Endler JA. Some general comments on the evolution and design of animal communication systems. Philos Trans R Soc B. 1993;340:215–25.
Article
CAS
Google Scholar
Gillam E. An introduction to animal communication. Nat Educ Knowl. 2011;3(10):70.
Google Scholar
Wilson EO. Sociobiology: the new synthesis. United States: Harvard University Press; 1975. https://www.hup.harvard.edu/catalog.php?isbn=9780674002357.
van Gestel J, Nowak MA, Tarnita CE. The evolution of cell-to-cell communication in a sporulating bacterium. PLoS Comput Biol. 2012;8(12):e1002818.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shrout JD, Tolker-Nielsen T, Givskov M, Parsek MR. The contribution of cell-cell signaling and motility to bacterial biofilm formation. MRS Bull. 2011;36(5):367–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer MS, Glass NL. Communicate and fuse: how filamentous fungi establish and maintain an interconnected mycelial network. Front Microbiol. 2019;10:619.
Article
PubMed
PubMed Central
Google Scholar
Cottier F, Muhlschlegel FA. Communication in fungi. Int J Microbiol. 2012;2012:351832.
Article
PubMed
Google Scholar
Bloemendal S, Kuck U. Cell-to-cell communication in plants, animals, and fungi: a comparative review. Naturwissenschaften. 2013;100(1):3–19.
Article
CAS
PubMed
Google Scholar
Wongsuk T, Pumeesat P, Luplertlop N. Fungal quorum sensing molecules: role in fungal morphogenesis and pathogenicity. J Basic Microbiol. 2016;56(5):440–7.
Article
CAS
PubMed
Google Scholar
Glass NL, Jacobson DJ, Shiu PKT. The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu Rev Genet. 2000;34:165–86.
Article
CAS
PubMed
Google Scholar
Fleissner A, Leeder AC, Roca MG, Read ND, Glass NL. Oscillatory recruitment of signaling proteins to cell tips promotes coordinated behavior during cell fusion. Proc Natl Acad Sci U S A. 2009;106(46):19387–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saupe SJ. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev. 2000;64(3):489–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Read ND, Fleissner A, Roca MG, Glass NL. Hyphal fusion. In: Borkovich KA, Edolle D, editors. Cellular and molecular biology of filamentous fungi. Washington DC: American Society of Microbiology; 2010. p. 260–73.
Google Scholar
Hickey PC, Jacobson DJ, Read ND, Glass NL. Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genet Biol. 2002;37:109–19.
Article
PubMed
Google Scholar
Craven KD, Velez H, Cho Y, Lawrence CB, Mitchell TK. Anastomosis is required for virulence of the fungal necrotroph Alternaria brassicicola. Eukaryot Cell. 2008;7(4):675–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prados Rosales RC, Di Pietro A. Vegetative hyphal fusion is not essential for plant infection by Fusarium oxysporum. Eukaryot Cell. 2008;7(1):162.
Article
CAS
PubMed
Google Scholar
Charlton ND, Shoji JY, Ghimire SR, Nakashima J, Craven KD. Deletion of the fungal gene soft disrupts mutualistic symbiosis between the grass endophyte Epichloe festucae and the host plant. Eukaryot Cell. 2012;11(12):1463–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roca GM, Read ND, Wheals AE. Conidial anastomosis tubes in filamentous fungi. FEMS Microbiol Lett. 2005;249(2):191–8.
Article
CAS
Google Scholar
Mehrabi R, Bahkali AH, Abd-Elsalam KA, Moslem M, Ben M’barek S, Gohari AM, Jashni MK, Stergiopoulos I, Kema GH, de Wit PJ. Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range. FEMS Microbiol Rev. 2011;35(3):542–54.
Article
CAS
PubMed
Google Scholar
Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet. 2006;38(8):953–6.
Article
CAS
PubMed
Google Scholar
Temporini ED, VanEtten HD. An analysis of the phylogenetic distribution of the pea pathogenicity genes of Nectria haematococca MPVI supports the hypothesis of their origin by horizontal transfer and uncovers a potentially new pathogen of garden pea: Neocosmospora boniensis. Curr Genet. 2004;46(1):29–36.
Article
CAS
PubMed
Google Scholar
Roca MG, Davide LC, Davide LM, Mendes-Costa MC, Schwan RF, Wheals AE. Conidial anastomosis fusion between Colletotrichum species. Mycol Res. 2004;108(Pt 11):1320–6.
Article
PubMed
Google Scholar
He C, Rusu AG, Poplawski AM, Irwin JAG, Manners JM. Transfer of a supernumerary chromosome between vegetatively incompatible biotypes of the fungus Colletotrichum gloeosporioides. Genet Soc Am. 1998;150:1459–66.
