Dill KA, MacCallum JL. The protein-folding problem, 50 years on. Science. 2012;338:1042–6.
Article
CAS
PubMed
Google Scholar
Englander SW, Mayne L. The nature of protein folding pathways. Proc Natl Acad Sci U S A. 2014;111:15873–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fersht AR, Sato S. Phi-value analysis and the nature of protein-folding transition states. Proc Natl Acad Sci U S A. 2004;101:7976–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matouschek A, Kellis JT, Serrano L, Fersht AR. Mapping the transition state and pathway of protein folding by protein engineering. Nature. 1989;340:122–6.
Article
CAS
PubMed
Google Scholar
Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular‐protein structure. Proteins. 1989;6:87–103.
Article
CAS
PubMed
Google Scholar
Baldwin RL, Rose GD. Molten globules, entropy-driven conformational change and protein folding. Curr Opin Struct Biol. 2013;23:4–10.
Article
CAS
PubMed
Google Scholar
Kim PS, Baldwin RL. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–60.
Article
CAS
PubMed
Google Scholar
Baldwin AJ, Kay LE. NMR spectroscopy brings invisible protein states into focus. Nat Methods. 2009;5:808–14.
Article
CAS
Google Scholar
Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Ulrich HF. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem. 2013;82:323–55.
Article
CAS
PubMed
Google Scholar
Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475:324–32.
Article
CAS
PubMed
Google Scholar
Freedberg DI, Selenko P. Live cell NMR. Annu Rev Biophys. 2014;43:171–92.
Article
CAS
PubMed
Google Scholar
Thommen M, Holtkamp W, Rodnina MV. Co-translational protein folding: progress and methods. Curr Opin Struct Biol. 2017;42:83–9.
Article
CAS
PubMed
Google Scholar
Nilsson OB, Hedman R, Marino J, Wickles S, Bischoff L, Johansson M, et al. Cotranslational protein folding inside the ribosome exit tunnel. Cell Rep. 2015;12:1533–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holtkamp W, Kokic G, Jäger M, Mittelstaet J, Komar AA, Rodnina MV. Cotranslational protein folding on the ribosome monitored in real time. Science. 2015;350:1104–7.
Article
CAS
PubMed
Google Scholar
Schlebach JP, Sanders CR. The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys. 2015;48:1–34.
Article
CAS
PubMed
Google Scholar
Fleming KG. Energetics of membrane protein folding. Annu Rev Biophys. 2014;43:233–55.
Article
CAS
PubMed
Google Scholar
Booth PJ, Curnow P. Folding scene investigation: membrane proteins. Curr Opin Struct Biol. 2009;19:8–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanley AM, Fleming KG. The process of folding proteins into membranes: challenges and progress. Arch Biochem Biophys. 2008;469:46–66.
Article
CAS
PubMed
Google Scholar
Bowie JU. Solving the membrane protein folding problem. Nature. 2005;438:581–9.
Article
CAS
PubMed
Google Scholar
Booth PJ, Templer RH, Meijberg W, Allen SJ, Curran AR, Lorch M. In vitro studies of membrane protein folding. Crit Rev Biochem Mol Biol. 2001;36:501–603.
Article
CAS
PubMed
Google Scholar
White SH, Wimley WC. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–65.
Article
CAS
PubMed
Google Scholar
Pogozheva ID, Mosberg HI, Lomize AL. Life at the border: adaptation of proteins to anisotropic membrane environment. Protein Sci. 2014;23:1165–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kennedy SJ. Structures of membrane proteins. J Membr Biol. 1978;42:265–79.
Article
CAS
PubMed
Google Scholar
Wimley WC, White SH. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Mol Biol. 1996;3:842–8.
Article
CAS
Google Scholar
Engelman DM, Steitz TA, Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–53.
Article
CAS
PubMed
Google Scholar
Kleffel B, Garavito RM, Baumeister W, Rosenbusch JP. Secondary structure of a channel-forming protein: porin from E. coli outer membranes. EMBO J. 1985;4:1589–92.
CAS
PubMed
PubMed Central
Google Scholar
Popot JL, Engelman DM. Membrane protein folding and oligomerization: the two-stage model. Biochemistry. 1990;29:4031–7.
Article
CAS
PubMed
Google Scholar
Hagan CL, Silhavy TJ, Kahne D. β-Barrel membrane protein assembly by the Bam complex. Annu Rev Biochem. 2011;80:189–210.
Article
CAS
PubMed
Google Scholar
Dornmair K, Kiefer H, Jähnig F. Refolding of an integral membrane protein. OmpA of Escherichia coli. J Biol Chem. 1990;265:18907–11.
CAS
PubMed
Google Scholar
Surrey T, Jähnig F. Refolding and oriented insertion of a membrane protein into a lipid bilayer. Proc Natl Acad Sci U S A. 1992;89:7457–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Surrey T, Schmid A, Jähnig F. Folding and membrane insertion of the trimeric beta-barrel protein OmpF. Biochemistry. 1996;35:2283–8.
Article
CAS
PubMed
Google Scholar
Huysmans GHM, Radford SE, Brockwell DJ, Baldwin SA. The N-terminal helix is a post-assembly clamp in the bacterial outer membrane protein PagP. J Mol Biol. 2007;373:529–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burgess NK, Dao TP, Stanley AM. Fleming KG β-barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro. J Biol Chem. 2008;283:26748–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973;181:223–30.
Article
CAS
PubMed
Google Scholar
Fairman JW, Noinaj N, Buchanan SK. The structural biology of β-barrel membrane proteins: a summary of recent reports. Curr Opin Struct Biol. 2011;21:523–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bos MP, Robert V, Tommassen J. Biogenesis of the gram-negative bacterial outer membrane. Annu Rev Microbiol. 2007;61:191–214.
Article
CAS
PubMed
Google Scholar
Dong H, Xiang Q, Gu Y, Wang Z, Paterson NG, Stansfeld PJ, et al. Structural basis for outer membrane lipopolysaccharide insertion. Nature. 2014;511:52–6.
