Integrative HMP. (iHMP) Research Network Consortium. The Integrative Human Microbiome Project. Nature. 2019;569:641–8.
Article
CAS
Google Scholar
Integrative HMP. (iHMP) Research Network Consortium. After the Integrative Human Microbiome Project, what’s next for the microbiome community? Nature. 2019;569:599.
Proctor L. Priorities for the next 10 years of human microbiome research. Nature. 2019;569:623–5.
Article
CAS
PubMed
Google Scholar
Douillard FP, de Vos WM. Biotechnology of health-promoting bacteria. Biotechnol Adv. 2019. https://doi.org/10.1016/j.biotechadv.2019.03.008.
Article
PubMed
CAS
Google Scholar
Stenman LK, Burcelin R. Establishing a causal link between gut microbes, body weight gain and glucose metabolism in humans–towards treatment with probiotics. Benef Microbes. 2016; http://www.wageningenacademic.com/doi/abs/10.3920/BM2015.0069.
Brunkwall L, Orho-Melander M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia. 2017. https://doi.org/10.1007/s00125-017-4278-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morotomi M, Nagai F, Watanabe Y. Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol Microbiol. 2011;62:144–9.
Article
PubMed
CAS
Google Scholar
Lau SKP, McNabb A, Woo GKS, Hoang L, Fung AMY, Chung LMW, et al. Catabacter hongkongensis gen. nov., sp. nov., isolated from blood cultures of patients from Hong Kong and Canada. J Clin Microbiol. 2007;45:395–401.
Article
CAS
PubMed
Google Scholar
Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014;38:996–1047.
Article
PubMed
CAS
Google Scholar
Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol. 2018;68:1825–9.
Article
PubMed
Google Scholar
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
Article
CAS
PubMed
Google Scholar
Alonso BL. Irigoyen von Sierakowski A, Sáez Nieto JA, Rosel AB. First report of human infection by Christensenella minuta, a Gram-negative, strickly anaerobic rod that inhabits the human intestine. Anaerobe. 2017;44:124–5.
Article
PubMed
Google Scholar
Yang Y, Gu H, Sun Q, Wang J. Effects of Christensenella minuta lipopolysaccharide on RAW264.7 macrophages activation. Microb Pathog. 2018. https://doi.org/10.1016/j.micpath.2018.10.005.
Article
CAS
PubMed
Google Scholar
Rosa BA, Hallsworth-Pepin K, Martin J, Wollam A, Mitreva M. Genome sequence of Christensenella minuta DSM 22607T. Genome Announc. 2017;5. https://doi.org/10.1128/genomeA.01451-16.
Choi YJ, Won EJ, Kim SH, Shin MG, Shin JH, Suh SP. First case report of bacteremia due to Catabacter hongkongensis in a Korean patient. Ann Lab Med. 2017;37:84–7.
Article
PubMed
Google Scholar
Lau SKP, Fan RYY, Lo H-W, Ng RHY, Wong SSY, Li IWS, et al. High mortality associated with Catabacter hongkongensis bacteremia. J Clin Microbiol. 2012;50:2239–43.
Article
PubMed
PubMed Central
Google Scholar
Elsendoorn A, Robert R, Culos A, Roblot F, Burucoa C. Catabacter hongkongensis Bacteremia with fatal septic shock. Emerg Infect Dis. 2011;17:1330–1.
Article
PubMed
PubMed Central
Google Scholar
Lau SKP, Teng JLL, Huang Y, Curreem SOT, Tsui SKW, Woo PCY. Draft genome sequence of Catabacter hongkongensis type strain HKU16T, isolated from a patient with bacteremia and intestinal obstruction. Genome Announc. 2015;3. https://doi.org/10.1128/genomeA.00531-15.
Ndongo S, Khelaifia S, Fournier P-E, Raoult D. Christensenella massiliensis, a new bacterial species isolated from the human gut; 2016. https://doi.org/10.1016/j.nmni.2016.04.014.