CAS
Google Scholar
Fleissner A, Sarkar S, Jacobson DJ, Roca MG, Read ND, Glass NL. The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. Eukaryot Cell. 2005;4(5):920–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teichert I, Steffens EK, Schnass N, Franzel B, Krisp C, Wolters DA, Kuck U. PRO40 is a scaffold protein of the cell wall integrity pathway, linking the MAP kinase module to the upstream activator protein kinase C. PLoS Genet. 2014;10(9):e1004582.
Article
PubMed
PubMed Central
CAS
Google Scholar
Weichert M, Lichius A, Priegnitz BE, Brandt U, Gottschalk J, Nawrath T, Groenhagen U, Read ND, Schulz S, Fleissner A. Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell-cell recognition and fusion. Proc Natl Acad Sci U S A. 2016;113(42):11877–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin Y, Wu S, Chui C, Ma T, Jiang H, Hahn M, Ma Z. The MAPK kinase BcMkk1 suppresses oxalic acid biosynthesis via impeding phosphorylation of BcRim15 by BcSch9 in Botrytis cinerea. PLoS Pathog. 2018;14(9):e1007285.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fleissner A, Glass NL. SO, a protein involved in hyphal fusion in Neurospora crassa, localizes to septal plugs. Eukaryot Cell. 2007;6(1):84–94.
Article
CAS
PubMed
Google Scholar
Maruyama J, Escano CS, Kitamoto K. AoSO protein accumulates at the septal pore in response to various stresses in the filamentous fungus Aspergillus oryzae. Biochem Biophys Res Commun. 2010;391(1):868–73.
Article
CAS
PubMed
Google Scholar
Engh I, Wurtz C, Witzel-Schlomp K, Zhang HY, Hoff B, Nowrousian M, Rottensteiner H, Kuck U. The WW domain protein PRO40 is required for fungal fertility and associates with Woronin bodies. Eukaryot Cell. 2007;6(5):831–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fones H, Gurr S. The impact of Septoria tritici blotch disease on wheat: an EU perspective. Fungal Genet Biol. 2015;79:3–7.
Article
PubMed
PubMed Central
Google Scholar
Motteram J, Lovegrove A, Pirie E, Marsh J, Devonshire J, van de Meene A, Hammond-Kosack K, Rudd JJ. Aberrant protein N-glycosylation impacts upon infection-related growth transitions of the haploid plant-pathogenic fungus Mycosphaerella graminicola. Mol Microbiol. 2011;81(2):415–33.
Article
CAS
PubMed
Google Scholar
Mehrabi R, Zwiers LH, de Waard MA, Kema GH. MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola. Mol Plant-Microbe Interact. 2006;19(11):1262–9.
Article
CAS
PubMed
Google Scholar
Francisco CS, Ma X, Zwyssig MM, McDonald BA, Palma-Guerrero J. Morphological changes in response to environmental stresses in the fungal plant pathogen Zymoseptoria tritici. Sci Rep. 2019;9(1):9642.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shipton WA, Boyd WRJ, Rosielle AA, Shearer BI. The common Septoria diseases of wheat. Bot Rev. 1971;37:231–62.
Article
Google Scholar
Palma-Guerrero J, Ma X, Torriani SF, Zala M, Francisco CS, Hartmann FE, Croll D, McDonald BA. Comparative transcriptome analyses in Zymoseptoria tritici reveal significant differences in gene expression among strains during plant infection. Mol Plant-Microbe Interact. 2017;30(3):231–44.
Article
CAS
PubMed
Google Scholar
Karisto P, Hund A, Yu K, Anderegg J, Walter A, Mascher F, McDonald BA, Mikaberidze A. Ranking quantitative resistance to Septoria tritici blotch in elite wheat cultivars using automated image analysis. Phytopathology. 2018;108(5):568–81.
Article
PubMed
Google Scholar
Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, et al. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13(4):414–30.
Article
PubMed
PubMed Central
Google Scholar
Mehrabi R, Ben M’Barek S, van der Lee TA, Waalwijk C, de Wit PJ, Kema GH. G(alpha) and Gbeta proteins regulate the cyclic AMP pathway that is required for development and pathogenicity of the phytopathogen Mycosphaerella graminicola. Eukaryot Cell. 2009;8(7):1001–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gohari AM, Mehrabi R, Robert O, Ince IA, Boeren S, Schuster M, Steinberg G, de Wit PJ, Kema GH. Molecular characterization and functional analyses of ZtWor1, a transcriptional regulator of the fungal wheat pathogen Zymoseptoria tritici. Mol Plant Pathol. 2014;15(4):394–405.
