Darwin C, Darwin F. The power of movements in plants. London: Murray; 1880.
Book
Google Scholar
Christie JM, Murphy AS. Shoot phototropism in higher plants: new light through old concepts. Am J Bot. 2013;100:35–46.
Article
CAS
PubMed
Google Scholar
Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid KA, et al. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol. 2013;23:53–7.
Article
CAS
PubMed
Google Scholar
Davies PJ. The plant hormones: their nature, occurrence, and functions. In: Davies PJ, editor. The plant hormones: biosynthesis, signal transduction, action! 3rd ed. Dordrecht: Springer Netherlands; 2010. p. 1–15.
Chapter
Google Scholar
Yang SF, Hoffmann NE. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol. 1984;35:155–89.
Article
CAS
Google Scholar
Van de Poel B, Van Der Straeten D. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Front Plant Sci. 2014;5:640.
PubMed
PubMed Central
Google Scholar
Vanneste S, Friml J. Auxin: a trigger for change in plant development. Cell. 2009;136:1005–16.
Article
CAS
PubMed
Google Scholar
Zeevaart JAD, Creelman RA. Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol. 1988;39:439–73.
Article
CAS
Google Scholar
Grones P, Friml J. Auxin transporters and binding proteins at a glance. J Cell Sci. 2015;128:1–7.
Article
CAS
PubMed
Google Scholar
Zhu J, Geisler M. Keeping it all together: auxin-actin crosstalk in plant development. J Exp Bot. 2015;66:4983–98.
Article
CAS
PubMed
Google Scholar
Gasperini D, Chauvin A, Acosta IF, Kurenda A, Stolz S, Chetelat A, et al. Axial and radial oxylipin transport. Plant Physiol. 2015;169:2244–54.
CAS
PubMed
PubMed Central
Google Scholar
Geisler M, Aryal, B., di Donato, M., and Hao, P. A critical view on ABC transporters and their interacting partners in auxin transport. Plant Cell Physiol. 2017;58:1601-14. doi:10.1093/pcp/pcx104.
Geisler M, Wang B, Zhu J. Auxin transport during root gravitropism: transporters and techniques. Plant Biol (Stuttg). 2014;16(Suppl 1):50–7.
Geisler M, Bailly A, Ivanchenko M. Master and servant: regulation of auxin transporters by FKBPs and cyclophilins. Plant Sci. 2016;245:1–10.
Article
CAS
PubMed
Google Scholar
Kerr ID, Bennett MJ. New insight into the biochemical mechanisms regulating auxin transport in plants. Biochem J. 2007;401:613–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maher EP, Martindale SJ. Mutants of Arabidopsis thaliana with altered responses to auxins and gravity. Biochem Genet. 1980;18:1041–53.
Article
CAS
PubMed
Google Scholar
Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell. 1991;3:677–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noh B, Murphy AS, Spalding EP. Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell. 2001;13:2441–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao H, Liu L, Mo H, Qian L, Cao Y, Cui S, et al. The ATP-binding cassette transporter ABCB19 regulates postembryonic organ separation in Arabidopsis. PLoS One. 2013;8:e60809.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye L, Liu L, Xing A, Kang D. Characterization of a dwarf mutant allele of Arabidopsis MDR-like ABC transporter AtPGP1 gene. Biochem Biophys Res Commun. 2013;441:782–6.
Article
CAS
PubMed
Google Scholar
Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, et al. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science. 1996;273:948–50.
Article
CAS
PubMed
Google Scholar
Swarup K, Benkova E, Swarup R, Casimiro I, Peret B, Yang Y, et al. The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol. 2008;10:946–54.
Article
CAS
PubMed
Google Scholar
Bainbridge K, Guyomarc'h S, Bayer E, Swarup R, Bennett M, Mandel T, et al. Auxin influx carriers stabilize phyllotactic patterning. Genes Dev. 2008;22:810–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell. 2010;18:927–37.
Article
CAS
PubMed
Google Scholar
Ho CH, Lin SH, Hu HC, Tsay YF. CHL1 functions as a nitrate sensor in plants. Cell. 2009;138:1184–94.
Article
CAS
PubMed
Google Scholar
Rubery PH, Sheldrake AR. Carrier-mediated auxin transport. Planta. 1974;118:101–21.
