Bernard S, Papineau D. Graphitic carbons and biosignatures. Elements. 2014;10(6):435–40.
Article
CAS
Google Scholar
Goh EB, Yim G, Tsui W, McClure J, Surette MG, Davies J. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci U S A. 2002;99(26):17025–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Landan G, Cohen G, Aharonowitz Y, Shuali Y, Graur D, Shiffman D. Evolution of isopenicillin N synthase genes may have involved horizontal gene transfer. Mol Biol Evol. 1990;7(5):399–406.
CAS
PubMed
Google Scholar
Weigel B, Burgett S, Chen V, Skatrud P, Frolik C, Queener S, et al. Cloning and expression in Escherichia coli of isopenicillin N synthetase genes from Streptomyces lipmanii and Aspergillus nidulans. J Bacteriol. 1988;170(9):3817–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N, Coombes BK, et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature. 2011;478(7370):506–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Devault AM, Golding GB, Waglechner N, Enk JM, Kuch M, Tien JH, et al. Second-pandemic strain of Vibrio cholerae from the Philadelphia cholera outbreak of 1849. N Engl J Med. 2014;370(4):334–40.
Article
CAS
PubMed
Google Scholar
Devault AM, Mortimer TD, Kitchen A, Kiesewetter H, Enk JM, Golding GB, et al. A molecular portrait of maternal sepsis from Byzantine Troy. eLife. 2017;6:e20983.
D'Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011;477(7365):457–61.
Article
PubMed
Google Scholar
Harkins CP, Pichon B, Doumith M, Parkhill J, Westh H, Tomasz A, et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 2017;18(1):130.
Article
PubMed
PubMed Central
Google Scholar
Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One. 2012;7(4):e34953.
Article
CAS
PubMed
PubMed Central
Google Scholar
Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 2014;509(7502):612–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morar M, Wright GD. The genomic enzymology of antibiotic resistance. Annu Rev Genet. 2010;44:25–51.
Article
CAS
PubMed
Google Scholar
Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. 2001;104(6):901–12.
Article
CAS
PubMed
Google Scholar
Olsthoorn-Tieleman LN, Palstra RJ, van Wezel GP, Bibb MJ, Pleij CW. Elongation factor Tu3 (EF-Tu3) from the kirromycin producer Streptomyces ramocissimus Is resistant to three classes of EF-Tu-specific inhibitors. J Bacteriol. 2007;189(9):3581–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brakhage AA, Al-Abdallah Q, Tuncher A, Sprote P. Evolution of beta-lactam biosynthesis genes and recruitment of trans-acting factors. Phytochemistry. 2005;66(11):1200–10.
Article
CAS
PubMed
Google Scholar
Shivakumar A, Dubnau D. Characterization of a plasmid-specified ribosome methylase associated with macrolide resistance. Nucleic Acids Res. 1981;9(11):2549–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdelwahab H, Martin Del Campo JS, Dai Y, Adly C, El-Sohaimy S, Sobrado P. Mechanism of Rifampicin Inactivation in Nocardia farcinica. PLoS One. 2016;11(10):e0162578.
Article
PubMed
PubMed Central
Google Scholar
Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42–51.
Article
CAS
PubMed
Google Scholar
Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. 2006;19(2):382–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martín JF, Casqueiro J, Liras P. Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol. 2005;8(3):282–93.
Article
PubMed
Google Scholar
Pages JM, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol. 2008;6(12):893–903.
Article
CAS
PubMed
Google Scholar
Gupta RS. Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek. 2011;100(2):171–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hasper HE, Kramer NE, Smith JL, Hillman J, Zachariah C, Kuipers OP, et al. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science. 2006;313(5793):1636–7.
Article
CAS
PubMed
Google Scholar
Handwerger S, Pucci MJ, Volk KJ, Liu J, Lee MS. Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate. J Bacteriol. 1994;176(1):260–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benveniste R, Davies J. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci. 1973;70(8):2276–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang X, Ellabaan MMH, Charusanti P, Munck C, Blin K, Tong Y, et al. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat Commun. 2017;8:15784.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ziemert N, Lechner A, Wietz M, Millán-Aguiñaga N, Chavarria KL, Jensen PR. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci. 2014;111(12):E1130–E9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hughes VM, Datta N. Conjugative plasmids in bacteria of the ‘pre-antibiotic’era. Nature. 1983;302(5910):725–6.
Article
CAS
PubMed
Google Scholar
Jones C, Stanley J. Salmonella plasmids of the pre-antibiotic era. Microbiology. 1992;138(1):189–97.
CAS
Google Scholar
Baquero F, Tedim AP, Coque TM. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol. 2013;4:15.
Article
PubMed
PubMed Central
Google Scholar
Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007;5(3):175–86.
Article
CAS
PubMed
Google Scholar
Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45(D1):D566–D73.
Article
PubMed
Google Scholar
Martinez JL, Coque TM, Baquero F. What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol. 2015;13(2):116–23.
Article
CAS
PubMed
Google Scholar
Pawlowski AC, Wang W, Koteva K, Barton HA, McArthur AG, Wright GD. A diverse intrinsic antibiotic resistome from a cave bacterium. Nat Commun. 2016;7:13803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol. 2010;8(4):260–71.
CAS
PubMed
Google Scholar
Dahlberg C, Chao L. Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. Genetics. 2003;165(4):1641–9.
CAS
PubMed
PubMed Central
Google Scholar
Foucault ML, Courvalin P, Grillot-Courvalin C. Fitness cost of VanA-type vancomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(6):2354–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf YI, Makarova KS, Lobkovsky AE, Koonin EV. Two fundamentally different classes of microbial genes. Nat Microbiol. 2016;2:16208.
Article
CAS
PubMed
Google Scholar
Baquero F, Coque TM, de la Cruz F. Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob Agents Chemother. 2011;55(8):3649–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EM. Genome-wide experimental determination of barriers to horizontal gene transfer. Science. 2007;318(5855):1449–52.
Article
CAS
PubMed
Google Scholar
Linares JF, Gustafsson I, Baquero F, Martinez JL. Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A. 2006;103(51):19484–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillings MR. Lateral gene transfer, bacterial genome evolution, and the Anthropocene. Ann N Y Acad Sci. 2017;1389(1):20–36.
Article
PubMed
Google Scholar
Lercher MJ, Pal C. Integration of horizontally transferred genes into regulatory interaction networks takes many million years. Mol Biol Evol. 2008;25(3):559–67.
Article
CAS
PubMed
Google Scholar
Caro-Quintero A, Konstantinidis KT. Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria. ISME J. 2015;9(4):958–67.
Article
CAS
PubMed
Google Scholar
Stokes JM, French S, Ovchinnikova OG, Bouwman C, Whitfield C, Brown ED. Cold stress makes Escherichia coli susceptible to glycopeptide antibiotics by altering outer membrane integrity. Cell Chem Biol. 2016;23(2):267–77.
Article
CAS
PubMed
Google Scholar
Baquero F, Lanza VF, Canton R, Coque TM. Public health evolutionary biology of antimicrobial resistance: priorities for intervention. Evol Appl. 2015;8(3):223–39.
Article
CAS
PubMed
Google Scholar