Article
CAS
Google Scholar
Kilaru S, Schuster M, Ma W, Steinberg G. Fluorescent markers of various organelles in the wheat pathogen Zymoseptoria tritici. Fungal Genet Biol. 2017;105:16–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simonin A, Palma-Guerrero J, Fricker M, Glass NL. Physiological significance of network organization in fungi. Eukaryot Cell. 2012;11(11):1345–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roca MG, Arlt J, Jeffree CE, Read ND. Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot Cell. 2005;4(5):911–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vitale S, Di Pietro A, Turra D. Autocrine pheromone signalling regulates community behaviour in the fungal pathogen Fusarium oxysporum. Nat Microbiol. 2019;4(9):1443–9.
Article
CAS
PubMed
Google Scholar
Ishikawa FH, Souza EA, Read ND, Roca MG. Live-cell imaging of conidial fusion in the bean pathogen, Colletotrichum lindemuthianum. Fungal Biol. 2010;114(1):2–9.
Article
PubMed
Google Scholar
Chagnon PL. Ecological and evolutionary implications of hyphal anastomosis in arbuscular mycorrhizal fungi. FEMS Microbiol Ecol. 2014;88(3):437–44.
Article
CAS
PubMed
Google Scholar
Roper M, Ellison C, Taylor JW, Glass NL. Nuclear and genome dynamics in multinucleate ascomycete fungi. Curr Biol. 2011;21(18):R786–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biella S, Smith ML, Aist JR, Cortesi P, Milgroom MG. Programmed cell death correlates with virus transmission in a filamentous fungus. Proc Biol Sci. 2002;269(1506):2269–76.
Article
PubMed
PubMed Central
Google Scholar
Goddard MR, Burt A. Recurrent invasion and extinction of a selfish gene. PNAS. 1999;96(24):13880–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng YZ, Zhang B, Chang C, Wang Y, Lu S, Sun S, Zhang X, Chen B, Jiang Z. The MAP kinase SsKpp2 is required for mating/filamentation in Sporisorium scitamineum. Front Microbiol. 2018;9:2555.
Article
PubMed
PubMed Central
Google Scholar
Zhao X, Mehrabi R, Xu JR. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell. 2007;6(10):1701–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pandey A, Roca MG, Read ND, Glass NL. Role of a mitogen-activated protein kinase pathway during conidial germination and hyphal fusion in Neurospora crassa. Eukaryot Cell. 2004;3(2):348–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maddi A, Dettman A, Fu C, Seiler S, Free SJ. WSC-1 and HAM-7 are MAK-1 MAP kinase pathway sensors required for cell wall integrity and hyphal fusion in Neurospora crassa. PLoS One. 2012;7(8):e42374.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leng Y, Zhong S. The role of mitogen-activated protein (MAP) kinase signaling components in the fungal development, stress response and virulence of the fungal cereal pathogen Bipolaris sorokiniana. PLoS One. 2015;10(5):e0128291.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hagiwara D, Sakamoto K, Abe K, Gomi K. Signaling pathways for stress responses and adaptation in Aspergillus species: stress biology in the post-genomic era. Biosci Biotechnol Biochem. 2016;80(9):1667–80.
Article
CAS
PubMed
Google Scholar
Mehrabi R, van der Lee T, Waalwijk C, Kema GH. MgSlt2, a cellular integrity MAP kinase gene of the fungal wheat pathogen Mycosphaerella graminicola, is dispensable for penetration but essential for invasive growth. Mol Plant-Microbe Interact. 2006;19(4):389–98.
Article
CAS
PubMed
Google Scholar
Cousin A, Mehrabi R, Guilleroux M, Dufresne M, VAN DER Lee T, Waalwijk C, Langin T, Kema GH. The MAP kinase-encoding gene MgFus3 of the non-appressorium phytopathogen Mycosphaerella graminicola is required for penetration and in vitro pycnidia formation. Mol Plant Pathol. 2006;7(4):269–78.
Article
CAS
PubMed
Google Scholar
Read ND, Lichius A, Shoji JY, Goryachev AB. Self-signalling and self-fusion in filamentous fungi. Curr Opin Microbiol. 2009;12(6):608–15.