Article
CAS
PubMed
Google Scholar
Raven JA. Transport of indoleacetic-acid in plant-cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol. 1975;74:163–72.
Article
CAS
Google Scholar
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005;433:39–44.
Article
CAS
PubMed
Google Scholar
Geisler M, Murphy AS. The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett. 2006;580:1094–102.
Article
CAS
PubMed
Google Scholar
Kamimoto Y, Terasaka K, Hamamoto M, Takanashi K, Fukuda S, Shitan N, et al. Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. Plant Cell Physiol. 2012;53:2090–100.
Article
CAS
PubMed
Google Scholar
Santelia D, Henrichs S, Vincenzetti V, Sauer M, Bigler L, Klein M, et al. Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses. J Biol Chem. 2008;283:31218–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bouchard R, Bailly A, Blakeslee JJ, Oehring SC, Vincenzetti V, Lee OR, et al. Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins. J Biol Chem. 2006;281:30603–12.
Article
CAS
PubMed
Google Scholar
Santelia D, Vincenzetti V, Azzarello E, Bovet L, Fukao Y, Duchtig P, et al. MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett. 2005;579:5399–406.
Article
CAS
PubMed
Google Scholar
Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, et al. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell. 2005;17:2922–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Y, Zhang S, Guo H, Wang S, Xu L, Li C, et al. OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.). Plant J. 2014;79:106–17.
Article
CAS
PubMed
Google Scholar
Bailly A, Sovero V, Geisler M. The Twisted Dwarf's ABC: How immunophilins regulate auxin transport. Plant Signal Behav. 2006;1:277–80.
Article
PubMed
PubMed Central
Google Scholar
Geisler M, Kolukisaoglu HU, Bouchard R, Billion K, Berger J, Saal B, et al. TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell. 2003;14:4238–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blakeslee JJ, Bandyopadhyay A, Lee OR, Mravec J, Titapiwatanakun B, Sauer M, et al. Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell. 2007;19:131–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding Z, Wang B, Moreno I, Duplakova N, Simon S, Carraro N, et al. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun. 2012;3:941.
Article
PubMed
CAS
Google Scholar
Mravec J, Skupa P, Bailly A, Hoyerova K, Krecek P, Bielach A, et al. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature. 2009;459:1136–40.
Article
CAS
PubMed
Google Scholar
Barbez E, Kubes M, Rolcik J, Beziat C, Pencik A, Wang B, et al. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature. 2012;485:119–22.
Article
CAS
PubMed
Google Scholar
Ranocha P, Dima O, Nagy R, Felten J, Corratge-Faillie C, Novak O, et al. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat Commun. 2013;4:2625.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rashotte AM, Poupart J, Waddell CS, Muday GK. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis. Plant Physiol. 2003;133:761–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strader LC, Bartel B. Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol Plant. 2011;4:477–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruzicka K, Strader LC, Bailly A, Yang H, Blakeslee J, Langowski L, et al. Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proc Natl Acad Sci U S A. 2010;107:10749–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strader LC, Bartel B. The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Plant Cell. 2009;21:1992–2007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu X, Dittgen J, Pislewska-Bednarek M, Molina A, Schneider B, Svatos A, et al. Mutant allele-specific uncoupling of PENETRATION3 functions reveals engagement of the ATP-binding cassette transporter in distinct tryptophan metabolic pathways. Plant Physiol. 2015;168:814–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borghi L, Kang J, Ko D, Lee Y, Martinoia E. The role of ABCG-type ABC transporters in phytohormone transport. Biochem Soc Trans. 2015;43:924–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zolman BK, Silva ID, Bartel B. The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid β-oxidation. Plant Physiol. 2001;127:1266–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hooks MA, Turner JE, Murphy EC, Johnston KA, Burr S, Jaroslawski S. The Arabidopsis ALDP protein homologue COMATOSE is instrumental in peroxisomal acetate metabolism. Biochem J. 2007;406:399–406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Footitt S, Slocombe SP, Larner V, Kurup S, Wu Y, Larson T, et al. Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J. 2002;21:2912–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell. 2002;14(Suppl 1):S15–45.
Lee SC, Luan S. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ. 2012;35:53–60.
Article
CAS
PubMed
Google Scholar
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010;61:651–79.
Article
CAS
PubMed
Google Scholar
Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D. Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:627–58.
