HL, Weissman JS: Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science. 2011, 334: 1086-1090.
CAS
PubMed
Google Scholar
Meister S, Schubert U, Neubert K, Herrmann K, Burger R, Gramatzki M, Hahn S, Schreiber S, Wilhelm S, Herrmann M, Jäck HM, Voll RE: Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition. Cancer Res. 2007, 67: 1783-1792.
CAS
PubMed
Google Scholar
Leung-Hagesteijn C, Erdmann N, Cheung G, Keats JJ, Stewart AK, Reece DE, Chung KC, Tiedemann RE: Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell. 2013, 24: 289-304.
CAS
PubMed Central
PubMed
Google Scholar
Weniger MA, Rizzatti EG, Pérez-Galán P, Liu D, Wang Q, Munson PJ, Raghavachari N, White T, Tweito MM, Dunleavy K, Ye Y, Wilson WH, Wiestner A: Treatment-induced oxidative stress and cellular antioxidant capacity determine response to bortezomib in mantle cell lymphoma. Clin Cancer Res. 2011, 17: 5101-5112.
CAS
PubMed Central
PubMed
Google Scholar
Cenci S, Oliva L, Cerruti F, Milan E, Bianchi G, Raule M, Mezghrani A, Pasqualetto E, Sitia R, Cascio P: Pivotal Advance: protein synthesis modulates responsiveness of differentiating and malignant plasma cells to proteasome inhibitors. J Leukocyte Biol. 2012, 92: 921-931.
CAS
PubMed
Google Scholar
Shabaneh TB, Downey SL, Goddard AL, Screen M, Lucas MM, Eastman A, Kisselev AF: Molecular basis of differential sensitivity of myeloma cells to clinically relevant bolus treatment with bortezomib. PLoS One. 2013, 8: e56132-
CAS
PubMed Central
PubMed
Google Scholar
Papandreou CN, Daliani DD, Nix D, Yang H, Madden T, Wang X, Pien CS, Millikan RE, Tu SM, Pagliaro L, Kim J, Adams J, Elliott P, Esseltine D, Petrusich A, Dieringer P, Perez C, Logothetis CJ: Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol. 2004, 22: 2108-2121.
CAS
PubMed
Google Scholar
Kupperman E, Lee EC, Cao Y, Bannerman B, Fitzgerald M, Berger A, Yu J, Yang Y, Hales P, Bruzzese F, Liu J, Blank J, Garcia K, Tsu C, Dick L, Fleming P, Yu L, Manfredi M, Rolfe M, Bolen J: Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res. 2010, 70: 1970-1980.
CAS
PubMed
Google Scholar
Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X, Bailey C, Joseph M, Libermann TA, Treon SP, Munshi NC, Richardson PG, Hideshima T, Anderson KC: Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A. 2002, 99: 14374-14379.
CAS
PubMed Central
PubMed
Google Scholar
Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel PM, Kruger E: Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. J Biol Chem. 2003, 278: 21517-21525.
CAS
PubMed
Google Scholar
Suzuki E, Demo S, Deu E, Keats J, Arastu-Kapur S, Bergsagel PL, Bennett MK, Kirk CJ: Molecular mechanisms of bortezomib resistant adenocarcinoma cells. PLoS One. 2011, 6: e27996-
CAS
PubMed Central
PubMed
Google Scholar
Aghajanian C, Soignet S, Dizon DS, Pien CS, Adams J, Elliott PJ, Sabbatini P, Miller V, Hensley ML, Pezzulli S, Canales C, Daud A, Spriggs DR: A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res. 2002, 8: 2505-2511.
CAS
PubMed
Google Scholar
Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM: Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci U S A. 1999, 96: 10403-10408.
CAS
PubMed Central
PubMed
Google Scholar
Myung J, Kim KB, Lindsten K, Dantuma NP, Crews CM: Lack of proteasome active site allostery as revealed by subunit-specific inhibitors. Mol Cell. 2001, 7: 411-420.
CAS
PubMed
Google Scholar
O'Connor OA, Stewart AK, Vallone M, Molineaux CJ, Kunkel LA, Gerecitano JF, Orlowski RZ: A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies. Clin Cancer Res. 2009, 15: 7085-7091.
