Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475(7356):324–32.
Article
CAS
PubMed
Google Scholar
Horwich AL. Chaperonin-mediated protein folding. J Biol Chem. 2013;288(33):23622–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horwich AL, Fenton WA, Chapman E, Farr GW. Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol. 2007;23:115–45.
Article
CAS
PubMed
Google Scholar
Lopez T, Dalton K, Frydman J. The mechanism and function of group II chaperonins. J Mol Biol. 2015;427:2919–30.
Article
CAS
PubMed
Google Scholar
Cheng MY, Hartl FU, Martin J, Pollock RA, Kalousek F, Neupert W, et al. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature. 1989;337(6208):620–5.
Article
CAS
PubMed
Google Scholar
Dickson R, Weiss C, Howard RJ, Alldrick SP, Ellis RJ, Lorimer G, et al. Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. J Biol Chem. 2000;275(16):11829–35.
Article
CAS
PubMed
Google Scholar
Hayer-Hartl MK, Martin J, Hartl FU. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Science. 1995;269(5225):836–41.
Article
CAS
PubMed
Google Scholar
Huo Y, Hu Z, Zhang K, Wang L, Zhai Y, Zhou Q, et al. Crystal structure of group II chaperonin in the open state. Structure. 2010;18(10):1270–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leitner A, Joachimiak LA, Bracher A, Monkemeyer L, Walzthoeni T, Chen B, et al. The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure. 2012;20(5):814–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature. 1994;371(6498):578–86.
Article
CAS
PubMed
Google Scholar
Xu Z, Horwich AL, Sigler PB. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature. 1997;388(6644):741–50.
Article
CAS
PubMed
Google Scholar
Saibil HR, Fenton WA, Clare DK, Horwich AL. Structure and allostery of the chaperonin GroEL. J Mol Biol. 2013;425(9):1476–87.
Article
CAS
PubMed
Google Scholar
Nisemblat S, Yaniv O, Parnas A, Frolow F, Azem A. Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Proc Natl Acad Sci U S A. 2015;112(19):6044–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zahn R, Buckle AM, Perrett S, Johnson CM, Corrales FJ, Golbik R, et al. Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Proc Natl Acad Sci U S A. 1996;93(26):15024–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fei X, Yang D, LaRonde-LeBlanc N, Lorimer GH. Crystal structure of a GroEL-ADP complex in the relaxed allosteric state at 2.7 A resolution. Proc Natl Acad Sci U S A. 2013;110(32):E2958–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koike-Takeshita A, Arakawa T, Taguchi H, Shimamura T. Crystal structure of a symmetric football-shaped GroEL:GroES2-ATP14 complex determined at 3.8A reveals rearrangement between two GroEL rings. J Mol Biol. 2014;426(21):3634–41.
Article
CAS
PubMed
Google Scholar
Fenton WA, Kashi Y, Furtak K, Horwich AL. Residues in chaperonin GroEL required for polypeptide binding and release. Nature. 1994;371(6498):614–9.
Article
CAS
PubMed
Google Scholar
Wang Q, Buckle AM, Fersht AR. From minichaperone to GroEL 1: information on GroEL-polypeptide interactions from crystal packing of minichaperones. J Mol Biol. 2000;304(5):873–81.
Article
CAS
PubMed
Google Scholar
Boisvert DC, Wang J, Otwinowski Z, Horwich AL, Sigler PB. The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. Nat Struct Biol. 1996;3(2):170–7.
Article
CAS
PubMed
Google Scholar
Rye HS, Roseman AM, Chen S, Furtak K, Fenton WA, Saibil HR, et al. GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell. 1999;97(3):325–38.
Article
CAS
PubMed
Google Scholar
Hayer-Hartl MK, Ewalt KL, Hartl FU. On the role of symmetrical and asymmetrical chaperonin complexes in assisted protein folding. Biol Chem. 1999;380(5):531–40.
Article
CAS
PubMed
Google Scholar
Fei X, Ye X, LaRonde NA, Lorimer GH. Formation and structures of GroEL:GroES2 chaperonin footballs, the protein-folding functional form. Proc Natl Acad Sci U S A. 2014;111(35):12775–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang D, Ye X, Lorimer GH. Symmetric GroEL:GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine. Proc Natl Acad Sci U S A. 2013;110(46):E4298–305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koike-Takeshita A, Yoshida M, Taguchi H. Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant. J Biol Chem. 2008;283(35):23774–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt M, Rutkat K, Rachel R, Pfeifer G, Jaenicke R, Viitanen P, et al. Symmetric complexes of GroE chaperonins as part of the functional cycle. Science. 1994;265(5172):656–9.