Article
CAS
PubMed
Google Scholar
Blatt MR. Cellular signaling and volume control in stomatal movements in plants. Annu Rev Cell Dev Biol. 2000;16:221–41.
Article
CAS
PubMed
Google Scholar
Jackson MB. Are plant hormones involved in root to shoot communication? Adv Bot Res. 1993;19:103–87.
Article
CAS
Google Scholar
Christmann A, Hoffmann T, Teplova I, Grill E, Müller A. Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol. 2005;137:209–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christmann A, Weiler EW, Steudle E, Grill E. A hydraulic signal in root-to-shoot signalling of water shortage. Plant J. 2007;52:167–74.
Article
CAS
PubMed
Google Scholar
Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, et al. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol. 2008;147:1984–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilkinson S, Davies WJ. Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol. 1997;113:559–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, et al. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A. 2010;107:2355–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, et al. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A. 2010;107:2361–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuromori T, Sugimoto E, Shinozaki K. Intertissue signal transfer of abscisic acid from vascular cells to guard cells. Plant Physiol. 2014;164:1587–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu D, Veres D, Belew ZM, Olsen CE, Nour-Eldin HH, Halkier BA. Functional expression and characterization of plant ABC transporters in Xenopus laevis oocytes for transport engineering purposes. Methods Enzymol. 2016;576:207–24.
Article
CAS
PubMed
Google Scholar
Kang J, Yim S, Choi H, Kim A, Lee KP, Lopez-Molina L, et al. Abscisic acid transporters cooperate to control seed germination. Nat Commun. 2015;6:8113.
Article
PubMed
PubMed Central
Google Scholar
Kuromori T, Sugimoto E, Shinozaki K. Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. Plant J. 2011;67:885–94.
Article
CAS
PubMed
Google Scholar
Zhang H, Zhu H, Pan Y, Yu Y, Luan S, Li L. A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. Mol Plant. 2014;7:1522–32.
Article
CAS
PubMed
Google Scholar
Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, et al. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci U S A. 2012;109:9653–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, Kamiya Y, et al. Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. J Plant Res. 2015;128:679–86.
Article
CAS
PubMed
Google Scholar
Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, et al. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell. 2006;126:1109–20.
Article
CAS
PubMed
Google Scholar
Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol. 2005;56:165–85.
Article
CAS
PubMed
Google Scholar
Xu ZY, Lee KH, Dong T, Jeong JC, Jin JB, Kanno Y, et al. A vacuolar beta-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell. 2012;24:2184–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burla B, Pfrunder S, Nagy R, Francisco RM, Lee Y, Martinoia E. Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. Plant Physiol. 2013;163:1446–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakakibara H. Cytokinin biosynthesis and metabolism. In: Davies PJ, editor. The plant hormones: biosynthesis, signal transduction, action! 3rd ed. Dordrecht: Springer Netherlands; 2010. p. 95–114.
Chapter
Google Scholar
Hwang I, Sheen J, Müller B. Cytokinin signaling networks. Annu Rev Plant Biol. 2012;63:353–80.
Article
CAS
PubMed
Google Scholar
Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H. Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot. 2008;59:75–83.
Article
CAS
PubMed
Google Scholar
Kudo T, Kiba T, Sakakibara H. Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol. 2010;52:53–60.
Article
CAS
PubMed
Google Scholar
Zhang K, Novak O, Wei Z, Gou M, Zhang X, Yu Y, et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat Commun. 2014;5:3274.
PubMed
Google Scholar
Ko D, Kang J, Kiba T, Park J, Kojima M, Do J, et al. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci U S A. 2014;111:7150–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirose N, Makita N, Yamaya T, Sakakibara H. Functional characterization and expression analysis of a gene, OsENT2, encoding an equilibrative nucleoside transporter in rice suggest a function in cytokinin transport. Plant Physiol. 2005;138:196–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun J, Hirose N, Wang X, Wen P, Xue L, Sakakibara H, et al. Arabidopsis SOI33/AtENT8 gene encodes a putative equilibrative nucleoside transporter that is involved in cytokinin transport in planta. J Integr Plant Biol. 2005;47:588–603.
Article
CAS
Google Scholar
Bürkle L, Cedzich A, Döpke C, Stransky H, Okumoto S, Gillissen B, et al. Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J. 2003;34:13–26.