PubMed Central
PubMed
Google Scholar
Siegel DS, Martin T, Wang M, Vij R, Jakubowiak AJ, Lonial S, Trudel S, Kukreti V, Bahlis N, Alsina M, Chanan-Khan A, Buadi F, Reu FJ, Somlo G, Zonder J, Song K, Stewart AK, Stadtmauer E, Kunkel L, Wear S, Wong AF, Orlowski RZ, Jagannath S: A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood. 2012, 120: 2817-2825.
CAS
PubMed Central
PubMed
Google Scholar
Wang M, Martin T, Bensinger W, Alsina M, Siegel DS, Kavalerchik E, Huang M, Orlowski RZ, Niesvizky R: Phase 2 dose-expansion study (PX-171-006) of carfilzomib, lenalidomide, and low-dose dexamethasone in relapsed or progressive multiple myeloma. Blood. 2013, 122: 3122-3128.
CAS
PubMed Central
PubMed
Google Scholar
Papadopoulos KP, Burris HA, Gordon M, Lee P, Sausville EA, Rosen PJ, Patnaik A, Cutler RE, Wang Z, Lee S, Jones SF, Infante JR: A phase I/II study of carfilzomib 2-10-min infusion in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2013, 72: 861-868.
CAS
PubMed Central
PubMed
Google Scholar
ClinicalTrials.gov, search term, "carfilzomib". In [], [http://clinicaltrials.gov/ct2/results?term=carfilzomib&recr=Open]
Rowinsky E: The Vinca Alkaloids. Holland-Frei Cancer Medicine. Edited by: Kuffe DW, Pollock RE, Weischselbaum RR. 2003, BC Decker, Hamilton (ON)
Google Scholar
Anchoori RK, Karanam B, Peng S, Wang JW, Jiang R, Tanno T, Orlowski RZ, Matsui W, Zhao M, Rudek MA, Hung CF, Chen X, Walters KJ, Roden RB: A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell. 2013, 24: 791-805.
CAS
PubMed
Google Scholar
Tian Z, D'Arcy P, Wang X, Ray A, Tai YT, Hu Y, Carrasco RD, Richardson P, Linder S, Chauhan D, Anderson KC: A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood. 2014, 123: 706-716.
CAS
PubMed Central
PubMed
Google Scholar
Parlati F, Aujay M, Bennett MK: Substrate for Rpn11 enzymatic activity. In United States: Proteolix; 2010.
PubChem: Summary assay for small molecule inhibitors of Rpn11 in a Fluorescent Polarization assay. In [], [http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=588509&loc=ea_ras]
Richardson PG, Hungria VTM, Yoon SS, Beksac M, Dimopoulos MA, Elghandour A, Jedrzejczak WW, Guenther A, Nakorn TN, Siritanaratkul N, Schlossman RL, Hou J, Moreau P, Lonial S, Lee JH, Einsele H, Sopala M, Bengoudifa B-R, Corrado C, San-Miguel JF: Panorama 1: a randomized, double-blind, phase 3 study of panobinostat or placebo plus bortezomib and dexamethasone in relapsed or relapsed and refractory multiple myeloma. J Clin Oncol. 2014, 32: 8510-
Google Scholar
Krönke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, Svinkina T, Heckl D, Comer E, Li X, Ciarlo C, Hartman E, Munshi N, Schenone M, Schreiber SL, Carr SA, Ebert BL: Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014, 343: 301-305.
PubMed Central
PubMed
Google Scholar
Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, Wong KK, Bradner JE, Kaelin WG: The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014, 343: 305-309.
CAS
PubMed Central
PubMed
Google Scholar
Gandhi AK, Kang J, Havens CG, Conklin T, Ning Y, Wu L, Ito T, Ando H, Waldman MF, Thakurta A, Klippel A, Handa H, Daniel TO, Schafer PH, Chopra R: Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br J Haematol. 2014, 164: 811-821.
CAS
PubMed Central
PubMed
Google Scholar
Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Cullis CA: An inhibitor of NEDD8-activating enzyme as a novel approach to treat cancer. Nature. 2009, 458: 732-736.
