World Health Assembly. WHO | Global vector control response 2017–2030: World Health Organization; 2018. http://www.who.int/vector-control/publications/global-control-response/en/. Accessed 10 Feb 2020.
Achee NL, Gould F, Perkins TA, Reiner RC Jr, Morrison AC, Ritchie SA, et al. A critical assessment of vector control for dengue prevention. PLoS Negl Trop Dis. 2015;9(5):e0003655.
PubMed
PubMed Central
Google Scholar
Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011;476(7361):454–7.
CAS
PubMed
Google Scholar
Kittayapong P, Kaeothaisong N-O, Ninphanomchai S, Limohpasmanee W. Combined sterile insect technique and incompatible insect technique: sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Parasit Vectors. 2018;11:657.
PubMed
PubMed Central
Google Scholar
Lacroix R, McKemey AR, Raduan N, Kwee Wee L, Hong Ming W, Guat Ney T, et al. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. PLoS One. 2012;7(8):e42771.
CAS
PubMed
PubMed Central
Google Scholar
Vazquez-Prokopec GM, Montgomery BL, Horne P, Clennon JA, Ritchie SA. Combining contact tracing with targeted indoor residual spraying significantly reduces dengue transmission. Sci Adv. 2017;3(2):e1602024.
PubMed
PubMed Central
Google Scholar
Winskill P, Carvalho DO, Capurro ML, Alphey L, Donnelly CA, McKemey AR. Dispersal of engineered male Aedes aegypti mosquitoes. PLoS Negl Trop Dis. 2015;9(11):e0004156.
PubMed
PubMed Central
Google Scholar
Schmidt TL, Barton NH, Rašić G, Turley AP, Montgomery BL, Iturbe-Ormaetxe I, et al. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biol. 2017;15(5):e2001894.
PubMed
PubMed Central
Google Scholar
Marshall JM, Akbari OS. Gene drive strategies for population replacement. In: Adelman ZN, editor. Genetic control of malaria and dengue. Cambridge: Academic Press; 2016. p. 169–200.
Google Scholar
Sánchez CHM, Bennett JB, Wu SL, Rašić G, Akbari OS, Marshall JM. Modeling confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations. BMC Biol. 2020;18(1):50.
Google Scholar
Marshall JM, Akbari OS. Can CRISPR-based gene drive be confined in the wild? A question for molecular and population biology. ACS Chem Biol. 2018;13(2):424–30.
CAS
PubMed
Google Scholar
Stone CM, Schwab SR, Fonseca DM, Fefferman NH. Contrasting the value of targeted versus area-wide mosquito control scenarios to limit arbovirus transmission with human mobility patterns based on different tropical urban population centers. PLoS Negl Trop Dis. 2019;13(7):e0007479.
PubMed
PubMed Central
Google Scholar
Roiz D, Wilson AL, Scott TW, Fonseca DM, Jourdain F, Müller P, et al. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl Trop Dis. 2018;12(12):e0006845.
PubMed
PubMed Central
Google Scholar
Guerra CA, Reiner RC Jr, Perkins TA, Lindsay SW, Midega JT, Brady OJ, et al. A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens. Parasit Vectors. 2014;7:276.
PubMed
PubMed Central
Google Scholar
Trewin BJ, Pagendam DE, Zalucki MP, Darbro JM, Devine GJ, Jansen CC, et al. Urban landscape features influence the movement and distribution of the Australian container-inhabiting mosquito vectors Aedes aegypti (Diptera: Culicidae) and Aedes notoscriptus (Diptera: Culicidae). J Med Entomol. 2019;57(2):443–53.
Google Scholar
Marcantonio M, Reyes T, Barker CM. Quantifying Aedes aegypti dispersal in space and time: a modeling approach. Ecosphere. 2019;10:ecs2.2977.
Google Scholar
Dickens BL, Brant HL. Effects of marking methods and fluorescent dusts on Aedes aegypti survival. Parasit Vectors. 2014;7:65.
PubMed
PubMed Central
Google Scholar
Lepais O, Darvill B, O’Connor S, Osborne JL, Sanderson RA, Cussans J, et al. Estimation of bumblebee queen dispersal distances using sibship reconstruction method. Mol Ecol. 2010;19(4):819–31.
CAS
PubMed
Google Scholar
Odero JO, Fillinger U, Rippon EJ, Masiga DK, Weetman D. Using sibship reconstructions to understand the relationship between larval habitat productivity and oviposition behaviour in Kenyan Anopheles arabiensis. Malar J. 2019;18:286.
PubMed
PubMed Central
Google Scholar
Jasper M, Schmidt TL, Ahmad NW, Sinkins SP, Hoffmann AA. A genomic approach to inferring kinship reveals limited intergenerational dispersal in the yellow fever mosquito. Mol Ecol Resour. 2019;19(5):1254–64.