Article
PubMed
Google Scholar
Zürcher E, Liu J, di Donato M, Geisler M, Müller B. Plant development regulated by cytokinin sinks. Science. 2016;353:1027–30.
Article
PubMed
CAS
Google Scholar
Wulfetange K, Lomin SN, Romanov GA, Stolz A, Heyl A, Schmülling T. The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol. 2011;156:1808–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol. 2008;59:225–51.
Article
CAS
PubMed
Google Scholar
Gupta R, Chakrabarty SK. Gibberellic acid in plant: still a mystery unresolved. Plant Signal Behav. 2013;8:e25504.
Article
PubMed
PubMed Central
Google Scholar
Sun TP. Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol. 2010;154:567–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tal I, Zhang Y, Jørgensen ME, Pisanty O, Barbosa ICR, Zourelidou M, et al. The Arabidopsis NPF3 protein is a GA transporter. Nat Commun. 2016;7:11486.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, et al. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun. 2016;7:13245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nour-Eldin HH, Andersen TG, Burow M, Madsen SR, Jorgensen ME, Olsen CE, et al. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature. 2012;488:531–4.
Article
CAS
PubMed
Google Scholar
Saito H, Oikawa T, Hamamoto S, Ishimaru Y, Kanamori-Sato M, Sasaki-Sekimoto Y, et al. The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nat Commun. 2015;6:6095.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cook CE, Whichard LP, Turner B, Wall ME, Egley GH. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science. 1966;154:1189–90.
Article
CAS
PubMed
Google Scholar
Domagalska MA, Leyser O. Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol. 2011;12:211–21.
Article
CAS
PubMed
Google Scholar
Drummond RS, Janssen BJ, Luo Z, Oplaat C, Ledger SE, Wohlers MW, et al. Environmental control of branching in petunia. Plant Physiol. 2015;168:735–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, et al. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature. 2012;483:341–4.
Article
CAS
PubMed
Google Scholar
Sasse J, Simon S, Gubeli C, Liu GW, Cheng X, Friml J, et al. Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Curr Biol. 2015;25:647–55.
Article
CAS
PubMed
Google Scholar
Borghi L, Liu GW, Emonet A, Kretzschmar T, Martinoia E. The importance of strigolactone transport regulation for symbiotic signaling and shoot branching. Planta. 2016;243:1351–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie X, Wang G, Yang L, Cheng T, Gao J, Wu Y, et al. Cloning and characterization of a novel Nicotiana tabacum ABC transporter involved in shoot branching. Physiol Plant. 2015;153:299–306.
Article
CAS
PubMed
Google Scholar
Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, et al. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol. 2011;155:974–87.
Article
CAS
PubMed
Google Scholar
Waters MT, Gutjahr C, Bennett T, Nelson DC. Strigolactone signaling and evolution. Annu Rev Plant Biol. 2017;68:291–322.
Article
CAS
PubMed
Google Scholar
Browse J. Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol. 2009;60:183–205.
Article
CAS
PubMed
Google Scholar
Wasternack C, Forner S, Strnad M, Hause B. Jasmonates in flower and seed development. Biochimie. 2013;95:79–85.
Article
CAS
PubMed
Google Scholar
Sato C, Aikawa K, Sugiyama S, Nabeta K, Masuta C, Matsuura H. Distal transport of exogenously applied jasmonoyl-isoleucine with wounding stress. Plant Cell Physiol. 2011;52:509–17.
Article
CAS
PubMed
Google Scholar
Nguyen CT, Martinoia E, Farmer EE. Emerging jasmonate transporters. Mol Plant. 2017;10:659–61.
Article
CAS
PubMed
Google Scholar
Ishimaru Y, Oikawa T, Suzuki T, Takeishi S, Matsuura H, Takahashi K, et al. GTR1 is a jasmonic acid and jasmonoyl-l-isoleucine transporter in Arabidopsis thaliana. Biosci Biotechnol Biochem. 2017;81:249–55.