Article
CAS
PubMed
Google Scholar
Cao B, Zhao Y, Kou Y, Ni D, Zhang XC, Huang Y. Structure of the nonameric bacterial amyloid secretion channel. Proc Natl Acad Sci U S A. 2014;111:E5439–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barnhart MM, Chapman MR. Curli biogenesis and function. Annu Rev Microbiol. 2006;60:131–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan Z, Yin M, Xu D, Zhu Y, Li X. Structural insights into the secretin translocation channel in the type II secretion system. Nat Struct Mol Biol. 2017;24:177–83.
Article
CAS
PubMed
Google Scholar
Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Micro. 2015;13:343–59.
Article
CAS
Google Scholar
de Leij L, Witholt B. Structural heterogeneity of the cytoplasmic and outer membranes of Escherichia coli. Biochim Biophys Acta Biomembr. 1977;471:92–104.
Article
Google Scholar
Jarosławski S, Duquesne K, Sturgis JN, Scheuring S. High-resolution architecture of the outer membrane of the Gram-negative bacteria Roseobacter denitrificans. Mol Microbiol. 2009;74:1211–22.
Article
PubMed
CAS
Google Scholar
Koebnik R. Membrane assembly of the Escherichia coli outer membrane protein OmpA: exploring sequence constraints on transmembrane beta-strands. J Mol Biol. 1999;285:1801–10.
Article
CAS
PubMed
Google Scholar
Lin M, Gessmann D, Naveed H, Liang J. Outer membrane protein folding and topology from a computational transfer free energy scale. J Am Chem Soc. 2016;138:2592–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dill KA. Dominant forces in protein folding. Biochemistry. 1990;29:7133–55.
Article
CAS
PubMed
Google Scholar
Nicholls A, Sharp KA, Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11:281–96.
Article
CAS
PubMed
Google Scholar
Peterson JH, Plummer AM, Fleming KG, Bernstein HD. Selective pressure for rapid membrane integration constrains the sequence of bacterial outer membrane proteins. Mol Microbiol. 2017;106(5):777–92.
Article
CAS
PubMed
Google Scholar
Stapleton JA, Whitehead TA, Nanda V. Computational redesign of the lipid-facing surface of the outer membrane protein OmpA. Proc Natl Acad Sci U S A. 2015;112:9632–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong H, Tamm LK. Elastic coupling of integral membrane protein stability to lipid bilayer forces. Proc Natl Acad Sci U S A. 2004;101:4065–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong H, Szabo G, Tamm LK. Electrostatic couplings in OmpA ion-channel gating suggest a mechanism for pore opening. Nat Chem Biol. 2006;2:627–35.
Article
CAS
PubMed
Google Scholar
Hong H, Park S, Flores Jiménez RH, Rinehart D, Tamm LK. Role of aromatic side chains in the folding and thermodynamic stability of integral membrane proteins. J Am Chem Soc. 2007;129:8320–7.
Article
CAS
PubMed
Google Scholar
Andersen KK, Wang H, Otzen DE. A kinetic analysis of the folding and unfolding of OmpA in urea and guanidinium chloride: single and parallel pathways. Biochemistry. 2012;51:8371–83.
Article
CAS
PubMed
Google Scholar
Kleinschmidt JRH, Popot JL. Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys. 2014;564:327–43.
Article
CAS
PubMed
Google Scholar
Huysmans GHM, Baldwin SA, Brockwell DJ, Radford SE. The transition state for folding of an outer membrane protein. Proc Natl Acad Sci U S A. 2010;107:4099–104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moon CP, Zaccai NR, Fleming PJ, Gessmann D, Fleming KG. Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm. Proc Natl Acad Sci U S A. 2013;110:4285–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iyer BR, Zadafiya P, Vetal PV, Mahalakshmi R. Energetics of side-chain partitioning of β-signal residues in unassisted folding of a transmembrane β-barrel protein. J Biol Chem. 2017;292:12351–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moon CP, Kwon S, Fleming KG. Overcoming hysteresis to attain reversible equilibrium folding for outer membrane phospholipase a in phospholipid bilayers. J Mol Biol. 2011;413:484–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inouye M, Yee M-L. Homogeneity of envelope proteins of Escherichia coli separated by gel electrophoresis in sodium dodecyl sulfate. J Bacteriol. 1973;113:304–12.
CAS
PubMed
PubMed Central
Google Scholar
Schweizer M, Hindennach I, Garten W, Henning U. Major proteins of the Escherichia coli outer cell envelope membrane. Interaction of protein II with lipopolysaccharide. Eur J Biochem. 1978;82:211–7.
Article
CAS
PubMed
Google Scholar
Nakamura K, Mizushima S. Effects of heating in dodecyl sulfate solution on the conformation and electrophoretic mobility of isolated major outer membrane proteins from Escherichia coli K-12. J Biochem. 1976;80:1411–22.
Article
CAS
PubMed
Google Scholar
Moon CP, Fleming KG. Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers. Proc Natl Acad Sci U S A. 2011;108:10174–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu J, Mayer C, Behrens S, Holst O, Kleinschmidt JH. The trimeric periplasmic chaperone Skp of Escherichia coli forms 1:1 complexes with outer membrane proteins via hydrophobic and electrostatic interactions. J Mol Biol. 2007;374:91–105.
Article
CAS
PubMed
Google Scholar
Wu S, Ge X, Lv Z, Zhi Z, Chang Z, Zhao XS. Interaction between bacterial outer membrane proteins and periplasmic quality control factors: a kinetic partitioning mechanism. Biochem J. 2011;438:505–11.
Article
CAS
PubMed
Google Scholar
Schiffrin B, Calabrese AN, Higgins AJ, Humes JR, Ashcroft AE, Kalli AC, et al. Effects of periplasmic chaperones and membrane thickness on BamA-catalysed outer membrane protein folding. J Mol Biol. 2017. doi: 10.1016/j.jmb.2017.09.008.