CAS
PubMed
Google Scholar
Yang Y, Kitagaki J, Dai RM, Tsai YC, Lorick KL, Ludwig RL, Pierre SA, Jensen JP, Davydov IV, Oberoi P, Li CC, Kenten JH, Beutler JA, Vousden KH, Weissman AM: Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 2007, 67: 9472-9481.
CAS
PubMed
Google Scholar
Chen JJ, Tsu CA, Gavin JM, Milhollen MA, Bruzzese FJ, Mallender WD, Sintchak MD, Bump NJ, Yang X, Ma J, Loke HK, Xu Q, Li P, Bence NF, Brownell JE, Dick LR: Mechanistic studies of substrate-assisted inhibition of ubiquitin-activating enzyme by adenosine sulfamate analogues. J Biol Chem. 2011, 286: 40867-40877.
CAS
PubMed Central
PubMed
Google Scholar
ClinicalTrials.gov, search term, "MLN7243". In [], [http://clinicaltrials.gov/ct2/show/NCT02045095?term=mln7243&rank=1]
Volkmann K, Lucas JL, Vuga D, Wang X, Brumm D, Stiles C, Kriebel D, Der-Sarkissian A, Krishnan K, Schweitzer C, Liu Z, Malyankar UM, Chiovitti D, Canny M, Durocher D, Sicheri F, Patterson JB: Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J Biol Chem. 2011, 286: 12743-12755.
CAS
PubMed Central
PubMed
Google Scholar
Cross BC, Bond PJ, Sadowski PG, Jha BK, Zak J, Goodman JM, Silverman RH, Neubert TA, Baxendale IR, Ron D, Harding HP: The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc Natl Acad Sci U S A. 2012, 109: E869-E878.
CAS
PubMed Central
PubMed
Google Scholar
Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S, Tam A, Solow-Cordero DE, Bouley DM, Offner F, Niwa M, Koong AC: Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood. 2011, 117: 1311-1314.
CAS
PubMed Central
PubMed
Google Scholar
Wang H, Blais J, Ron D, Cardozo T: Structural determinants of PERK inhibitor potency and selectivity. Chem Biol Drug Des. 2010, 76: 480-495.
CAS
PubMed
Google Scholar
Harding HP, Zyryanova AF, Ron D: Uncoupling proteostasis and development in vitro with a small molecule inhibitor of the pancreatic endoplasmic reticulum kinase, PERK. J Biol Chem. 2012, 287: 44338-44344.
CAS
PubMed Central
PubMed
Google Scholar
Atkins C, Liu Q, Minthorn E, Zhang SY, Figueroa DJ, Moss K, Stanley TB, Sanders B, Goetz A, Gaul N, Choudhry AE, Alsaid H, Jucker BM, Axten JM, Kumar R: Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 2013, 73: 1993-2002.
CAS
PubMed
Google Scholar
Ye Y, Meyer HH, Rapoport TA: The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature. 2001, 414: 652-656.
CAS
PubMed
Google Scholar
Dai RM, Chen E, Longo DL, Gorbea CM, Li CC: Involvement of valosin-containing protein, an ATPase Co-purified with IkappaBalpha and 26 S proteasome, in ubiquitin-proteasome-mediated degradation of IkappaBalpha. J Biol Chem. 1998, 273: 3562-3573.
CAS
PubMed
Google Scholar
Li JM, Wu H, Zhang W, Blackburn MR, Jin J: The p97-UFD1L-NPL4 protein complex mediates cytokine-induced IkappaBalpha proteolysis. Mol Cell Biol. 2014, 34: 335-347.
PubMed Central
PubMed
Google Scholar
Yamamoto S, Tomita Y, Nakamori S, Hoshida Y, Iizuka N, Okami J, Nagano H, Dono K, Umeshita K, Sakon M, Ishikawa O, Ohigashi H, Aozasa K, Monden M: Valosin-containing protein (p97) and Ki-67 expression is a useful marker in detecting malignant behavior of pancreatic endocrine neoplasms. Oncology. 2004, 66: 468-475.
CAS
PubMed
Google Scholar
Yamamoto S, Tomita Y, Hoshida Y, Iizuka N, Monden M, Yamamoto S, Iuchi K, Aozasa K: Expression level of valosin-containing protein (p97) is correlated with progression and prognosis of non-small-cell lung carcinoma. Ann Surg Oncol. 2004, 11: 697-704.