Article
CAS
PubMed
Google Scholar
Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A, et al. Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol. 2005;137:835–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dave A, Hernández ML, He Z, Andriotis VME, Vaistij FE, Larson TR, et al. 12-oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell. 2011;23:583–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park S, Gidda SK, James CN, Horn PJ, Khuu N, Seay DC, et al. The α/β hydrolase CGI-58 and peroxisomal transport protein PXA1 coregulate lipid homeostasis and signaling in Arabidopsis. Plant Cell. 2013;25:1726–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nyathi Y, De Marcos Lousa C, van Roermund CW, Wanders RJ, Johnson B, Baldwin SA, et al. The Arabidopsis peroxisomal ABC transporter, comatose, complements the Saccharomyces cerevisiae pxa1 pxa2Delta mutant for metabolism of long-chain fatty acids and exhibits fatty acyl-CoA-stimulated ATPase activity. J Biol Chem. 2010;285:29892–902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker A, Carrier DJ, Schaedler T, Waterham HR, van Roermund CW, Theodoulou FL. Peroxisomal ABC transporters: functions and mechanism. Biochem Soc Trans. 2015;43:959–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendiondo GM, Medhurst A, van Roermund CW, Zhang X, Devonshire J, Scholefield D, et al. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation. J Exp Bot. 2014;65:4833–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Zheng J, Li S, Huang G, Skilling SJ, Wang L, et al. Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling. Mol Plant. 2017;10:695–708.
Article
CAS
PubMed
Google Scholar
Vlot AC, Dempsey DMA, Klessig DF. Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol. 2009;47:177–206.
Article
CAS
PubMed
Google Scholar
Fragnière C, Serrano M, Abou-Mansour E, Métraux JP, L'Haridon F. Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett. 2011;585:1847–52.
Article
PubMed
CAS
Google Scholar
Seyfferth C, Tsuda K. Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Front Plant Sci. 2014;5:697.
Article
PubMed
PubMed Central
Google Scholar
Nawrath C, Métraux JP. Salicylic acid induction–deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell. 1999;11:1393–404.
CAS
PubMed
PubMed Central
Google Scholar
Glazebrook J, Rogers EE, Ausubel FM. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics. 1996;143:973–82.
CAS
PubMed
PubMed Central
Google Scholar
Serrano M, Wang B, Aryal B, Garcion C, Abou-Mansour E, Heck S, et al. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5. Plant Physiol. 2013;162:1815–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dean JV, Mills JD. Uptake of salicylic acid 2-O-beta-D glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism. Physiol Plant. 2004;120:603–12.
Article
CAS
PubMed
Google Scholar
Dean JV, Mohammed LA, Fitzpatrick T. The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta. 2005;221:287–96.
Article
CAS
PubMed
Google Scholar
Bleecker AB, Kende H. Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol. 2000;16:1–18.
Article
CAS
PubMed
Google Scholar
Shin K, Lee S, Song WY, Lee RA, Lee I, Ha K, et al. Genetic identification of ACC-RESISTANT2 reveals involvement of LYSINE HISTIDINE TRANSPORTER1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana. Plant Cell Physiol. 2015;56:572–82.
Article
CAS
PubMed
Google Scholar
Pech J, Latché A, Bouzayen M. Ethylene biosynthesis. In: Davies PJ, editor. The Plant hormones: biosynthesis, signal transduction, action! 3rd ed. Dordrecht: Springer Netherlands; 2010. p. 115–36.
Chapter
Google Scholar
Kim TW, Wang ZY. Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol. 2010;61:681–704.
Article
CAS
PubMed
Google Scholar
Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol. 2003;54:137–64.
Article
CAS
PubMed
Google Scholar
Symons GM, Reid JB. Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol. 2004;135:2196–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Symons GM, Ross JJ, Jager CE, Reid JB. Brassinosteroid transport. J Exp Bot. 2008;59:17–24.
Article
CAS
PubMed
Google Scholar
Turck F, Fornara F, Coupland G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol. 2008;59:573–94.
Article
CAS
PubMed
Google Scholar
Putterill J, Varkonyi-Gasic E. FT and florigen long-distance flowering control in plants. Curr Opin Plant Biol. 2016;33:77–82.
Article
CAS
PubMed
Google Scholar
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science. 2007;316:1030–3.
Article
CAS
PubMed
Google Scholar
Liu L, Liu C, Hou X, Xi W, Shen L, Tao Z, et al. FTIP1 is an essential regulator required for florigen transport. PLoS Biol. 2012;10:e1001313.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindsey K, Casson S, Chilley P. Peptides: new signalling molecules in plants. Trends Plant Sci. 2002;7:78–83.