Wülfing C, Plückthun A. Protein folding in the periplasm of Escherichia coli. Mol Microbiol. 1994;12:685–92.
Article
PubMed
Google Scholar
Fleming KG. A combined kinetic push and thermodynamic pull as driving forces for outer membrane protein sorting and folding in bacteria. Philos Trans R Soc Lond B Biol Sci. 2015;370:20150026.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gershenson A, Gierasch LM, Pastore A, Radford SE. Energy landscapes of functional proteins are inherently risky. Nat Rev Mol Cell Biol. 2014;10:884–91.
CAS
Google Scholar
Pocanschi CL, Apell H-J, Puntervoll P, Høgh B, Jensen HB, Welte W, et al. The Major outer membrane protein of Fusobacterium nucleatum (FomA) folds and inserts into lipid bilayers via parallel folding pathways. J Mol Biol. 2006;355:548–61.
Article
CAS
PubMed
Google Scholar
Pocanschi CL, Popot JL, Kleinschmidt JH. Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35. Eur Biophys J. 2013;42:103–18.
Article
CAS
PubMed
Google Scholar
Shakhnovich BE, Deeds E, Delisi C, Shakhnovich E. Protein structure and evolutionary history determine sequence space topology. Genome Res. 2005;15:385–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iyer BR, Mahalakshmi R. Residue-dependent thermodynamic cost and barrel plasticity balances activity in the PhoPQ-activated enzyme PagP of Salmonella typhimurium. Biochemistry. 2015;54:5712–22.
Article
CAS
PubMed
Google Scholar
Cuesta-Seijo JA, Neale C, Khan MA, Moktar J, Tran CD, Bishop RE, et al. PagP crystallized from SDS/cosolvent reveals the route for phospholipid access to the hydrocarbon ruler. Struct Fold Des. 2010;18:1210–9.
Article
CAS
Google Scholar
van den Berg B. The FadL family: unusual transporters for unusual substrates. Curr Opin Struct Biol. 2005;15:401–7.
Article
PubMed
CAS
Google Scholar
Hong H, Patel DR, Tamm LK, van den Berg B. The outer membrane protein OmpW forms an eight-stranded beta-barrel with a hydrophobic channel. J Biol Chem. 2006;281:7568–77.
Article
CAS
PubMed
Google Scholar
Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, Easley NC, et al. Structural insight into the biogenesis of β-barrel membrane proteins. Nature. 2013;501:385–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bakelar J, Buchanan SK, Noinaj N. The structure of the β-barrel assembly machinery complex. Science. 2016;351:180–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu Y, Li H, Dong H, Zeng Y, Zhang Z, Paterson NG, et al. Structural basis of outer membrane protein insertion by the BAM complex. Nature. 2016;531:64–9.
Article
CAS
PubMed
Google Scholar
Iadanza MG, Higgins AJ, Schiffrin B, Calabrese AN, Brockwell DJ, Ashcroft AE, et al. Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM. Nat Commun. 2016;7:12865.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doerner PA, Sousa MC. Extreme dynamics in the BamA β-barrel seam. Biochemistry. 2017;56:3142–9.
Article
CAS
PubMed
Google Scholar
Killian JA, von Heijne G. How proteins adapt to a membrane-water interface. Trends Biochem Sci. 2000;25:429–34.
Article
CAS
PubMed
Google Scholar
Yau W-M, Wimley WC, Gawrisch K, White SH. The preference of tryptophan for membrane interfaces. Biochemistry. 1998;37:14713–8.
Article
CAS
PubMed
Google Scholar
McDonald SK, Fleming KG. Aromatic side chain water-to-lipid transfer free energies show a depth dependence across the membrane normal. J Am Chem Soc. 2016;138:7946–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackups Jr R, Liang J. Interstrand pairing patterns in β-barrel membrane proteins: the positive-outside rule, aromatic rescue, and strand registration prediction. J Mol Biol. 2005;354:979–93.
Article
CAS
PubMed
Google Scholar
von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992;225:487–94.
Article
Google Scholar
Marx DC, Fleming KG. Influence of protein scaffold on side-chain transfer free energies. Biophys J. 2017;113:597–604.
Article
CAS
PubMed
Google Scholar
Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science. 1998;282:2215–20.
Article
CAS
PubMed
Google Scholar
Kucharska I, Liang B, Ursini N, Tamm LK. Molecular interactions of lipopolysaccharide with an outer membrane protein from Pseudomonas aeruginosa probed by solution NMR. Biochemistry. 2016;55:5061–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arunmanee W, Pathania M, Solovyova AS, Le Brun AP, Ridley H, Baslé A, et al. Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis. Proc Natl Acad Sci U S A. 2016;113:E5034–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. Positioning of proteins in membranes: A computational approach. Protein Sci. 2006;15:1318–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu EL, Fleming PJ, Yeom MS, Widmalm G, Klauda JB, Fleming KG, et al. E. coli outer membrane and interactions with OmpLA. Biophys J. 2014;106:2493–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merkel JS, Regan L. Aromatic rescue of glycine in β sheets. Fold Des. 1998;3:449–56.
Article
CAS
PubMed
Google Scholar
Michalik M, Orwick-Rydmark M, Habeck M, Alva V, Arnold T, Linke D. An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins. PLoS One. 2017;12:e0182016–23.
Article
PubMed
PubMed Central
Google Scholar
Leyton DL, Johnson MD, Thapa R, Huysmans GHM, Dunstan RA, Celik N, et al. A mortise-tenon joint in the transmembrane domain modulates autotransporter assembly into bacterial outer membranes. Nat Commun. 2014;5:4239.
Article
CAS
PubMed
Google Scholar
Frey L, Lakomek N-A, Riek R, Bibow S. Micelles, Bicelles, and Nanodiscs: Comparing the impact of membrane mimetics on membrane protein backbone dynamics. Angew Chem Int Ed Engl. 2017;56:380–3.
Article
CAS
PubMed
Google Scholar
Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins. 1995;21:167–95.
Article
CAS
PubMed
Google Scholar
Onuchic JN, Luthey-Schulten Z, Wolynes PG. Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem. 1997;48:545–600.