Article
CAS
PubMed
Google Scholar
Azem A, Kessel M, Goloubinoff P. Characterization of a functional GroEL14(GroES7)2 chaperonin hetero-oligomer. Science. 1994;265(5172):653–6.
Article
CAS
PubMed
Google Scholar
Haldar S, Gupta AJ, Yan X, Milicic G, Hartl FU, Hayer-Hartl M. Chaperonin-assisted protein folding: relative population of asymmetric and symmetric GroEL:GroES complexes. J Mol Biol. 2015;427(12):2244–55.
Article
CAS
PubMed
Google Scholar
Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem. 2013;82:323–55.
Article
CAS
PubMed
Google Scholar
Kipnis Y, Papo N, Haran G, Horovitz A. Concerted ATP-induced allosteric transitions in GroEL facilitate release of protein substrate domains in an all-or-none manner. Proc Natl Acad Sci U S A. 2007;104(9):3119–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yifrach O, Horovitz A. Two lines of allosteric communication in the oligomeric chaperonin GroEL are revealed by the single mutation Arg196--> Ala. J Mol Biol. 1994;243(3):397–401.
Article
CAS
PubMed
Google Scholar
Viitanen PV, Schmidt M, Buchner J, Suzuki T, Vierling E, Dickson R, et al. Functional characterization of the higher plant chloroplast chaperonins. J Biol Chem. 1995;270(30):18158–64.
Article
CAS
PubMed
Google Scholar
Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, et al. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 1988;333(6171):330–4.
Article
CAS
PubMed
Google Scholar
Hemmingsen SM, Ellis RJ. Purification and properties of ribulosebisphosphate carboxylase large subunit binding protein. Plant Physiol. 1986;80(1):269–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barraclough R, Ellis RJ. Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim Biophys Acta. 1980;608(1):19–31.
Article
CAS
PubMed
Google Scholar
Hill JE, Hemmingsen SM. Arabidopsis thaliana type I and II chaperonins. Cell Stress Chaperones. 2001;6(3):190–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vitlin A, Weiss C, Demishtein-Zohary K, Rasouly A, Levin D, Pisanty-Farchi O, et al. Chloroplast beta chaperonins from A. thaliana function with endogenous cpn10 homologs in vitro. Plant Mol Biol. 2011;77(1-2):105–15.
Article
CAS
PubMed
Google Scholar
Bonshtien AL, Parnas A, Sharkia R, Niv A, Mizrahi I, Azem A, et al. Differential effects of co-chaperonin homologs on cpn60 oligomers. Cell Stress Chaperones. 2009;14(5):509–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schroda M. The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth Res. 2004;82(3):221–40.
Article
CAS
PubMed
Google Scholar
Bai C, Guo P, Zhao Q, Lv Z, Zhang S, Gao F, et al. Protomer roles in chloroplast chaperonin assembly and function. Mol Plant. 2015;8(10):1478–92.
Article
CAS
PubMed
Google Scholar
Baneyx F, Bertsch U, Kalbach CE, van der Vies SM, Soll J, Gatenby AA. Spinach chloroplast cpn21 co-chaperonin possesses two functional domains fused together in a toroidal structure and exhibits nucleotide-dependent binding to plastid chaperonin 60. J Biol Chem. 1995;270(18):10695–702.
Article
CAS
PubMed
Google Scholar
Koumoto Y, Shimada T, Kondo M, Hara-Nishimura I, Nishimura M. Chloroplasts have a novel Cpn10 in addition to Cpn20 as co-chaperonins in Arabidopsis thaliana. J Biol Chem. 2001;276(32):29688–94.
Article
CAS
PubMed
Google Scholar
Sun L, Li J, Xu C, Yu F, Zhou H, Tang L, et al. The sandwich method for protein crystallization and its effect on crystal growth. Acta Biochim Biophys Sin (Shanghai). 2010;42(5):332–6.