Book
Google Scholar
Ndongo S, Dubourg G, Khelaifia S, Fournier PE, Raoult D. Christensenella timonensis, a new bacterial species isolated from the human gut. New Microbes New Infect. 2016;13:32–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159. https://doi.org/10.1016/j.cell.2014.09.053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Upadhyaya B, McCormack L, Fardin-Kia AR, Juenemann R, Nichenametla S, Clapper J, et al. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions. Sci Rep. 2016;6:28797.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hansen EE, Lozupone CA, Rey FE, Wu M, Guruge JL, Narra A, et al. Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4599–606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett DC, Tun HM, Kim JE, Leung FC, Cheng KM. Characterization of cecal microbiota of the emu (Dromaius novaehollandiae). Vet Microbiol. 2013;166:304–10.
Article
PubMed
Google Scholar
Crisol-Martínez E, Stanley D, Geier MS, Hughes RJ, Moore RJ. Sorghum and wheat differentially affect caecal microbiota and associated performance characteristics of meat chickens. PeerJ. 2017;5:e3071.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wilkinson N, Hughes RJ, Aspden WJ, Chapman J, Moore RJ, Stanley D. The gastrointestinal tract microbiota of the Japanese quail. Coturnix japonica. Appl Microbiol Biotechnol. 2016;100:4201–9.
Article
CAS
PubMed
Google Scholar
Videvall E, Song SJ, Bensch HM, Strandh M, Engelbrecht A, Serfontein N, et al. The development of gut microbiota in ostriches and its association with juvenile growth. bioRxiv. 2018:270017. https://doi.org/10.1101/270017.
Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. 2019;10:2200.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang J, Shi H, Wang Y, Li S, Cao Z, Ji S, et al. Effect of dietary forage to concentrate ratios on dynamic profile changes and interactions of ruminal microbiota and metabolites in Holstein heifers. Front Microbiol. 2017;8:2206.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Martin GB, Wen Q, Liu S, Zhang J, Yu Y, et al. Linseed oil and heated linseed grain supplements have different effects on rumen bacterial community structures and fatty acid profiles in cashmere kids. J Anim Sci. 2019. https://doi.org/10.1093/jas/skz079.
Article
PubMed
PubMed Central
Google Scholar
Kamke J, Kittelmann S, Soni P, Li Y, Tavendale M, Ganesh S, et al. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Microbiome. 2016;4:56.
Article
PubMed
PubMed Central
Google Scholar
He J, Yi L, Hai L, Ming L, Gao W, Ji R. Characterizing the bacterial microbiota in different gastrointestinal tract segments of the Bactrian camel. Sci Rep. 2018;8:654.
Article
PubMed
PubMed Central
CAS
Google Scholar
Samsudin AA, Evans PN, Wright A-DG, Al JR. Molecular diversity of the foregut bacteria community in the dromedary camel (Camelus dromedarius). Environ Microbiol. 2011;13:3024–35.
Article
CAS
PubMed
Google Scholar
Li Z, Si H, Nan W, Wang X, Zhang T, Li G. Bacterial community and metabolome shifts in the cecum and colon of captive sika deer (Cervus nippon) from birth to post weaning. FEMS Microbiol Lett. 2019. https://doi.org/10.1093/femsle/fnz010.
Quan J, Cai G, Ye J, Yang M, Ding R, Wang X, et al. A global comparison of the microbiome compositions of three gut locations in commercial pigs with extreme feed conversion ratios. Sci Rep. 2018;8:4536.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu C, Zhou J, Li Y, Zhang D, Wang Z, Li Y, et al. Structural modulation of gut microbiota in Bama minipigs in response to treatment with a “growth-promoting agent”, salbutamol. Appl Microbiol Biotechnol. 2017. https://doi.org/10.1007/s00253-017-8329-y.
Article
CAS
PubMed
Google Scholar
Gebreselassie EE, Jackson MI, Yerramilli M, Jewell DE. Anti-aging food that improves markers of health in senior dogs by modulating gut microbiota and metabolite profiles. bioRxiv. 2018:324327. https://doi.org/10.1101/324327.
Ramadan Z, Xu H, Laflamme D, Czarnecki-Maulden G, Li QJ, Labuda J, et al. Fecal microbiota of cats with naturally occurring chronic diarrhea assessed using 16S rRNA gene 454-pyrosequencing before and after dietary treatment. J Vet Intern Med. 2014;28:59–65.