Article
CAS
PubMed
Google Scholar
Wolynes PG. Evolution, energy landscapes and the paradoxes of protein folding. Biochimie. 2015;119:218–30.
Article
CAS
PubMed
Google Scholar
Ferreiro DU, Komives EA, Wolynes PG. Frustration in biomolecules. Q Rev Biophys. 2014;47:285–363.
Article
PubMed
PubMed Central
Google Scholar
Popot JL. Folding membrane proteins in vitro: a table and some comments. Arch Biochem Biophys. 2014;564:314–26.
Article
CAS
PubMed
Google Scholar
Kleinschmidt JH. Folding of β-barrel membrane proteins in lipid bilayers — Unassisted and assisted folding and insertion. Biochim Biophys Acta Biomembr. 2015;1848:1927–43.
Article
CAS
Google Scholar
Chaturvedi D, Mahalakshmi R. Transmembrane β-barrels: evolution, folding and energetics. Biochim Biophys Acta. 2017;1859:2467–82.
Article
CAS
PubMed
Google Scholar
Kleinschmidt JH, Tamm LK. Folding intermediates of a beta-barrel membrane protein. Kinetic evidence for a multi-step membrane insertion mechanism. Biochemistry. 1996;35:12993–3000.
Article
CAS
PubMed
Google Scholar
Rodionova NA, Tatulian SA, Surrey T, Jaehnig F. Characterization of two membrane-bound forms of OmpA. Biochemistry. 1995;34:1921–9.
Article
CAS
PubMed
Google Scholar
Patel GJ, Behrens-Kneip S, Holst O, Kleinschmidt JH. The periplasmic chaperone Skp facilitates targeting, insertion, and folding of OmpA into lipid membranes with a negative membrane surface potential. Biochemistry. 2009;48:10235–45.
Article
CAS
PubMed
Google Scholar
Kleinschmidt JH. Folding kinetics of the outer membrane proteins OmpA and FomA into phospholipid bilayers. Chem Phys Lipids. 2006;141:30–47.
Article
CAS
PubMed
Google Scholar
Huysmans GHM, Radford SE, Baldwin SA, Brockwell DJ. Malleability of the folding mechanism of the outer membrane protein PagP: parallel pathways and the effect of membrane elasticity. J Mol Biol. 2012;416:453–64.
Article
CAS
PubMed
Google Scholar
Danoff EJ, Fleming KG. Novel kinetic intermediates populated along the folding pathway of the transmembrane β-barrel OmpA. Biochemistry. 2017;56:47–60.
Article
CAS
PubMed
Google Scholar
Krishna MMG, Englander SW. A unified mechanism for protein folding: Predetermined pathways with optional errors. Protein Sci. 2007;16:449–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wzorek JS, Lee J, Tomasek D, Hagan CL, Kahne DE. Membrane integration of an essential β-barrel protein prerequires burial of an extracellular loop. Proc Natl Acad Sci U S A. 2017;114:2598–603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kleinschmidt JH, den Blaauwen T, Driessen AJ, Tamm LK. Outer membrane protein A of Escherichia coli inserts and folds into lipid bilayers by a concerted mechanism. Biochemistry. 1999;38:5006–16.
Article
CAS
PubMed
Google Scholar
Kleinschmidt JH, Tamm LK. Secondary and tertiary structure formation of the β-barrel membrane protein OmpA is synchronized and depends on membrane thickness. J Mol Biol. 2002;324:319–30.
Article
CAS
PubMed
Google Scholar
Raschle T, Rios Flores P, Opitz C, Müller DJ, Hiller S. Monitoring backbone hydrogen-bond formation in β-barrel membrane protein folding. Angew Chem. 2016;128:6056–9.
Article
Google Scholar
Tan AE, Burgess NK, DeAndrade DS, Marold JD, Fleming KG. Self-association of unfolded outer membrane proteins. Macromol Biosci. 2010;10:763–7.
Article
CAS
PubMed Central
Google Scholar
Wang H, Andersen KK, Vad BS, Otzen DE. OmpA can form folded and unfolded oligomers. Biochim Biophys Acta, Proteins Proteomics. 2013;1834:127–36.
Article
CAS
Google Scholar
West MW, Wang W, Patterson J, Mancias JD, Beasley JR, Hecht MH. De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci U S A. 1999;96:11211–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stroobants K, Kumita JR, Harris NJ, Chirgadze DY, Dobson CM, Booth PJ, et al. Amyloid-like fibrils from an α-helical transmembrane protein. Biochemistry. 2017;56:3225–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danoff EJ, Fleming KG. Aqueous, unfolded OmpA forms amyloid-like fibrils upon self-association. PLoS One. 2015;10:e0132301–10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Knowles TPJ, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol. 2014;15:384–96.
Article
CAS
PubMed
Google Scholar
Tipping KW, van Oosten-Hawle P, Hewitt EW, Radford SE. Amyloid fibres: inert end-stage aggregates or key players in disease? Trends Biochem Sci. 2015;40:719–27.
Article
CAS
PubMed
Google Scholar
Otzen DE, Andersen KK. Folding of outer membrane proteins. Arch Biochem Biophys. 2013;531:34–43.
Article
CAS
PubMed
Google Scholar
Marsh D, Shanmugavadivu B, Kleinschmidt JH. Membrane elastic fluctuations and the insertion and tilt of beta-barrel proteins. Biophys J. 2006;91:227–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pocanschi CL, Patel GJ, Marsh D, Kleinschmidt JH. Curvature elasticity and refolding of OmpA in large unilamellar vesicles. Biophys J. 2006;91:L75–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maurya SR, Chaturvedi D, Mahalakshmi R. Modulating lipid dynamics and membrane fluidity to drive rapid folding of a transmembrane barrel. Sci Rep. 2013;3:1–6.