PubMed
Google Scholar
Yamamoto S, Tomita Y, Hoshida Y, Nagano H, Dono K, Umeshita K, Sakon M, Ishikawa O, Ohigashi H, Nakamori S, Monden M, Aozasa K: Increased expression of valosin-containing protein (p97) is associated with lymph node metastasis and prognosis of pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2004, 11: 165-172.
PubMed
Google Scholar
Yamamoto S, Tomita Y, Hoshida Y, Takiguchi S, Fujiwara Y, Yasuda T, Yano M, Nakamori S, Sakon M, Monden M, Aozasa K: Expression level of valosin-containing protein is strongly associated with progression and prognosis of gastric carcinoma. J Clin Oncol. 2003, 21: 2537-2544.
CAS
PubMed
Google Scholar
Yamamoto S, Tomita Y, Nakamori S, Hoshida Y, Nagano H, Dono K, Umeshita K, Sakon M, Monden M, Aozasa K: Elevated expression of valosin-containing protein (p97) in hepatocellular carcinoma is correlated with increased incidence of tumor recurrence. J Clin Oncol. 2003, 21: 447-452.
CAS
PubMed
Google Scholar
Yamamoto S, Tomita Y, Uruno T, Hoshida Y, Qiu Y, Iizuka N, Nakamichi I, Miyauchi A, Aozasa K: Expression level of valosin-containing protein (p97) is associated with prognosis of esophageal carcinoma. Clin Cancer Res. 2004, 10: 5558-5565.
CAS
PubMed
Google Scholar
Yamamoto S, Tomita Y, Uruno T, Hoshida Y, Qiu Y, Iizuka N, Nakamichi I, Miyauchi A, Aozasa K: Increased expression of valosin-containing protein (p97) is correlated with disease recurrence in follicular thyroid cancer. Ann Surg Oncol. 2005, 12: 925-934.
PubMed
Google Scholar
Fessart D, Marza E, Taouji S, Delom F, Chevet E: P97/CDC-48: proteostasis control in tumor cell biology. Cancer Lett. 2013, 337: 26-34.
CAS
PubMed
Google Scholar
Verma R, McDonald H, Yates JR, Deshaies RJ: Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin-Cdk. Mol Cell. 2001, 8: 439-448.
CAS
PubMed
Google Scholar
Franz A, Ackermann L, Hoppe T: Create and preserve: proteostasis in development and aging is governed by Cdc48/p97/VCP. Biochim Biophys Acta. 1843, 2014: 205-215.
Google Scholar
Meyer H, Bug M, Bremer S: Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol. 2012, 14: 117-123.
CAS
PubMed
Google Scholar
Carvalho P, Goder V, Rapoport TA: Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell. 2006, 126: 361-373.
CAS
PubMed
Google Scholar
Verma R, Oania R, Fang R, Smith GT, Deshaies RJ: Cdc48/p97 mediates UV-dependent turnover of RNA Pol II. Mol Cell. 2011, 41: 82-92.
CAS
PubMed Central
PubMed
Google Scholar
Beskow A, Grimberg KB, Bott LC, Salomons FA, Dantuma NP, Young P: A conserved unfoldase activity for the p97 AAA-ATPase in proteasomal degradation. J Mol Biol. 2009, 394: 732-746.
CAS
PubMed
Google Scholar
Verma R, Oania RS, Kolawa NJ, Deshaies RJ: Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. eLife. 2013, 2: e00308-
PubMed
Google Scholar
Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li GW, Zhou S, King D, Shen PS, Weibezahn J, Dunn JG, Rouskin S, Inada T, Frost A, Weissman JS: A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell. 2012, 151: 1042-1054.
CAS
PubMed Central
PubMed
Google Scholar
Defenouillère Q, Yao Y, Mouaikel J, Namane A, Galopier A, Decourty L, Doyen A, Malabat C, Saveanu C, Jacquier A, Fromont-Racine M: Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proc Natl Acad Sci U S A. 2013, 110: 5046-5051.
