Bhatt S, Weiss D, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al.The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015; 526(7572):207.
Article
CAS
PubMed
PubMed Central
Google Scholar
WHO. World Malaria Report 2017. Geneva: World Health Organization; 2017.
Google Scholar
Galactionova K, Tediosi F, De Savigny D, Smith T, Tanner M. Effective coverage and systems effectiveness for malaria case management in sub-Saharan African countries. PLoS ONE. 2015; 10(5):e0127818.
Article
PubMed
PubMed Central
CAS
Google Scholar
Killeen GF. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 2014; 13(1):330.
Article
PubMed
PubMed Central
Google Scholar
Sturrock HJ, Hsiang MS, Cohen JM, Smith DL, Greenhouse B, Bousema T, et al.Targeting asymptomatic malaria infections: active surveillance in control and elimination. PLoS Med. 2013; 10(6):e1001467.
Article
PubMed
PubMed Central
Google Scholar
Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Rekol H, et al.The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect Dis. 2017; 17(5):491–7.
Article
PubMed
PubMed Central
Google Scholar
Zaw MT, Emran NA, Lin Z. Updates on k13 mutant alleles for artemisinin resistance in Plasmodium falciparum. J Microbiol Immunol Infect. 2018; 51(2):159–65.
Article
CAS
PubMed
Google Scholar
Fouet C, Atkinson P, Kamdem C. Human interventions: driving forces of mosquito evolution. Trends Parasitol. 2018; 34(2):127–139.
Article
PubMed
Google Scholar
Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?Trends Parasitol. 2011; 27(2):91–8.
Article
CAS
PubMed
Google Scholar
Godfray HCJ, North A, Burt A. How driving endonuclease genes can be used to combat pests and disease vectors. BMC Biol. 2017; 15(1):81.
Article
PubMed
PubMed Central
Google Scholar
Craig G, Hickey W, VandeHey R. An inherited male-producing factor in Aedes aegypti. Science. 1960; 132(3443):1887–9.
Article
PubMed
Google Scholar
Gantz VM, Bier E. The dawn of active genetics. BioEssays. 2016; 38(1):50–63.
Article
PubMed
Google Scholar
Windbichler N, Papathanos PA, Catteruccia F, Ranson H, Burt A, Crisanti A. Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos. Nucleic Acids Res. 2007; 35(17):5922–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deredec A, Burt A, Godfray HCJ. The population genetics of using homing endonuclease genes in vector and pest management. Genetics. 2008; 179(4):2013–26.
Article
PubMed
PubMed Central
Google Scholar
Deredec A, Godfray HCJ, Burt A. Requirements for effective malaria control with homing endonuclease genes. Proc Natl Acad Sci U S A. 2011; 108(43):E874–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
North A, Burt A, Godfray HCJ. Modelling the spatial spread of a homing endonuclease gene in a mosquito population. J Appl Ecol. 2013; 50(5):1216–25.
CAS
PubMed
PubMed Central
Google Scholar
Eckhoff PA, Wenger EA, Godfray HCJ, Burt A. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proc Natl Acad Sci U S A. 2017; 114(2):E255–64.
Article
CAS
PubMed
Google Scholar
Lambert B, North A, Burt A, Godfray HCJ. The use of driving endonuclease genes to suppress mosquito vectors of malaria in temporally variable environments. Malar J. 2018; 17(1):154.
Article
PubMed
PubMed Central
Google Scholar
North AR, Godfray HCJ. Modelling the persistence of mosquito vectors of malaria in Burkina Faso. Malar J. 2018; 17(1):140.
Article
PubMed
PubMed Central
Google Scholar
Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, et al.The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasites Vectors. 2010; 3(1):117.
Article
PubMed
PubMed Central
Google Scholar
Coluzzi M, Sabatini A, Petrarca V, Di Deco M. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg. 1979; 73(5):483–97.
Article
CAS
PubMed
Google Scholar
Garrett-Jones C, Boreham P, Pant C. Feeding habits of anophelines (Diptera: Culicidae) in 1971–78, with reference to the human blood index: a review. Bull Entomol Res. 1980; 70(2):165–85.
Article
Google Scholar
Besansky NJ, Hill CA, Costantini C. No accounting for taste: host preference in malaria vectors. Trends Parasitol. 2004; 20(6):249–51.