Article
Google Scholar
McMorran LM, Bartlett AI, Huysmans GHM, Radford SE, Brockwell DJ. Dissecting the effects of periplasmic chaperones on the in vitro folding of the outer membrane protein PagP. J Mol Biol. 2013;425:3178–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel GJ, Kleinschmidt JH. The lipid bilayer-inserted membrane protein BamA of Escherichia coli facilitates insertion and folding of outer membrane protein A from its complex with Skp. Biochemistry. 2013;52:3974–86.
Article
CAS
PubMed
Google Scholar
Gessmann D, Chung YH, Danoff EJ, Plummer AM, Sandlin CW, Zaccai NR, et al. Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc Natl Acad Sci U S A. 2014;111:5878–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagan CL, Kim S, Kahne D. Reconstitution of outer membrane protein assembly from purified components. Science. 2010;328:890–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagan CL, Kahne D. The reconstituted Escherichia coli Bam complex catalyzes multiple rounds of β-barrel assembly. Biochemistry. 2011;50:7444–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagan CL, Westwood DB, Kahne D. Bam lipoproteins assemble BamA in vitro. Biochemistry. 2013;52:6108–13.
Article
CAS
PubMed
Google Scholar
Roman-Hernandez G, Peterson JH, Bernstein HD. Reconstitution of bacterial autotransporter assembly using purified components. elife. 2014;3:711–48.
Article
Google Scholar
Plummer AM, Fleming KG. BamA alone accelerates outer membrane protein folding in vitro through a catalytic mechanism. Biochemistry. 2015;54:6009–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Webb CT, Heinz E, Lithgow T. Evolution of the β-barrel assembly machinery. Trends Microbiol. 2012;20:612–20.
Article
CAS
PubMed
Google Scholar
Behrens-Kneip S. The role of SurA factor in outer membrane protein transport and virulence. Int J Med Microbiol. 2010;300:421–8.
Article
CAS
PubMed
Google Scholar
Burmann BM, Holdbrook DA, Callon M, Bond PJ, Hiller S. Revisiting the interaction between the chaperone Skp and lipopolysaccharide. Biophys J. 2015;108:1516–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellis RJ, Hartl FU. Principles of protein folding in the cellular environment. Curr Opin Struct Biol. 1999;9:102–10.
Article
CAS
PubMed
Google Scholar
Hipp MS, Park SH, Hartl FU. Proteostasis impairment in protein-misfolding and-aggregation diseases. Trends Cell Biol. 2014;24:506–14.
Article
CAS
PubMed
Google Scholar
Goemans C, Denoncin K, Collet J-F. Folding mechanisms of periplasmic proteins. Biochim Biophys Acta, Mol Cell Res. 2014;1843:1517–28.
Article
CAS
PubMed
Google Scholar
De Geyter J, Tsirigotaki A, Orfanoudaki G, Zorzini V, Economou A, Karamanou S. Protein folding in the cell envelope of Escherichia coli. Nat Microbiol. 2016;1:16107.
Article
PubMed
CAS
Google Scholar
McMorran LM, Brockwell DJ, Radford SE. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? Arch Biochem Biophys. 2014;564:265–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyu Z-X, Shao Q, Gao YQ, Zhao XS. Direct observation of the uptake of outer membrane proteins by the periplasmic chaperone Skp. PLoS One. 2012;7:e46068–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaccai NR, Sandlin CW, Hoopes JT, Curtis JE, Fleming PJ, Fleming KG, et al. Deuterium labeling together with contrast variation small-angle neutron scattering suggests how skp captures and releases unfolded outer membrane proteins. Methods Enzymol. 2016;566:159–210.
Article
PubMed
Google Scholar
Schiffrin B, Calabrese AN, Devine PWA, Harris SA, Ashcroft AE, Brockwell DJ, et al. Skp is a multivalent chaperone of outer-membrane proteins. Nat Struct Mol Biol. 2016;23:786–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holdbrook DA, Burmann BM, Huber RG, Petoukhov MV, Svergun DI, Hiller S, et al. A spring-loaded mechanism governs the clamp-like dynamics of the Skp chaperone. Structure. 2017;25:1079–1088.e3.
Article
CAS
PubMed
Google Scholar
Costello SM, Plummer AM, Fleming PJ, Fleming KG. Dynamic periplasmic chaperone reservoir facilitates biogenesis of outer membrane proteins. Proc Natl Acad Sci U S A. 2016;113:E4794–800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burmann BM, Wang C, Hiller S. Conformation and dynamics of the periplasmic membrane-protein–chaperone complexes OmpX–Skp and tOmpA–Skp. Nat Struct Mol Biol. 2013;20:1265–72.
Article
CAS
PubMed
Google Scholar
Callon M, Burmann BM, Hiller S. Structural mapping of a chaperone-substrate interaction surface. Angew Chem Int Ed Engl. 2014;53:5069–72.
CAS
PubMed
Google Scholar
Bitto E, McKay DB. Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Struct Fold Des. 2002;10:1489–98.
Article
CAS
Google Scholar
Saio T, Guan X, Rossi P, Economou A, Kalodimos CG. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science. 2014;344:1250494–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang C, Rossi P, Saio T, Kalodimos CG. Structural basis for the antifolding activity of a molecular chaperone. Nature. 2016;537:202–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thoma J, Burmann BM, Hiller S, Müller DJ. Impact of holdase chaperones Skp and SurA on the folding of β-barrel outer-membrane proteins. Nat Struct Mol Biol. 2015;22:795–802.
Article
CAS
PubMed
Google Scholar
Bitto E, McKay DB. The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. J Biol Chem. 2003;278:49316–22.
Article
CAS
PubMed
Google Scholar
Hennecke G, Nolte J, Volkmer-Engert R, Schneider-Mergener J, Behrens S. The periplasmic chaperone SurA exploits two features characteristic of integral outer membrane proteins for selective substrate recognition. J Biol Chem. 2005;280:23540–8.
Article
CAS
PubMed
Google Scholar
Jarchow S, Lück C, Görg A, Skerra A. Identification of potential substrate proteins for the periplasmic Escherichia coli chaperone Skp. Proteom. 2008;8:4987–94.