PubMed Central
PubMed
Google Scholar
Buchan JR, Kolaitis RM, Taylor JP, Parker R: Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell. 2013, 153: 1461-1474.
CAS
PubMed Central
PubMed
Google Scholar
Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, Weihl CC: Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol. 2009, 187: 875-888.
CAS
PubMed Central
PubMed
Google Scholar
Ju JS, Miller SE, Hanson PI, Weihl CC: Impaired protein aggregate handling and clearance underlie the pathogenesis of p97/VCP-associated disease. J Biol Chem. 2008, 283: 30289-30299.
CAS
PubMed Central
PubMed
Google Scholar
Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, Yao TP, Dantuma NP, Taylor JP: VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy. 2010, 6: 217-227.
CAS
PubMed Central
PubMed
Google Scholar
Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP: HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007, 447: 859-863.
CAS
PubMed
Google Scholar
Magnaghi P, D'Alessio R, Valsasina B, Avanzi N, Rizzi S, Asa D, Gasparri F, Cozzi L, Cucchi U, Orrenius C, Polucci P, Ballinari D, Perrera C, Leone A, Cervi G, Casale E, Xiao Y, Wong C, Anderson DJ, Galvani A, Donati D, O'Brien T, Jackson PK, Isacchi A: Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat Chem Biol. 2013, 9: 548-556.
CAS
PubMed
Google Scholar
Chou TF, Brown SJ, Minond D, Nordin BE, Li K, Jones AC, Chase P, Porubsky PR, Stoltz BM, Schoenen FJ, Patricelli MP, Hodder P, Rosen H, Deshaies RJ: A reversible inhibitor of the AAA ATPase p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc Natl Acad Sci U S A. 2011, 108: 4834-4839.
CAS
PubMed Central
PubMed
Google Scholar
Acharya P, Liao M, Engel JC, Correia MA: Liver cytochrome P450 3A endoplasmic reticulum-associated degradation: a major role for the p97 AAA ATPase in cytochrome p450 3A extraction into the cytosol. J Biol Chem. 2011, 286: 3815-3828.
CAS
PubMed Central
PubMed
Google Scholar
Piccirillo R, Goldberg AL: The p97/VCP ATPase is critical in muscle atrophy and the accelerated degradation of muscle proteins. EMBO J. 2012, 31: 3334-3350.
CAS
PubMed Central
PubMed
Google Scholar
Chou TF, Li K, Frankowski KJ, Schoenen FJ, Deshaies RJ: Structure-activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. Chem Med Chem. 2013, 8: 297-312.
CAS
PubMed Central
PubMed
Google Scholar
Wang Q, Li L, Ye Y: Inhibition of p97-dependent protein degradation by Eeyarestatin I. J Biol Chem. 2008, 283: 7445-7454.
CAS
PubMed Central
PubMed
Google Scholar
Bursavich MG, Parker DP, Willardsen JA, Gao ZH, Davis T, Ostanin K, Robinson R, Peterson A, Cimbora DM, Zhu JF, Richards B: 2-Anilino-4-aryl-1,3-thiazole inhibitors of valosin-containing protein (VCP or p97). Bioorg Med Chem Lett. 2010, 20: 1677-1679.
CAS
PubMed
Google Scholar
Brown SJ, Chou TF, Deshaies R, Roberts E, Guerrero M, Minond D, Mercer BA, Hodder P, Rosen HR: Probe report for P97/cdc48 inhibitors. Probe Reports from the NIH Molecular Libraries Program. 2010, [http://www.ncbi.nlm.nih.gov/books/NBK47346/], [http://www.ncbi.nlm.nih.gov/books/NBK47346/]
Google Scholar
Sasazawa Y, Kanagaki S, Tashiro E, Nogawa T, Muroi M, Kondoh Y, Osada H, Imoto M: Xanthohumol impairs autophagosome maturation through direct inhibition of valosin-containing protein. ACS Chem Biol. 2012, 7: 892-900.
CAS
PubMed
Google Scholar
Yi P, Higa A, Taouji S, Bexiga MG, Marza E, Arma D, Castain C, Le Bail B, Simpson JC, Rosenbaum J, Balabaud C, Bioulac-Sage P, Blanc JF, Chevet E: Sorafenib-mediated targeting of the AAA(+) ATPase p97/VCP leads to disruption of the secretory pathway, endoplasmic reticulum stress, and hepatocellular cancer cell death. Mol Cancer Ther. 2012, 11: 2610-2620.