Article
PubMed
Google Scholar
Ramsdale C, Fontaine RE, World Health Organization, et al.Ecological investigations of Anopheles gambiae and Anopheles funestus. I. Dry Season Studies in Villages near Kaduna Nigeria. Geneva: World Health Organization; 1970.
Google Scholar
Jawara M, Pinder M, Drakeley CJ, Nwakanma DC, Jallow E, Bogh C, et al.Dry season ecology of Anopheles gambiae complex mosquitoes in The Gambia. Malar J. 2008; 7(1):156.
Article
PubMed
PubMed Central
Google Scholar
Charlwood J, Vij R, Billingsley P. Dry season refugia of malaria-transmitting mosquitoes in a dry savannah zone of East Africa. Am J Trop Med Hyg. 2000; 62(6):726–32.
Article
CAS
PubMed
Google Scholar
Minakawa N, Githure JI, Beier JC, Yan G. Anopheline mosquito survival strategies during the dry period in Western Kenya. J Med Entomol. 2001; 38(3):388–92.
Article
CAS
PubMed
Google Scholar
Sogoba N, Doumbia S, Vounatsou P, Baber I, Keita M, Maiga M, et al.Monitoring of larval habitats and mosquito densities in the Sudan savanna of Mali: implications for malaria vector control. Am J Trop Med Hyg. 2007; 77(1):82–8.
Article
PubMed
Google Scholar
Dao A, Yaro A, Diallo M, Timbiné S, Huestis D, Kassogué Y, et al.Signatures of aestivation and migration in Sahelian malaria mosquito populations. Nature. 2014; 516:387–390.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lehmann T, Weetman D, Huestis DL, Yaro AS, Kassogue Y, Diallo M, et al.Tracing the origin of the early wet-season Anopheles coluzzii in the Sahel. Evol Appl. 2017; 10(7):704–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Omer SM, Cloudsley-Thompson J. Survival of female Anopheles gambiae Giles through a 9-month dry season in Sudan. Bull World Health Organ. 1970; 42(2):319.
CAS
PubMed
PubMed Central
Google Scholar
Omer SM, Cloudsley-Thompson J. Dry season biology of Anopheles gambiae Giles in the Sudan. Nature. 1968; 217(5131):879.
Article
Google Scholar
Adamou A, Dao A, Timbine S, Kassogué Y, Diallo M, Traoré SF, et al.The contribution of aestivating mosquitoes to the persistence of Anopheles gambiae in the Sahel. Malar J. 2011; 10(1):151.
Article
PubMed
PubMed Central
Google Scholar
Huestis DL, Traoré AI, Dieter KL, Nwagbara JI, Bowie AC, Adamou A, et al.Seasonal variation in metabolic rate, flight activity and body size of Anopheles gambiae in the Sahel. J Exp Biol. 2012; 215(12):2013–21.
Article
PubMed
PubMed Central
Google Scholar
Lehmann T, Dao A, Adamou A, Kassogue Y, Diallo M, Sékou T, et al.Aestivation of the African malaria mosquito, Anopheles gambiae in the Sahel. Am J Trop Med Hyg. 2010; 83(3):601–6.
Article
PubMed
PubMed Central
Google Scholar
Yaro AS, Traoré AI, Huestis DL, Adamou A, Timbiné S, Kassogué Y, et al.Dry season reproductive depression of Anopheles gambiae in the Sahel. J Insect Physiol. 2012; 58(8):1050–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomson MC, Connor SJ, Quinones ML, Jawara M, Todd J, Greenwood BM. Movement of Anopheles gambiae s.l. malaria vectors between villages in The Gambia. Med Vet Entomol. 1995; 9(4):413–9.
Article
CAS
PubMed
Google Scholar
Costantini C, Li SG, Torre AD, Sagnon N, Coluzzi M, Taylor CE. Density, survival and dispersal of Anopheles gambiae complex mosquitoes in a West African Sudan savanna village. Med Vet Entomol. 1996; 10(3):203–19.
Article
CAS
PubMed
Google Scholar
Taylor C, Touré YT, Carnahan J, Norris DE, Dolo G, Traoré SF, et al.Gene flow among populations of the malaria vector, Anopheles gambiae, in Mali, West Africa. Genetics. 2001; 157(2):743–50.