Article
CAS
Google Scholar
Vertommen D, Ruiz N, Leverrier P, Silhavy TJ, Collet J-F. Characterization of the role of the Escherichia coli periplasmic chaperone SurA using differential proteomics. Proteom. 2009;9:2432–43.
Article
CAS
Google Scholar
Behrens S, Maier R, De Cock H, Schmid FX, Gross CA. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J. 2001;20:285–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walton TA, Sandoval CM, Fowler CA, Pardi A, Sousa MC. The cavity-chaperone Skp protects its substrate from aggregation but allows independent folding of substrate domains. Proc Natl Acad Sci U S A. 2009;106:1772–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ha SC, Pereira JH, Jeong JH, Huh JH, Kim S-H. Purification of human transcription factors Nanog and Sox2, each in complex with Skp, an Escherichia coli periplasmic chaperone. Protein Expr Purif. 2009;67:164–8.
Article
CAS
PubMed
Google Scholar
Entzminger KC, Chang C, Myhre RO, McCallum KC, Maynard JA. The Skp chaperone helps fold soluble proteins in vitroby inhibiting aggregation. Biochemistry. 2012;51:4822–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
He L, Sharpe T, Mazur A, Hiller S. A molecular mechanism of chaperone-client recognition. Sci Adv. 2016;2:e1601625–5.
Article
PubMed
PubMed Central
Google Scholar
Tafer H, Hiller S, Hilty C, Fernández C, Wüthrich K. Nonrandom structure in the urea-unfolded Escherichia coli outer membrane protein X (OmpX). Biochemistry. 2004;43:860–9.
Article
CAS
PubMed
Google Scholar
Hiller S, Wider G, Imbach LL, Wüthrich K. Interactions with hydrophobic clusters in the urea-unfolded membrane protein OmpX. Angew Chem Int Ed. 2008;47:977–81.
Article
CAS
Google Scholar
Krainer G, Gracia P, Frotscher E, Hartmann A, Gröger P, Keller S, et al. Slow interconversion in a heterogeneous unfolded-state ensemble of outer-membrane phospholipase A. Biophys J. 2017;113:1280–9.
Article
CAS
PubMed
Google Scholar
Danoff EJ, Fleming KG. The soluble, periplasmic domain of OmpA folds as an independent unit and displays chaperone activity by reducing the self-association propensity of the unfolded OmpA transmembrane β-barrel. Biophys Chem. 2011;159:194–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noinaj N, Guillier M, Barnard TJ, Buchanan SK. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol. 2010;64:43–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee J, Xue M, Wzorek JS, Wu T, Grabowicz M, Gronenberg LS, et al. Characterization of a stalled complex on the β-barrel assembly machine. Proc Natl Acad Sci U S A. 2016;113:8717–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duguay AR, Silhavy TJ. Quality control in the bacterial periplasm. Biochim Biophys Acta, Mol Cell Res. 2004;1694:121–34.
Article
CAS
PubMed
Google Scholar
Ruiz N, Silhavy TJ. Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr Opin Microbiol. 2005;8:122–6.
Article
CAS
PubMed
Google Scholar
Raivio TL. Everything old is new again: an update on current research on the Cpx envelope stress response. Biochim Biophys Acta. 2014;1843:1529–41.
Article
CAS
PubMed
Google Scholar
Mecsas J, Rouviere PE, Erickson JW. The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev. 1993;7:2618–28.
Article
CAS
PubMed
Google Scholar
Narita S-I, Masui C, Suzuki T, Dohmae N, Akiyama Y. Protease homolog BepA (YfgC) promotes assembly and degradation of β-barrel membrane proteins in Escherichia coli. Proc Natl Acad Sci U S A. 2013;110:E3612–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soltes GR, Martin NR, Park E, Sutterlin HA, Silhavy TJ. Distinctive roles for periplasmic proteases in the maintenance of essential outer membrane protein assembly. J Bacteriol. 2017. doi: 10.1128/JB.00418-17.
Rassam P, Copeland NA, Birkholz O, Tóth C, Chavent M, Duncan AL, et al. Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria. Nature. 2015;523:333–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kleanthous C, Rassam P, Baumann CG. Protein–protein interactions and the spatiotemporal dynamics of bacterial outer membrane proteins. Curr Opin Struct Biol. 2015;35:109–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Powers ET, Powers DL, Gierasch LM. FoldEco: A model for proteostasis in E. coli. Cell Rep. 2012;1:265–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim KH, Aulakh S, Paetzel M. The bacterial outer membrane β-barrel assembly machinery. Protein Sci. 2012;21:751–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ricci DP, Silhavy TJ. The Bam machine: a molecular cooper. Biochim Biophys Acta Biomembr. 2012;1818:1067–84.
Article
CAS
Google Scholar
Rollauer SE, Sooreshjani MA, Noinaj N, Buchanan SK. Outer membrane protein biogenesis in Gram-negative bacteria. Philos Trans R Soc Lond B Biol Sci. 2015;370:20150023.
Article
PubMed
PubMed Central
CAS
Google Scholar
Plummer AM, Fleming KG. From chaperones to the membrane with a BAM! Trends Biochem Sci. 2016;41:872–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Botos I, Noinaj N, Buchanan SK. Insertion of proteins and lipopolysaccharide into the bacterial outer membrane. Phil Trans R Soc B. 2017;372:20160224–9.
Article
PubMed
Google Scholar
Noinaj N, Gumbart JC, Buchanan SK. The β-barrel assembly machinery in motion. Nat Rev Micro. 2017;15:197–204.
Article
CAS
Google Scholar
Konovalova A, Kahne DE, Silhavy TJ. Outer membrane biogenesis. Annu Rev Microbiol. 2017;71:539–56.
Article
CAS
PubMed
Google Scholar
Knowles TJ, Scott-Tucker A, Overduin M, Henderson IR. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat Rev Micro. 2009;7:206–14.