CAS
PubMed
Google Scholar
Ikeda HO, Sasaoka N, Koike M, Nakano N, Muraoka Y, Toda Y, Fuchigami T, Shudo T, Iwata A, Hori S, Yoshimura N, Kakizuka A: Novel VCP modulators mitigate major pathologies of rd10, a mouse model of retinitis pigmentosa. Sci Rep. 2014, 4: 5970-
CAS
PubMed Central
PubMed
Google Scholar
Kang MJ, Wu T, Wijeratne EM, Lau EC, Mason DJ, Mesa C, Tillotson J, Zhang DD, Gunatilaka AA, La Clair JJ, Chapman E: Functional chromatography reveals three natural products that target the same protein with distinct mechanisms of action. Chembiochem. 2014, 15: 2125-2131.
CAS
PubMed Central
PubMed
Google Scholar
Chou TF, Deshaies RJ: Quantitative cell-based protein degradation assays to identify and classify drugs that target the ubiquitin-proteasome system. J Biol Chem. 2011, 286: 16546-16554.
CAS
PubMed Central
PubMed
Google Scholar
Johnson ES, Ma PC, Ota IM, Varshavsky A: A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem. 1995, 270: 17442-17456.
CAS
PubMed
Google Scholar
Dantuma NP, Lindsten K, Glas R, Jellne M, Masucci MG: Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat Biotechnol. 2000, 18: 538-543.
CAS
PubMed
Google Scholar
Kimbrel EA, Davis TN, Bradner JE, Kung AL: In vivo pharmacodynamic imaging of proteasome inhibition. Mol Imaging. 2009, 8: 140-147.
CAS
PubMed
Google Scholar
Polucci P, Magnaghi P, Angiolini M, Asa D, Avanzi N, Badari A, Bertrand J, Casale E, Cauteruccio S, Cirla A, Cozzi L, Galvani A, Jackson PK, Liu Y, Magnuson S, Malgesini B, Nuvoloni S, Orrenius C, Sirtori FR, Riceputi L, Rizzi S, Trucchi B, O'Brien T, Isacchi A, Donati D, D'Alessio R: Alkylsulfanyl-1,2,4-triazoles, a new class of allosteric valosine containing protein inhibitors: synthesis and structure-activity relationships. J Med Chem. 2013, 56: 437-450.
CAS
PubMed
Google Scholar
Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ: Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell. 2010, 38: 17-28.
CAS
PubMed Central
PubMed
Google Scholar
Steffen J, Seeger M, Koch A, Kruger E: Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol Cell. 2010, 40: 147-158.
CAS
PubMed
Google Scholar
Radhakrishnan SK, den Besten W, Deshaies RJ: p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition. eLife. 2014, 3: e01856-
PubMed Central
PubMed
Google Scholar
Zhang Y, Ren Y, Li S, Hayes JD: Transcription factor Nrf1 is topologically repartitioned across membranes to enable target gene transactivation through its acidic glucose-responsive domains. PLoS One. 2014, 9: e93458-
PubMed Central
PubMed
Google Scholar
Sha Z, Goldberg AL: Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Curr Biol. 2014, 24: 1573-1583.
CAS
PubMed Central
PubMed
Google Scholar
Wang W, Chan JY: Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function. J Biol Chem. 2006, 281: 19676-19687.
CAS
PubMed
Google Scholar
Auner HW, Moody AM, Ward TH, Kraus M, Milan E, May P, Chaidos A, Driessen C, Cenci S, Dazzi F, Rahemtulla A, Apperley JF, Karadimitris A, Dillon N: Combined inhibition of p97 and the proteasome causes lethal disruption of the secretory apparatus in multiple myeloma cells. PLoS One. 2013, 8: e74415-
CAS
PubMed Central
PubMed
Google Scholar
ClinicalTrials.gov, search terms "CB-5083" and "cleave". In [], [clinicaltrials.gov/ct2/results?term=cb-5083+AND+cleave&Search=Search]