Article
PubMed
Google Scholar
Krishnan P, Meile L, Plissonneau C, Ma X, Hartmann FE, Croll D, McDonald BA, Sanchez-Vallet A. Transposable element insertions shape gene regulation and melanin production in a fungal pathogen of wheat. BMC Biol. 2018;16(1):78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lendenmann MH, Croll D, Stewart EL, McDonald BA. Quantitative trait locus mapping of melanization in the plant pathogenic fungus Zymoseptoria tritici. G3 (Bethesda). 2014;4(12):2519–33.
Article
Google Scholar
Yago JI, Lin CH, Chung KR. The SLT2 mitogen-activated protein kinase-mediated signalling pathway governs conidiation, morphogenesis, fungal virulence and production of toxin and melanin in the tangerine pathotype of Alternaria alternata. Mol Plant Pathol. 2011;12(7):653–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Soulie MC, Perrino C, Fillinger S. The osmosensing signal transduction pathway from Botrytis cinerea regulates cell wall integrity and MAP kinase pathways control melanin biosynthesis with influence of light. Fungal Genet Biol. 2011;48(4):377–87.
Article
CAS
PubMed
Google Scholar
Valiante V, Macheleidt J, Foge M, Brakhage AA. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Front Microbiol. 2015;6:325.
Article
PubMed
PubMed Central
Google Scholar
Wei W, Xiong Y, Zhu W, Wang N, Yang G, Peng F. Colletotrichum higginsianum mitogen-activated protein kinase ChMK1: role in growth, cell wall integrity, colony melanization, and pathogenicity. Front Microbiol. 2016;7:1212.
PubMed
PubMed Central
Google Scholar
Manfiolli AO, Siqueira FS, Dos Reis TF, Van Dijck P, Schrevens S, Hoefgen S, Foge M, Strassburger M, de Assis LJ, Heinekamp T, et al. Mitogen-activated protein kinase cross-talk interaction modulates the production of melanins in Aspergillus fumigatus. mBio. 2019;10(2)..
Song Z, Zhong Q, Yin Y, Shen L, Li Y, Wang Z. The high osmotic response and cell wall integrity pathways cooperate to regulate morphology, microsclerotia development, and virulence in Metarhizium rileyi. Sci Rep. 2016;6:38765.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valiante V. The cell wall integrity signaling pathway and its involvement in secondary metabolite production. J Fungi (Basel). 2017;3(4).
Tiley AMM, Foster GD, Bailey AM. Exploring the genetic regulation of asexual sporulation in Zymoseptoria tritici. Front Microbiol. 2018;9:1859.
Article
PubMed
PubMed Central
Google Scholar
Mehrabi R, Kema GH. Protein kinase A subunits of the ascomycete pathogen Mycosphaerella graminicola regulate asexual fructification, filamentation, melanization and osmosensing. Mol Plant Pathol. 2006;7(6):565–77.
Article
CAS
PubMed
Google Scholar
Duncan KE, Howard RJ. Cytological analysis of wheat infection by the leaf blotch pathogen Mycosphaerella graminicola. Mycol Res. 2000;104(9):1074–82.
Article
Google Scholar
Zhan J, Kema GH, Waalwijk C, McDonald BA. Distribution of mating type alleles in the wheat pathogen Mycosphaerella graminicola over spatial scales from lesions to continents. Fungal Genet Biol. 2002;36:128–36.
Article
CAS
PubMed
Google Scholar
Kema GH, van Silfhout CH. Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem III. Comparative seedling and adult plant experiments. Phytopathology. 1997;87:266–72.
Article
CAS
PubMed
Google Scholar
Meile L, Croll D, Brunner PC, Plissonneau C, Hartmann FE, McDonald BA, Sanchez-Vallet A. A fungal avirulence factor encoded in a highly plastic genomic region triggers partial resistance to septoria tritici blotch. New Phytol. 2018;219:1048–61.
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Use R. Springer-Verlag; 2009.
Book
Google Scholar
Mendiburu FD. Agricolae: statistical procedures for agricultural research. R Package Version 1.2-3; 2015.
Google Scholar
Stewart EL, Hagerty CH, Mikaberidze A, Mundt CC, Zhong Z, McDonald BA. An improved method for measuring quantitative resistance to the wheat pathogen Zymoseptoria tritici using high-throughput automated image analysis. Phytopathology. 2016;106(7):782–8.
Article
PubMed
Google Scholar
Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30(22):3276–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sidhu YS, Cairns TC, Chaudhari YK, Usher J, Talbot NJ, Studholme DJ, Csukai M, Haynes K. Exploitation of sulfonylurea resistance marker and non-homologous end joining mutants for functional analysis in Zymoseptoria tritici. Fungal Genet Biol. 2015;79:102–9.
Article
CAS
PubMed
PubMed Central
Google Scholar