Article
CAS
Google Scholar
Selkrig J, Leyton DL, Webb CT, Lithgow T. Assembly of β-barrel proteins into bacterial outer membranes. Biochim Biophys Acta. 2014;1843:1542–50.
Article
CAS
PubMed
Google Scholar
Voulhoux R. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science. 2003;299:262–5.
Article
CAS
PubMed
Google Scholar
Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell. 2005;121:235–45.
Article
CAS
PubMed
Google Scholar
Malinverni JC, Werner J, Kim S, Sklar JG, Kahne D, Misra R, et al. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol Microbiol. 2006;61:151–64.
Article
CAS
PubMed
Google Scholar
Sklar JG, Wu T, Kahne D, Silhavy TJ. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev. 2007;21:2473–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennion D, Charlson ES, Coon E, Misra R. Dissection of β-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. Mol Microbiol. 2010;77:1153–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lugtenberg EJ, Peters R. Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12. Biochim Biophys Acta. 1976;441:38–47.
Article
CAS
PubMed
Google Scholar
De Cock H, Struyvé M, Kleerebezem M, van der Krift T, Tommassen J. Role of the carboxy-terminal phenylalanine in the biogenesis of outer membrane protein PhoE of Escherichia coli K-12. J Mol Biol. 1997;269:473–8.
Article
PubMed
Google Scholar
Struyvé M, Moons M, Tommassen J. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol. 1991;218:141–8.
Article
PubMed
Google Scholar
Hagan CL, Wzorek JS, Kahne D. Inhibition of the β-barrel assembly machine by a peptide that binds BamD. Proc Natl Acad Sci U S A. 2015;112:2011–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Albrecht R, Zeth K. Structural basis of outer membrane protein biogenesis in bacteria. J Biol Chem. 2011;286:27792–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robert V, Volokhina EB, Senf F, Bos MP, Van Gelder P, Tommassen J. Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol. 2006;4:e377.
Article
PubMed
PubMed Central
CAS
Google Scholar
Danoff EJ, Fleming KG. Membrane defects accelerate outer membrane β-barrel protein folding. Biochemistry. 2015;54:97–9.
Article
CAS
PubMed
Google Scholar
Noinaj N, Kuszak AJ, Balusek C, Gumbart JC, Buchanan SK. Lateral opening and exit pore formation are required for BamA function. Structure. 2014;22:1055–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gruss F, Zähringer F, Jakob RP, Burmann BM, Hiller S, Maier T. The structural basis of autotransporter translocation by TamA. Nat Struct Mol Biol. 2013;20:1318–20.
Article
CAS
PubMed
Google Scholar
Han L, Zheng J, Wang Y, Yang X, Liu Y, Sun C, et al. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat Struct Mol Biol. 2016;23:192–6.
Article
CAS
PubMed
Google Scholar
Mahoney TF, Ricci DP, Silhavy TJ. Classifying β-barrel assembly substrates by manipulating essential Bam complex members. J Bacteriol. 2016;198:1984–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eichner T, Radford SE. A diversity of assembly mechanisms of a generic amyloid fold. Mol Cell. 2011;43:8–18.
Article
CAS
PubMed
Google Scholar
Kleinschmidt JH, Bulieris PV, Qu J, Dogterom M, den Blaauwen T. Association of neighboring β-strands of outer membrane protein A in lipid bilayers revealed by site-directed fluorescence quenching. J Mol Biol. 2011;407:316–32.
Article
CAS
PubMed
Google Scholar
Schulz GE. β-barrel membrane proteins. Curr Opin Struct Biol. 2000;10:443–7.
Article
CAS
PubMed
Google Scholar
Sapra KT, Damaghi M, Köster S, Yildiz Ö, Kühlbrandt W, Müller DJ. One β hairpin after the other: exploring mechanical unfolding pathways of the transmembrane β-barrel protein OmpG. Angew Chem Int Ed. 2009;48:8306–8.
Article
CAS
Google Scholar
Thoma J, Bosshart P, Pfreundschuh M, Müller DJ. Out but not in: the large transmembrane β-barrel protein FhuA unfolds but cannot refold via β-hairpins. Structure. 2012;20:2185–90.
Article
CAS
PubMed
Google Scholar
Ricci DP, Hagan CL, Kahne D, Silhavy TJ. Activation of the Escherichia coli β-barrel assembly machine (Bam) is required for essential components to interact properly with substrate. Proc Natl Acad Sci U S A. 2012;109:3487–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCabe AL, Ricci D, Adetunji M, Silhavy TJ. Conformational changes that coordinate the activity of BamA and BamD allowing β-barrel assembly. J. Bacteriol. 2017. doi: 10.1128/JB.00373-17.
Warner LR, Gatzeva-Topalova PZ, Doerner PA, Pardi A, Sousa MC. Flexibility in the periplasmic domain of BamA is important for function. Structure. 2017;25:94–106.
Article
CAS
PubMed
Google Scholar
Kim S, Malinverni JC, Sliz P, Silhavy TJ, Harrison SC, Kahne D. Structure and function of an essential component of the outer membrane protein assembly machine. Science. 2007;317:961–4.
Article
CAS
PubMed
Google Scholar
Gatzeva-Topalova PZ, Walton TA, Sousa MC. Crystal Structure of YaeT: conformational flexibility and substrate recognition. Struct Fold Des. 2008;16:1873–81.
Article
CAS
Google Scholar
Rigel NW, Ricci DP, Silhavy TJ. Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for β-barrel assembly in Escherichia coli. Proc Natl Acad Sci U S A. 2013;110:5151–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rigel NW, Schwalm J, Ricci DP, Silhavy TJ. BamE modulates the Escherichia coli beta-barrel assembly machine component BamA. J Bacteriol. 2012;194:1002–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernstein HD. Looks can be deceiving: recent insights into the mechanism of protein secretion by the autotransporter pathway. Mol Microbiol. 2015;97:205–15.