Article
CAS
PubMed
Google Scholar
Shiffman ME, Soo RM, Dennis PG, Morrison M, Tyson GW, Hugenholtz P. Gene and genome-centric analyses of koala and wombat fecal microbiomes point to metabolic specialization for Eucalyptus digestion. PeerJ. 2017;5:e4075.
PubMed
PubMed Central
Google Scholar
Wang C, Zhu Y, Li F, Huang L. The effect of Lactobacillus isolates on growth performance, immune response, intestinal bacterial community composition of growing Rex Rabbits. J Anim Physiol Anim Nutr. 2017. https://doi.org/10.1111/jpn.12629.
Article
CAS
PubMed
Google Scholar
Hansen NCK, Avershina E, Mydland LT, Næsset JA, Austbø D, Moen B, et al. High nutrient availability reduces the diversity and stability of the equine caecal microbiota. Microb Ecol Health Dis. 2015;26:27216.
PubMed
Google Scholar
McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM, et al. The effects of captivity on the mammalian gut microbiome. Integr Comp Biol. 2017. https://doi.org/10.1093/icb/icx090.
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Yasuda K, Gilmore RA, Westmoreland SV, Platt DM, Miller GM, et al. Alcohol-induced changes in the gut microbiome and metabolome of rhesus macaques. Psychopharmacology. 2019. https://doi.org/10.1007/s00213-019-05217-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan C, Graham M, Subramanian S. Microbiota-metabolites interactions in non-human primate gastrointestinal tract. bioRxiv. 2018:454496. https://doi.org/10.1101/454496.
Allan N, Knotts TA, Pesapane R, Ramsey JJ, Castle S, Clifford D, et al. Conservation implications of shifting gut microbiomes in captive-reared endangered voles intended for reintroduction into the wild. Microorganisms. 2018;6. https://doi.org/10.3390/microorganisms6030094.
Article
CAS
PubMed Central
Google Scholar
Connor KL, Chehoud C, Altrichter A, Chan L, DeSantis TZ, Lye SJ. Maternal metabolic, immune, and microbial systems in late pregnancy vary with malnutrition in mice. Biol Reprod. 2018;98:579–92.
PubMed
Google Scholar
Tillmann S, Abildgaard A, Winther G, Wegener G. Altered fecal microbiota composition in the Flinders sensitive line rat model of depression. Psychopharmacology. 2018. https://doi.org/10.1007/s00213-018-5094-2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsukinowa E, Karita S, Asano S, Wakai Y, Oka Y, Furuta M, et al. Fecal microbiota of a dugong (Dugong dugong) in captivity at Toba Aquarium. J Gen Appl Microbiol. 2008;54:25–38.
Article
CAS
PubMed
Google Scholar
Suzuki A, Ueda K, Segawa T, Suzuki M. Fecal microbiota of captive Antillean manatee Trichechus manatus manatus. FEMS Microbiol Lett. 2019. https://doi.org/10.1093/femsle/fnz134.
Baldo L, Riera JL, Mitsi K, Pretus JL. Processes shaping gut microbiota diversity in allopatric populations of the endemic lizard Podarcis lilfordi from Menorcan islets (Balearic Islands). FEMS Microbiol Ecol. 2018;94. https://doi.org/10.1093/femsec/fix186.
Kohl KD, Brun A, Magallanes M, Brinkerhoff J, Laspiur A, Acosta JC, et al. Gut microbial ecology of lizards: insights into diversity in the wild, effects of captivity, variation across gut regions, and transmission. Mol Ecol. 2016. https://doi.org/10.1111/mec.13921.
Article
PubMed
Google Scholar
Yuan ML, Dean SH, Longo AV, Rothermel BB, Tuberville TD, Zamudio KR. Kinship, inbreeding and fine-scale spatial structure influence gut microbiota in a hindgut-fermenting tortoise. Mol Ecol. 2015;24:2521–36.