Article
CAS
PubMed
Google Scholar
Hwang JU, Song WY, Hong D, Ko D, Yamaoka Y, Jang S, et al. Plant ABC transporters enable many unique aspects of a terrestrial plant's lifestyle. Mol Plant. 2016;9:338–55.
Article
CAS
PubMed
Google Scholar
Galvan-Ampudia CS, Offringa R. Plant evolution: AGC kinases tell the auxin tale. Trends Plant Sci. 2007;12:541–7.
Article
CAS
PubMed
Google Scholar
Cant N, Pollock N, Ford RC. CFTR structure and cystic fibrosis. Int J Biochem Cell Biol. 2014;52:15–25.
Article
CAS
PubMed
Google Scholar
Kleine-Vehn J, Langowski L, Wisniewska J, Dhonukshe P, Brewer PB, Friml J. Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol Plant. 2008;1:1056–66.
Article
CAS
PubMed
Google Scholar
Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, et al. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell. 2007;130:1044–56.
Article
CAS
PubMed
Google Scholar
Wang B, Bailly A, Zwiewka M, Henrichs S, Azzarello E, Mancuso S, et al. Arabidopsis TWISTED DWARF1 functionally interacts with auxin exporter ABCB1 on the root plasma membrane. Plant Cell. 2013;25:202–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu G, Otegui MS, Spalding EP. The ER-localized TWD1 immunophilin is necessary for localization of multidrug resistance-like proteins required for polar auxin transport in Arabidopsis roots. Plant Cell. 2010;22:3295–304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh SK, Kowalchyk M, et al. AXR4 is required for localization of the auxin influx facilitator AUX1. Science. 2006;312:1218–20.
Article
CAS
PubMed
Google Scholar
Mao H, Nakamura M, Viotti C, Grebe M. A framework for lateral membrane trafficking and polar tethering of the PEN3 ATP-binding cassette transporter. Plant Physiol. 2016;172:2245–60.
Article
CAS
PubMed
Google Scholar
Park Y, Xu ZY, Kim SY, Lee J, Choi B, Lee J, et al. Spatial regulation of ABCG25, an ABA exporter, is an important component of the mechanism controlling cellular ABA levels. Plant Cell. 2016;28:2528–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paciorek T, Zazimalova E, Ruthardt N, Petrasek J, Stierhof YD, Kleine-Vehn J, et al. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature. 2005;435:1251–6.
Article
CAS
PubMed
Google Scholar
Zourelidou M, Absmanner B, Weller B, Barbosa IC, Willige BC, Fastner A, et al. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. Elife. 2014;3:e02860.
Article
PubMed Central
CAS
Google Scholar
Henrichs S, Wang B, Fukao Y, Zhu J, Charrier L, Bailly A, et al. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J. 2012;31:2965–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christie JM, Yang H, Richter GL, Sullivan S, Thomson CE, Lin J, et al. phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol. 2011;9:e1001076.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishimaru Y, Washiyama K, Oikawa T, Hamamoto S, Uozumi N, Ueda M. Dimerization of GTR1 regulates their plasma membrane localization. Plant Signal Behav. 2017;12(16):e1334749.
Article
PubMed
CAS
Google Scholar
Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, et al. Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J. 2005;44:179–94.
Article
CAS
PubMed
Google Scholar
Bailly A, Yang H, Martinoia E, Geisler M, Murphy AS. Plant lessons: exploring ABCB functionality through structural modeling. Front Plant Sci. 2012;2:108.
Article
PubMed
PubMed Central
Google Scholar
Hayashi M, Nito K, Takei-Hoshi R, Yagi M, Kondo M, Suenaga A, et al. Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid β-oxidation. Plant Cell Physiol. 2002;43:1–11.
Article
CAS
PubMed
Google Scholar
Ito H, Gray WM. A gain-of-function mutation in the Arabidopsis pleiotropic drug resistance transporter PDR9 confers resistance to auxinic herbicides. Plant Physiol. 2006;142:63–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 2007;50:207–18.
Article
CAS
PubMed
Google Scholar
Cheng Y, Zhao Y. A role for auxin in flower development. J Integrative Plant Biol. 2007;49:99–104.
Article
CAS
Google Scholar