Article
CAS
PubMed
Google Scholar
Ieva R, Bernstein HD. Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane. Proc Natl Acad Sci U S A. 2009;106:19120–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ieva R, Tian P, Peterson JH, Bernstein HD. Sequential and spatially restricted interactions of assembly factors with an autotransporter β domain. Proc Natl Acad Sci U S A. 2011;108:E383–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossiter AE, Leyton DL, Tveen-Jensen K, Browning DF, Sevastsyanovich Y, Knowles TJ, et al. The essential β-barrel assembly machinery complex components BamD and BamA are required for autotransporter biogenesis. J Bacteriol. 2011;193:4250–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grijpstra J, Arenas J, Rutten L, Tommassen J. Autotransporter secretion: varying on a theme. Res Microbiol. 2013;164:562–82.
Article
CAS
PubMed
Google Scholar
Albenne C, Ieva R. Job contenders: roles of the β-barrel assembly machinery and the translocation and assembly module in autotransporter secretion. Mol Microbiol. 2017;106:505–17.
Article
CAS
PubMed
Google Scholar
Bamert RS, Lundquist K, Hwang H, Webb CT, Shiota T, Stubenrauch CJ, et al. Structural basis for substrate selection by the translocation and assembly module of the β-barrel assembly machinery. Mol Microbiol. 2017;106(1):142–56.
Article
CAS
PubMed
Google Scholar
Geibel S, Procko E, Hultgren SJ, Baker D, Waksman G. Structural and energetic basis of folded-protein transport by the FimD usher. Nature. 2014;496:243–6.
Article
CAS
Google Scholar
Horne JE, Radford SE. A growing toolbox of techniques for studying β-barrel outer membrane protein folding and biogenesis. Biochem Soc Trans. 2016;44:802–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagn F, Etzkorn M, Raschle T, Wagner G. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc. 2013;135:1919–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pautsch A, Schulz GE. High-resolution structure of the OmpA membrane domain. J Mol Biol. 2000;298:273–82.
Article
CAS
PubMed
Google Scholar
Vandeputte-Rutten L, Kramer RA, Kroon J, Dekker N, Egmond MR, Gros P. Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site. EMBO J. 2001;20:5033–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barnard TJ, Dautin N, Lukacik P, Bernstein HD, Buchanan SK. Autotransporter structure reveals intra-barrel cleavage followed by conformational changes. Nat Struct Mol Biol. 2007;14:1214–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snijder HJ, Ubarretxena-Belandia I, Blaauw M, Kalk KH, Verheij HM, Egmond MR, et al. Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature. 1999;401:717–21.
Article
CAS
PubMed
Google Scholar
Yildiz Ö, Vinothkumar KR, Goswami P, Kühlbrandt W. Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation. EMBO J. 2006;25:3702–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
van den Berg B, Black PN, Clemons WM, Rapoport TA. Crystal structure of the long-chain fatty acid transporter FadL. Science. 2004;304:1506–9.
Article
PubMed
CAS
Google Scholar
Cowan SW, Garavito RM, Jansonius JN, Jenkins JA, Karlsson R, König N, et al. The structure of OmpF porin in a tetragonal crystal form. Struct Fold Des. 1995;3:1041–50.
Article
CAS
Google Scholar
Schirmer T, Keller TA, Wang YF, Rosenbusch JP. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science. 1995;267:512–4.
Article
CAS
PubMed
Google Scholar
Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L, Rosenbusch JP, et al. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell. 1998;95:771–8.
Article
CAS
PubMed
Google Scholar
Phan G, Remaut H, Wang T, Allen WJ, Pirker KF, Lebedev A, et al. Crystal structure of the FimD usher bound to its cognate FimC–FimH substrate. Nature. 2011;474:49–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiao S, Luo Q, Zhao Y, Zhang XC, Huang Y. Structural basis for lipopolysaccharide insertion in the bacterial outer membrane. Nature. 2014;511:108–11.
Article
CAS
PubMed
Google Scholar
O’Neil PK, Rollauer SE, Noinaj N, Buchanan SK. Fitting the pieces of the β-barrel assembly machinery complex. Biochemistry. 2015;54:6303–11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ferguson AD, Ködding J, Walker G, Bös C, Coulton JW, Diederichs K, et al. Active transport of an antibiotic rifamycin derivative by the outer-membrane protein FhuA. Struct Fold Des. 2001;9:707–16.
Article
CAS
Google Scholar
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A. 2001;98:10037–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hwang PM, Choy W-Y, Lo EI, Chen L, Forman-Kay JD, Raetz CRH, et al. Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci U S A. 2002;99:13560–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiser A, Do RK, Sali A. Modeling of loops in protein structures. Protein Sci. 2000;9:1753–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bischoff L, Wickles S, Berninghausen O, van der Sluis EO, Beckmann R. Visualization of a polytopic membrane protein during SecY-mediated membrane insertion. Nat Commun. 2014;5:4103.
Article
CAS
PubMed
Google Scholar
Walton TA, Sousa MC. Crystal Structure of Skp, a Prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol Cell. 2004;15:367–74.
Article
CAS
PubMed
Google Scholar
Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 1.8. 2015. https://pymol.org.
Walsh NP, Alba BM, Bose B, Gross CA, Sauer RT. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell. 2003;113:61–71.
Article
CAS
PubMed
Google Scholar
Merdanovic M, Clausen T, Kaiser M, Huber R, Ehrmann M. Protein quality control in the bacterial periplasm. Annu Rev Microbiol. 2011;65:149–68.
Article
CAS
PubMed
Google Scholar
Krojer T, Sawa J, Schäfer E, Saibil HR, Ehrmann M, Clausen T. Structural basis for the regulated protease and chaperone function of DegP. Nature. 2008;453:885–90.
Article
CAS
PubMed
Google Scholar
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–8–27–8.
Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010;2:a000414–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, et al. Structure of the AcrAB-TolC multidrug efflux pump. Nature. 2014;509:512–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matias VRF, Al-Amoudi A, Dubochet J, Beveridge TJ. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J Bacteriol. 2003;185:6112–8.
Article
CAS
PubMed
PubMed Central
Google Scholar