Article
PubMed
Google Scholar
Huang S, Zhang H. The impact of environmental heterogeneity and life stage on the hindgut microbiota of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). PLoS One. 2013;8:e57169.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ayayee PA, Keeney G, Sabree ZL, Muñoz-Garcia A. Compositional differences among female-associated and embryo-associated microbiota of the viviparous Pacific Beetle cockroach. Diploptera punctata. FEMS Microbiol Ecol. 2017;93. https://doi.org/10.1093/femsec/fix052.
Richards C, Otani S, Mikaelyan A, Poulsen M. Pycnoscelus surinamensis cockroach gut microbiota respond consistently to a fungal diet without mirroring those of fungus-farming termites. PLoS One. 2017;12:e0185745.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zakrzewski M, Simms LA, Brown A, Appleyard M, Irwin J, Waddell N, et al. IL23R-protective coding variant promotes beneficial bacteria and diversity in the ileal microbiome in healthy individuals without inflammatory bowel disease. J Crohns Colitis. 2018. https://doi.org/10.1093/ecco-jcc/jjy188.
Article
Google Scholar
Huang YJ, Kim E, Cox MJ, Brodie EL, Brown R, Wiener-Kronish JP, et al. A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbations. OMICS. 2010;14:9–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burns MB, Montassier E, Abrahante J, Priya S, Niccum DE, Khoruts A, et al. Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment. PLoS Genet. 2018;14:e1007376.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moreno-Indias I, Sánchez-Alcoholado L, García-Fuentes E, Cardona F, Queipo-Ortuņo MI, Tinahones FJ. Insulin resistance is associated with specific gut microbiota in appendix samples from morbidly obese patients. Am J Transl Res. 2016;8:5672–84.
CAS
PubMed
PubMed Central
Google Scholar
Brooks AW, Priya S, Blekhman R, Bordenstein SR. Gut microbiota diversity across ethnicities in the United States. PLoS Biol. 2018;16:e2006842.
Article
PubMed
PubMed Central
CAS
Google Scholar
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.
Article
CAS
PubMed
Google Scholar
Turpin W, Espin-Garcia O, Xu W, Silverberg MS, Kevans D, Smith MI, et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet. 2016;48:1413–7.
Article
CAS
PubMed
Google Scholar
Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC, Ursell LK, et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun. 2015;6:6505.
Article
CAS
PubMed
Google Scholar
Escobar JS, Klotz B, Valdes BE, Agudelo GM. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol. 2014;14:311.
Article
PubMed
PubMed Central
Google Scholar
Org E, Blum Y, Kasela S, Mehrabian M, Kuusisto J, Kangas AJ, et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 2017;18:70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lim MY, You HJ, Yoon HS, Kwon B, Lee JY, Lee S, et al. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut. 2016. https://doi.org/10.1136/gutjnl-2015-311326.
Article
PubMed
CAS
Google Scholar
Oki K, Toyama M, Banno T, Chonan O, Benno Y, Watanabe K. Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type. BMC Microbiol. 2016;16:284.
Article
PubMed
PubMed Central
Google Scholar
Ayeni FA, Biagi E, Rampelli S, Fiori J, Soverini M, Audu HJ, et al. Infant and adult gut microbiome and metabolome in rural Bassa and urban settlers from Nigeria. Cell Rep. 2018;23:3056–67.
Article
CAS
PubMed
Google Scholar
Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K, et al. Gut microbiome of coexisting BaAka Pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep. 2016;14:2142–53.
Article
CAS
PubMed
Google Scholar
Morton ER, Lynch J, Froment A, Lafosse S, Heyer E, Przeworski M, et al. Variation in rural African gut microbiota is strongly correlated with colonization by Entamoeba and Subsistence. PLoS Genet. 2015;11:e1005658.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barrett HL, Gomez-Arango LF, Wilkinson SA, McIntyre HD, Callaway LK, Morrison M, et al. A vegetarian diet is a major determinant of gut microbiota composition in early pregnancy. Nutrients. 2018;10. https://doi.org/10.3390/nu10070890.
Article
PubMed Central
CAS
Google Scholar
Deschasaux M, Bouter KE, Prodan A, Levin E, Groen AK, Herrema H, et al. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nat Med. 2018. https://doi.org/10.1038/s41591-018-0160-1.