CAS
PubMed
PubMed Central
Google Scholar
Colton YM, Chadee DD, Severson DW. Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med Vet Entomol. 2003;17(2):195–204.
CAS
PubMed
Google Scholar
Ong J, Liu X, Rajarethinam J, Yap G, Ho D, Ng LC. A novel entomological index, Aedes aegypti Breeding Percentage, reveals the geographical spread of the dengue vector in Singapore and serves as a spatial risk indicator for dengue. Parasit Vectors. 2019;12:17.
PubMed
PubMed Central
Google Scholar
Hapuarachchi HC, Koo C, Rajarethinam J, Chong C-S, Lin C, Yap G, et al. Epidemic resurgence of dengue fever in Singapore in 2013-2014: a virological and entomological perspective. BMC Infect Dis. 2016;16:300.
PubMed
PubMed Central
Google Scholar
Rajarethinam J, Ang L-W, Ong J, Ycasas J, Hapuarachchi HC, Yap G, et al. Dengue in Singapore from 2004 to 2016: cyclical epidemic patterns dominated by serotypes 1 and 2. Am J Trop Med Hyg. 2018;99(1):204–10.
PubMed
PubMed Central
Google Scholar
Lee C, Vythilingam I, Chong C-S, Abdul Razak MA, Tan C-H, Liew C, et al. Gravitraps for management of dengue clusters in Singapore. Am J Trop Med Hyg. 2013;88(5):888–92.
PubMed
PubMed Central
Google Scholar
Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One. 2012;7(5):e37135.
CAS
PubMed
PubMed Central
Google Scholar
Rašić G, Filipović I, Weeks AR, Hoffmann AA. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics. 2014;15:275.
PubMed
PubMed Central
Google Scholar
Waples RK, Albrechtsen A, Moltke I. Allele frequency-free inference of close familial relationships from genotypes or low-depth sequencing data. Mol Ecol. 2019;28(1):35–48.
CAS
PubMed
PubMed Central
Google Scholar
Hanghøj K, Moltke I, Andersen PA, Manica A, Korneliussen TS. Fast and accurate relatedness estimation from high-throughput sequencing data in the presence of inbreeding. Gigascience. 2019;8(5):giz034.
PubMed
PubMed Central
Google Scholar
Ramstetter MD, Dyer TD, Lehman DM, Curran JE, Duggirala R, Blangero J, et al. Benchmarking relatedness inference methods with genome-wide data from thousands of relatives. Genetics. 2017;207(1):75–82.
CAS
PubMed
PubMed Central
Google Scholar
Conomos MP, Miller MB, Thornton TA. Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness. Genet Epidemiol. 2015;39(4):276–93.
PubMed
PubMed Central
Google Scholar
Broquet T, Petit EJ. Molecular estimation of dispersal for ecology and population genetics. Ann Rev Ecol Evol Syst. 2009;40:193–216.
Google Scholar
Delignette-Muller ML, Dutang C. fitdistrplus: an R package for fitting distributions. J Stat Softw. 2015;64(4):1–34.
Google Scholar
Rousset F. Genetic differentiation between individuals. J Evol Bio. 2000;13:58–62.
Google Scholar
Wright S. Isolation by distance. Genetics. 1943;28(2):114–38.
CAS
PubMed
PubMed Central
Google Scholar
Rousset F. Genetic differentiation in populations with different classes of individuals. Theor Popul Biol. 1999;55(3):297–308.
CAS
PubMed
Google Scholar
Shirk AJ, Landguth EL, Cushman SA. A comparison of individual-based genetic distance metrics for landscape genetics. Mol Ecol Resour. 2017;17(6):1308–17.
CAS
PubMed
Google Scholar
Loiselle BA, Sork VL, Nason J, Graham C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot. 1995;82(11):1420–5.
Google Scholar
Waples RS, Waples RK. Inbreeding effective population size and parentage analysis without parents. Mol Ecol Resour. 2011;11(Suppl 1):162–71.
PubMed
Google Scholar
Waples RS, England PR. Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics. 2011;189(2):633–44.
PubMed
PubMed Central
Google Scholar
Epperson BK. Estimating dispersal from short distance spatial autocorrelation. Heredity. 2005;95(1):7–15.
CAS
PubMed
Google Scholar
Hardy OJ, Vekemans X. Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity. 1999;83:145–54.
PubMed
Google Scholar
Sokal RR, Wartenberg DE. A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics. 1983;105(1):219–37.
CAS
PubMed
PubMed Central
Google Scholar
Nathan R, Klein E, Robledo-Arnuncio JJ, Revilla E. Dispersal kernels: review. In: Clobert J, Baguette M, Benton TG, Bullock JM, editors. