Skip to main content

Advertisement

Fig. 6 | BMC Biology

Fig. 6

From: Light sheet theta microscopy for rapid high-resolution imaging of large biological samples

Fig. 6

LSTM enables rapid uniform high-resolution imaging of very large samples. a For an unbiased comparison of the imaging performance of LSTM and LSM a highly cleared large rat brain tissue (~ 2 cm wide and ~ 5 mm deep; vasculature stained with tomato lectin) was imaged using the exact same detection (10×/0.6NA/8mmWD, correction collar adjusted to 1.45 refractive index) and illumination objectives (4×/0.28NA/28.5WD). Maximum intensity projections are shown. The bottom graph profiles the mean intensity across the length of the specified (dashed rectangles) regions of interest. In LSM (cyan), the intensity signal is progressively degraded towards the interior of the sample, whereas LSTM (magenta) allows uniform quality across the entire sample. The scale bars are 1 mm. b An image stack from the sample shown in a. Maximum intensity projections (50 μm) are shown at three different depths (orange). The bounding box is 1 mm × 1 mm × 5 mm. The scale bars are 100 μm. A detailed volume rendering is shown in Additional file 10: Video 5 [29]. c Uniformly expanded (~ 4-fold in all three dimensions) slice of Thy1-eYFP transgenic mouse was imaged using LSTM with 10×/0.6NA/8mmWD detection objective. A rolling shutter exposure window of 0.2 ms and a full frame exposure of 20 ms were used. The resulting dataset consists of 723,200 images (2048 × 2048 pixels) and required ~ 22 h of acquisition time. The volume rendering was performed with 8 × 8 fold down-sampled dataset. Zoomed-in images are marked. d An image stack from the dataset shown in c. The bounding box size is 1.2 mm × 1.2 mm × 1 mm. Note that the dendritic spines can be unambiguously identified. Detailed volume rendering in Additional file 11: Video 6 [29]

Back to article page