Article
CAS
PubMed
Google Scholar
Chi L, Mahbub R, Gao B, Bian X, Tu P, Ru H, et al. Nicotine alters the gut microbiome and metabolites of gut-brain interactions in a sex-specific manner. Chem Res Toxicol. 2017;30:2110–9.
Article
CAS
PubMed
Google Scholar
Davis DJ, Hecht PM, Jasarevic E, Beversdorf DQ, Will MJ, Fritsche K, et al. Sex-specific effects of docosahexaenoic acid (DHA) on the microbiome and behavior of socially-isolated mice. Brain Behav Immun. 2016. https://doi.org/10.1016/j.bbi.2016.09.003.
Article
CAS
PubMed
Google Scholar
Kong F, Hua Y, Zeng B, Ning R, Li Y, Zhao J. Gut microbiota signatures of longevity. Curr Biol. 2016;26:R832–3.
Article
CAS
PubMed
Google Scholar
Wang F, Yu T, Huang G, Cai D, Liang X, Su H, et al. Gut microbiota community and its assembly associated with age and diet in Chinese centenarians. J Microbiol Biotechnol. 2015;25:1195–204.
Article
CAS
PubMed
Google Scholar
Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, et al. Gut microbiota and extreme longevity. Curr Biol. 2016. https://doi.org/10.1016/j.cub.2016.04.016.
Article
CAS
PubMed
Google Scholar
Kim B-S, Choi CW, Shin H, Jin S-P, Bae J-S, Han M, et al. Comparison of the gut microbiota of centenarians in longevity villages of South Korea with those of other age groups. J Microbiol Biotechnol. 2019. https://doi.org/10.4014/jmb.1811.11023.
Article
PubMed
Google Scholar
Anand R, Song Y, Garg S, Girotra M, Sinha A, Sivaraman A, et al. Effect of aging on the composition of fecal microbiota in donors for FMT and its impact on clinical outcomes. Dig Dis Sci. 2017. https://doi.org/10.1007/s10620-017-4449-6.
Article
CAS
PubMed
Google Scholar
Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S, et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016;4:42.
Article
PubMed
PubMed Central
Google Scholar
Jackson MA, Bonder MJ, Kuncheva Z, Zierer J, Fu J, Kurilshikov A, et al. Detection of stable community structures within gut microbiota co-occurrence networks from different human populations. PeerJ. 2018;6:e4303.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shin J-H, Park YH, Sim M, Kim S-A, Joung H, Shin D-M. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res Microbiol. 2019. https://doi.org/10.1016/j.resmic.2019.03.003.
Article
CAS
PubMed
Google Scholar
Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, et al. Genetic Determinants of the Gut Microbiome in UK Twins. Cell Host Microbe. 2016;19:731–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beaumont M, Goodrich JK, Jackson MA, Yet I, Davenport ER, Vieira-Silva S, et al. Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biol. 2016;17:189.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie H, Guo R, Zhong H, Feng Q, Lan Z, Qin B, et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst. 2016. https://doi.org/10.1016/j.cels.2016.10.004.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodrich JK, Davenport ER, Waters JL, Clark AG, Ley RE. Cross-species comparisons of host genetic associations with the microbiome. Science. 2016;352:532–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wacklin P, Tuimala J, Nikkilä J, Tims S, Mäkivuokko H, Alakulppi N, et al. Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. PLoS One. 2014;9:e94863.
Article
PubMed
PubMed Central
CAS
Google Scholar
Davenport ER, Goodrich JK, Bell JT, Spector TD, Ley RE, Clark AG. ABO antigen and secretor statuses are not associated with gut microbiota composition in 1,500 twins. BMC Genomics. 2016;17:941.
Article
PubMed
PubMed Central
Google Scholar
Turpin W, Bedrani L, Espin-Garcia O, Xu W, Silverberg MS, Smith MI, et al. FUT2 genotype and secretory status are not associated with fecal microbial composition and inferred function in healthy subjects. Gut Microbes. 2018;9:357–68.