Article
CAS
Google Scholar
Bartolucci C, Lamba D, Grazulis S, Manakova E, Heumann H. Crystal structure of wild-type chaperonin GroEL. J Mol Biol. 2005;354(4):940–51.
Article
CAS
PubMed
Google Scholar
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372(3):774–97.
Article
CAS
PubMed
Google Scholar
Wang J, Boisvert DC. Structural basis for GroEL-assisted protein folding from the crystal structure of (GroEL-KMgATP)14 at 2.0A resolution. J Mol Biol. 2003;327(4):843–55.
Article
CAS
PubMed
Google Scholar
Guo P, Jiang S, Bai C, Zhang W, Zhao Q, Liu C. Asymmetric functional interaction between chaperonin and its plastidic cofactors. FEBS J. 2015;282(20):3959–70.
Article
CAS
PubMed
Google Scholar
Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, Topf M, et al. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell. 2012;149(1):113–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
McLennan N, Masters M. GroE is vital for cell-wall synthesis. Nature. 1998;392(6672):139.
Article
CAS
PubMed
Google Scholar
Sot B, Galan A, Valpuesta JM, Bertrand S, Muga A. Salt bridges at the inter-ring interface regulate the thermostat of GroEL. J Biol Chem. 2002;277(37):34024–9.
Article
CAS
PubMed
Google Scholar
Cabo-Bilbao A, Spinelli S, Sot B, Agirre J, Mechaly AE, Muga A, et al. Crystal structure of the temperature-sensitive and allosteric-defective chaperonin GroELE461K. J Struct Biol. 2006;155(3):482–92.
Article
CAS
PubMed
Google Scholar
Nishio K, Hirohashi T, Nakai M. Chloroplast chaperonins: evidence for heterogeneous assembly of alpha and beta Cpn60 polypeptides into a chaperonin oligomer. Biochem Biophys Res Commun. 1999;266(2):584–7.
Article
CAS
PubMed
Google Scholar
Bonk M, Tadros M, Vandekerckhove J, Al-Babili S, Beyer P. Purification and characterization of chaperonin 60 and heat-shock protein 70 from chromoplasts of Narcissus pseudonarcissus. Plant Physiol. 1996;111(3):931–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell. 2005;122(2):209–20.
Article
CAS
PubMed
Google Scholar
Peng L, Fukao Y, Myouga F, Motohashi R, Shinozaki K, Shikanai T. A chaperonin subunit with unique structures is essential for folding of a specific substrate. PLoS Biol. 2011;9(4):e1001040.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao J, Chi W, Ouyang M, He B, Chen F, Zhang L. PAB is an assembly chaperone that functions downstream of chaperonin 60 in the assembly of chloroplast ATP synthase coupling factor 1. Proc Natl Acad Sci U S A. 2015;112(13):4152–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang YC, Chang HC, Roeben A, Wischnewski D, Wischnewski N, Kerner MJ, et al. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell. 2006;125(5):903–14.
Article
CAS
PubMed
Google Scholar
Barkan A. Nuclear mutants of maize with defects in chloroplast polysome assembly have altered chloroplast RNA metabolism. Plant Cell. 1993;5(4):389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Apuya NR, Yadegari R, Fischer RL, Harada JJ, Zimmerman JL, Goldberg RB. The Arabidopsis embryo mutant schlepperless has a defect in the chaperonin-60alpha gene. Plant Physiol. 2001;126(2):717–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki K, Nakanishi H, Bower J, Yoder DW, Osteryoung KW, Miyagishima SY. Plastid chaperonin proteins Cpn60 alpha and Cpn60 beta are required for plastid division in Arabidopsis thaliana. BMC Plant Biol. 2009;9:38.
Article
PubMed
PubMed Central
Google Scholar
Castanie MP, Berges H, Oreglia J, Prere MF, Fayet O. A set of pBR322-compatible plasmids allowing the testing of chaperone-assisted folding of proteins overexpressed in Escherichia coli. Anal Biochem. 1997;254(1):150–2.
Article
CAS
PubMed
Google Scholar
Tsai YC, Mueller-Cajar O, Saschenbrecker S, Hartl FU, Hayer-Hartl M. Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J Biol Chem. 2012;287(24):20471–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao BV, et al. Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature. 2010;463(7278):197–202.
Article
CAS
PubMed
Google Scholar