Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A. 2001;98:9161–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, et al. The effects of artificial selection on the maize genome. Science. 2005;308:1310–4.
Article
CAS
PubMed
Google Scholar
Morgante M, De Paoli E, Radovic S. Transposable elements and the plant pan-genomes. Curr Opin Plant Biol. 2007;10:149–55.
Article
CAS
PubMed
Google Scholar
Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, et al. Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res. 2010;20:1689–99.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fu H, Dooner HK. Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci U S A. 2002;99:9573–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, et al. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell. 2009;21:2194–202.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yu J, Buckler ES. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol. 2006;17:155–60.
Article
CAS
PubMed
Google Scholar
Yu J, Holland JB, McMullen MD, Buckler ES. Genetic design and statistical power of nested association mapping in maize. Genetics. 2008;178:539–51.
Article
PubMed Central
PubMed
Google Scholar
Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, et al. The genetic architecture of maize flowering time. Science. 2009;325:714–8.
Article
CAS
PubMed
Google Scholar
Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, et al. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet. 2011;43:159–62.
Article
CAS
PubMed
Google Scholar
Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, et al. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet. 2011;7:e1002383.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet. 2011;43:163–8.
Article
CAS
PubMed
Google Scholar
Poland JA, Bradbury PJ, Buckler ES, Nelson RJ. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci U S A. 2011;108:6893–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, et al. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol. 2012;158:824–34.
Article
PubMed Central
CAS
PubMed
Google Scholar
Peiffer JA, Flint-Garcia SA, De Leon N, McMullen MD, Kaeppler SM, Buckler ES. The genetic architecture of maize stalk strength. PLoS One. 2013;8:e67066.
Article
PubMed Central
CAS
PubMed
Google Scholar
Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ, et al. The genetic architecture of maize height. Genetics. 2014;196:1337–56.
Article
PubMed Central
CAS
PubMed
Google Scholar
Henry A-M, Damerval C. High rates of polymorphism and recombination at the Opaque-2 locus in cultivated maize. Mol Gen Genet. 1997;256:147–57.
Article
CAS
PubMed
Google Scholar
Li H, Bradbury P, Ersoz E, Buckler ES, Wang J. Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS One. 2011;6:e17573.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li Y, Wang T. Germplasm base of maize breeding in China and formation of foundation parents. J Maize Sci. 2010;18:1–6.
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.
Article
PubMed Central
CAS
PubMed
Google Scholar
Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, et al. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 2013;14:R55.
Article
PubMed Central
PubMed
Google Scholar
Poland JA, Brown PJ, Sorrells ME, Jannink JL. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One. 2012;7:e32253.
Article
PubMed Central
CAS
PubMed
Google Scholar
Poland J, Endelman J, Dawson J, Rutkoski J, Wu SY, Manes Y, et al. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome. 2012;5:103–13.
Article
CAS
Google Scholar
Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, et al. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet. 2013;9:e1003215.
Article
PubMed Central
CAS
PubMed
Google Scholar
De Donato M, Peters SO, Mitchell SE, Hussain T, Imumorin IG. Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing. PLoS One. 2013;8:e62137.
Article
PubMed Central
PubMed
Google Scholar
Huang XH, Feng Q, Qian Q, Zhao Q, Wang L, Wang AH, et al. High-throughput genotyping by whole-genome resequencing. Genome Res. 2009;19:1068–76.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang L, Wang A, Huang X, Zhao Q, Dong G, Qian Q, et al. Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theor Appl Genet. 2011;122:327–40.
Article
PubMed Central
PubMed
Google Scholar
Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, et al. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One. 2011;6:e17595.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zou GH, Zhai GW, Feng Q, Yan S, Wang A, Zhao Q, et al. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot. 2012;63:5451–62.
Article
CAS
PubMed
Google Scholar
Xie H, Ding D, Cui Z, Wu X, Hu Y, Liu Z, et al. Genetic analysis of the related traits of flowering and silk for hybrid seed production in maize. Genes Genomics. 2010;32:55–61.
Article
Google Scholar
Danilevskaya ON, Meng X, Selinger DA, Deschamps S, Hermon P, Vansant G, et al. Involvement of the MADS-box gene ZMM4 in floral induction and inflorescence development in maize. Plant Physiol. 2008;147:2054–69.
Article
PubMed Central
CAS
PubMed
Google Scholar
Meng X, Muszynski MG, Danilevskaya ON. The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell. 2011;23:942–60.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li CH, Li YX, Sun BC, Peng B, Liu C, Liu ZZ, et al. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica. 2013;193:303–16.
Article
CAS
Google Scholar
Giraud H, Lehermeier C, Bauer E, Falque M, Segura V, Bauland C, et al. Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize. Genetics. 2014;198:1717–34.
Article
PubMed
Google Scholar
Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, et al. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci U S A. 2010;107:10578–83.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stange M, Utz HF, Schrag TA, Melchinger AE, Würschum T. High-density genotyping: an overkill for QTL mapping? Lessons learned from a case study in maize and simulations. Theor Appl Genet. 2013;126:2563–74.
Article
CAS
PubMed
Google Scholar
Darvasi A, Weinreb A, Minke V, Weller JI, Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics. 1993;134:943–51.
PubMed Central
CAS
PubMed
Google Scholar
Piepho HP. Optimal marker density for interval mapping in a backcross population. Heredity. 2000;84:437–40.
Article
PubMed
Google Scholar
Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, et al. A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J. 2012;10:826–39.
Article
CAS
PubMed
Google Scholar
Pan QC, Ali F, Yang XH, Li JS, Yan JB. Exploring the genetic characteristics of two recombinant inbred line populations via high-density SNP markers in maize. PLoS One. 2012;7:e52777.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu X, Li YX, Shi YS, Song YC, Wang TY, Huang YB, et al. Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping. Theor Appl Genet. 2014;127:621–31.
Article
PubMed
Google Scholar
Chinese Crop Germplasm Resources Information System. http://www.cgris.net/maize/data/. Accessed 23 Sep 2015.
McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li HH, Sun Q, et al. Genetic properties of the maize nested association mapping population. Science. 2009;325:737–40.
Article
CAS
PubMed
Google Scholar
Buckler Lab for Maize Genetics and Diversity. http://www.maizegenetics.net/Table/Genotyping-By-Sequencing. Accessed 4 May 2011.
Panzea Database. http://www.panzea.org. Accessed 12 Sep 2005.
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.
Article
CAS
PubMed
Google Scholar
Broman KW, Wu H, Sen Ś, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003;19:889–90.
Article
CAS
PubMed
Google Scholar
Van Ooijen J. JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands. 2006.
Wang J, Li H, Zhang L, Li C, Meng L. QTL iciMapping software.2012. http://www.isbreeding.net. Accessed 10 Apr 2012.