CAS
PubMed
PubMed Central
Google Scholar
Le Gall G, Guttula K, Kellingray L, Tett AJ, Ten Hoopen R, Kemsley KE, et al. Metabolite quantification of faecal extracts from colorectal cancer patients and healthy controls. Oncotarget. 2018;9:33278–89.
PubMed
PubMed Central
Google Scholar
Yazici C, Wolf PG, Kim H, Cross T-WL, Vermillion K, Carroll T, et al. Race-dependent association of sulfidogenic bacteria with colorectal cancer. Gut. 2017. https://doi.org/10.1136/gutjnl-2016-313321.
Article
CAS
PubMed
Google Scholar
Peters BA, Shapiro JA, Church TR, Miller G, Trinh-Shevrin C, Yuen E, et al. A taxonomic signature of obesity in a large study of American adults. Sci Rep. 2018;8:9749.
Article
PubMed
PubMed Central
CAS
Google Scholar
López-Contreras BE, Morán-Ramos S, Villarruel-Vázquez R, Macías-Kauffer L, Villamil-Ramírez H, León-Mimila P, et al. Composition of gut microbiota in obese and normal-weight Mexican school-age children and its association with metabolic traits. Pediatr Obes. 2018;13:381–8.
Article
PubMed
Google Scholar
Ferrer M, Ruiz A, Lanza F, Haange S-B, Oberbach A, Till H, et al. Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ Microbiol. 2013;15:211–26.
Article
CAS
PubMed
Google Scholar
Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JAM, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res. 2015;117:817–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kummen M, Holm K, Anmarkrud JA, Nygård S, Vesterhus M, Høivik ML, et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut. 2016. https://doi.org/10.1136/gutjnl-2015-310500.
Article
PubMed
Google Scholar
Stanislawski MA, Dabelea D, Wagner BD, Sontag MK, Lozupone CA, Eggesbø M. Pre-pregnancy weight, gestational weight gain, and the gut microbiota of mothers and their infants. Microbiome. 2017;5:113.
Article
PubMed
PubMed Central
Google Scholar
Yun Y, Kim H-N, Kim SE, Heo SG, Chang Y, Ryu S, et al. Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol. 2017;17:151.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alemán JO, Bokulich NA, Swann JR, Walker JM, De Rosa JC, Battaglia T, et al. Fecal microbiota and bile acid interactions with systemic and adipose tissue metabolism in diet-induced weight loss of obese postmenopausal women. J Transl Med. 2018;16:244.
Article
PubMed
PubMed Central
CAS
Google Scholar
Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014;588:4223–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hibberd AA, Yde CC, Ziegler ML, Honoré AH, Saarinen MT, Lahtinen S, et al. Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Benef Microbes. 2019;10(2):121–35.
Article
CAS
PubMed
Google Scholar
Guzman-Castaneda SJ, Ortega-Vega EL, de la Cuesta-Zuluaga J, Velasquez-Mejia EP, Rojas W, Bedoya G, et al. Gut microbiota composition explains more variance in the host cardiometabolic risk than genetic ancestry. bioRxiv. 2018:394726. https://doi.org/10.1101/394726.
He Y, Wu W, Wu S, Zheng H-M, Li P, Sheng H-F, et al. Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome. 2018;6:172.
Article
PubMed
PubMed Central
Google Scholar
Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M, et al. Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension. 2016;68:974–81.
Article
CAS
PubMed
Google Scholar
Yanai H, Tomono Y, Ito K, Furutani N, Yoshida H, Tada N. The underlying mechanisms for development of hypertension in the metabolic syndrome. Nutr J. 2008;7:10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lippert K, Kedenko L, Antonielli L, Kedenko I, Gemeier C, Leitner M, et al. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benef Microbes. 2017;8(4):545–56.
Article
CAS
PubMed
Google Scholar
Bowyer RCE, Jackson MA, Pallister T, Skinner J, Spector TD, Welch AA, et al. Use of dietary indices to control for diet in human gut microbiota studies. Microbiome. 2018;6:77.