CAS
PubMed
PubMed Central
Google Scholar
Hess G. Disease in metapopulation models: implications for conservation. Ecology. 1996; 77:1617–32.
Article
Google Scholar
Hoshen MB, Morse AP. A weather-driven model of malaria transmission. Malar, J. 2004; 3(1):32.
Article
Google Scholar
Ermert V, Fink AH, Jones AE, Morse AP. Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review. Malar J. 2011; 10(1):35.
Article
PubMed
PubMed Central
Google Scholar
Lunde TM, Korecha D, Loha E, Sorteberg A, Lindtjørn B. A dynamic model of some malaria-transmitting anopheline mosquitoes of the Afrotropical region. I. Model description and sensitivity analysis. Malar J. 2013; 12(1):28.
Article
PubMed
PubMed Central
Google Scholar
Costantini C, Sagnon N, della Torre A, Diallo M, Brady J, Gibson G, et al.Odor-mediated host preferences of West African mosquitoes, with particular reference to malaria vectors. Am J Trop Med Hyg. 1998; 58(1):56–63.
Article
CAS
PubMed
Google Scholar
Wiebe A, Longbottom J, Gleave K, Shearer FM, Sinka ME, Massey NC, et al.Geographical distributions of African malaria vector sibling species and evidence for insecticide resistance. Malar J. 2017; 16(1):85.
Article
PubMed
PubMed Central
Google Scholar
Tirados I, Costantini C, Gibson G, Torr SJ. Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis: implications for vector control. Med Vet Entomol. 2006; 20(4):425–37. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2915.2006.652.x. Accessed 15 Mar 2019.
Article
CAS
PubMed
Google Scholar
Tene Fossog B, Ayala D, Acevedo P, Kengne P, Ngomo Abeso Mebuy I, Makanga B, et al.Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes. Evol Appl. 2015; 8(4):326–45. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/eva.12242. Accessed 15 Mar 2019.
Article
PubMed
PubMed Central
Google Scholar
Costantini C, Ayala D, Guelbeogo WM, Pombi M, Some CY, Bassole IH, et al.Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 2009; 9(1):16. Available from: https://doi.org/10.1186/1472-6785-9-16.
Article
PubMed
PubMed Central
CAS
Google Scholar
Simard F, Ayala D, Kamdem GC, Pombi M, Etouna J, Ose K, et al.Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol. 2009; 9(1):17. Available from: https://doi.org/10.1186/1472-6785-9-17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gimonneau G, Pombi M, Choisy M, Morand S, Dabiré RK, Simard F. Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso, West Africa. Med Vet Entomol. 2012; 26(1):9–17. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2915.2011.00957.x. Accessed 15 Mar 2019.
Article
CAS
PubMed
Google Scholar
Touré Y, Petrarca V, Traoré S, Coulibaly A, Maiga H, Sankaré O, et al.The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa. Parassitologia. 1998; 40(4):477–511. Available from: http://europepmc.org/abstract/MED/10645562. Accessed 15 Mar 2019.
PubMed
Google Scholar
Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al.A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016; 34(1):78–83.
Article
CAS
PubMed
Google Scholar
Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al.A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol. 2018; 36:1062. Available from: https://doi.org/10.1038/nbt.4245. Accessed 15 Mar 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al.Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A. 2015; 112(49):E6736–E6743. Available from: http://www.pnas.org/content/112/49/E6736. Accessed 15 Mar 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galizi R, Doyle LA, Menichelli M, Bernardini F, Deredec A, Burt A, et al.A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat Commun. 2014; 5:3977.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beaghton A, Beaghton PJ, Burt A. Vector control with driving-Y chromosomes: modelling the evolution of resistance. Malar J. 2017; 16(1):286.
Article
PubMed
PubMed Central
CAS
Google Scholar
United Nations Office for the Coordination of Human Affairs. Settlement Data. Available from: https://data.humdata.org/. Accessed 15 Mar 2019.
Digital Chart of the World. Inland water data. Available from: http://www.diva-gis.org/Data. Accessed 15 Mar 2019.
Dee DP, Uppala SM, Simmons A, Berrisford P, Poli P, Kobayashi S, et al.The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart J Roy Meteor Soc. 2011; 137(656):553–97.
Article
Google Scholar
Nicholson SE. The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorology. 2013; 2013. Available from https://doi.org/10.1155/2013/453521.