Article
PubMed
PubMed Central
Google Scholar
Maskarinec G, Hullar MAJ, Monroe KR, Shepherd JA, Hunt J, Randolph TW, et al. Fecal microbial diversity and structure are associated with diet quality in the multiethnic cohort adiposity phenotype study. J Nutr. 2019. https://doi.org/10.1093/jn/nxz065.
Article
PubMed
PubMed Central
Google Scholar
Klimenko NS, Tyakht AV, Popenko AS, Vasiliev AS, Altukhov IA, Ischenko DS, et al. Microbiome responses to an uncontrolled short-term diet intervention in the frame of the citizen science project. Nutrients. 2018;10. https://doi.org/10.3390/nu10050576.
Article
PubMed Central
CAS
Google Scholar
De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65:1812–21.
Article
PubMed
CAS
Google Scholar
Azcarate-Peril MA, Ritter AJ, Savaiano D, Monteagudo-Mera A, Anderson C, Magness ST, et al. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc Natl Acad Sci U S A. 2017. https://doi.org/10.1073/pnas.1606722113.
Article
CAS
Google Scholar
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.
Article
CAS
PubMed
Google Scholar
Roager HM, Hansen LBS, Bahl MI, Frandsen HL, Carvalho V, Gøbel RJ, et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat Microbiol. 2016;1:16093.
Article
CAS
PubMed
Google Scholar
Beaumont M, Portune KJ, Steuer N, Lan A, Cerrudo V, Audebert M, et al. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am J Clin Nutr. 2017;106:1005–19.
Article
CAS
PubMed
Google Scholar
Manor O, Zubair N, Conomos MP, Xu X, Rohwer JE, Krafft CE, et al. A multi-omic association study of trimethylamine N-oxide. Cell Rep. 2018;24:935–46.
Article
CAS
PubMed
Google Scholar
Jiminez JA, Uwiera TC, Abbott DW, Uwiera RRE, Inglis GD. Impacts of resistant starch and wheat bran consumption on enteric inflammation in relation to colonic bacterial community structures and short-chain fatty acid concentrations in mice. Gut Pathog. 2016;8:67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zheng J, Cheng G, Li Q, Jiao S, Feng C, Zhao X, et al. Chitin oligosaccharide modulates gut microbiota and attenuates high-fat-diet-induced metabolic syndrome in mice. Mar Drugs. 2018;16. https://doi.org/10.3390/md16020066.
Article
PubMed Central
CAS
Google Scholar
Ferrario C, Statello R, Carnevali L, Mancabelli L, Milani C, Mangifesta M, et al. How to feed the mammalian gut microbiota: bacterial and metabolic modulation by dietary fibers. Front Microbiol. 2017;8:1749.
Article
PubMed
PubMed Central
Google Scholar
Mancabelli L, Milani C, Lugli GA, Turroni F, Cocconi D, van Sinderen D, et al. Identification of universal gut microbial biomarkers of common human intestinal diseases by meta-analysis. FEMS Microbiol Ecol. 2017. https://doi.org/10.1093/femsec/fix153.
Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imhann F, Vich Vila A, Bonder MJ, Fu J, Gevers D, Visschedijk MC, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut. 2016. https://doi.org/10.1136/gutjnl-2016-312135.
Article
PubMed
CAS
Google Scholar
Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158:1000–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pascal V, Pozuelo M, Borruel N, Casellas F, Campos D, Santiago A, et al. A microbial signature for Crohn’s disease. Gut. 2017. https://doi.org/10.1136/gutjnl-2016-313235.
Article
CAS
PubMed
Google Scholar
Lee T, Clavel T, Smirnov K, Schmidt A, Lagkouvardos I, Walker A, et al. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut. 2017;66:863–71.
Article
CAS
PubMed
Google Scholar
Wright EK, Kamm MA, Wagner J, Teo S-M, Cruz PD, Hamilton AL, et al. Microbial factors associated with postoperative Crohn’s disease recurrence. J Crohns Colitis. 2017;11:191–203.
Article
PubMed
Google Scholar
Kennedy NA, Lamb CA, Berry SH, Walker AW, Mansfield J, Parkes M, et al. The impact of NOD2 variants on fecal microbiota in Crohn’s disease and controls without gastrointestinal disease. Inflamm Bowel Dis. 2018;24:583–92.
Article
PubMed
PubMed Central
Google Scholar
Pérez-Brocal V, García-López R, Nos P, Beltrán B, Moret I, Moya A. Metagenomic analysis of Crohn’s disease patients identifies changes in the virome and microbiome related to disease status and therapy, and detects potential interactions and biomarkers. Inflamm Bowel Dis. 2015;21:2515–32.
Article
PubMed
Google Scholar
Papa E, Docktor M, Smillie C, Weber S, Preheim SP, Gevers D, et al. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS One. 2012;7:e39242.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajilic-Stojanovic M, Shanahan F, Guarner F, de Vos WM. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis. 2013;19:481.
Article
PubMed
Google Scholar
Jalanka-Tuovinen J, Salojärvi J, Salonen A, Immonen O, Garsed K, Kelly FM, et al. Faecal microbiota composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut. 2014;63:1737–45.
Article
PubMed
Google Scholar
De Palma G, Lynch MDJ, Lu J, Dang VT, Deng Y, Jury J, et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med. 2017;9. https://doi.org/10.1126/scitranslmed.aaf6397.
Article
PubMed
CAS
Google Scholar
Pozuelo M, Panda S, Santiago A, Mendez S, Accarino A, Santos J, et al. Reduction of butyrate- and methane-producing microorganisms in patients with irritable bowel syndrome. Sci Rep. 2015;5:12693.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hollister EB, Cain KC, Shulman RJ, Jarrett ME, Burr RL, Ko C, et al. Relationships of microbiome markers with extraintestinal, psychological distress and gastrointestinal symptoms, and quality of life in women with irritable bowel syndrome. J Clin Gastroenterol. 2018. https://doi.org/10.1097/MCG.0000000000001107.
Tigchelaar EF, Bonder MJ, Jankipersadsing SA, Fu J, Wijmenga C, Zhernakova A. Gut microbiota composition associated with stool consistency. Gut. 2015;65. https://doi.org/10.1136/gutjnl-2015-310328.
Article
PubMed
Google Scholar
Jalanka J, Major G, Murray K, Singh G, Nowak A, Kurtz C, et al. The effect of Psyllium husk on intestinal microbiota in constipated patients and healthy controls. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20020433.
Article
PubMed Central
CAS
Google Scholar
Pedrosa Carrasco AJ, Timmermann L, Pedrosa DJ. Management of constipation in patients with Parkinson’s disease. NPJ Parkinsons Dis. 2018;4:6.
Article
PubMed
PubMed Central
Google Scholar
Wiesel PH, Norton C, Glickman S, Kamm MA. Pathophysiology and management of bowel dysfunction in multiple sclerosis. Eur J Gastroenterol Hepatol. 2001;13:441–8.
Article
CAS
PubMed
Google Scholar
Barichella M, Severgnini M, Cilia R, Cassani E, Bolliri C, Caronni S, et al. Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov Disord. 2018. https://doi.org/10.1002/mds.27581.
Article
PubMed
Google Scholar
Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD, et al. Parkinson’s disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Mov Disord. 2017. https://doi.org/10.1002/mds.26942.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petrov VA, Saltykova IV, Zhukova IA, Alifirova VM, Zhukova NG, Dorofeeva YB, et al. Analysis of gut microbiota in patients with Parkinson’s disease. Bull Exp Biol Med. 2017. https://doi.org/10.1007/s10517-017-3700-7.
Article
CAS
PubMed
Google Scholar
Tremlett H, Fadrosh DW, Faruqi AA, Zhu F, Hart J, Roalstad S, et al. Gut microbiota in early pediatric multiple sclerosis: a case-control study. Eur J Neurol. 2016;23:1308–21.
Article
PubMed
PubMed Central
Google Scholar
Chang C-J, Lin T-L, Tsai Y-L, Wu T-R, Lai W-F, Lu C-C, et al. Next generation probiotics in disease amelioration. J Food Drug Anal. 2019. https://doi.org/10.1016/j.jfda.2018.12.011.
Article
CAS
PubMed
Google Scholar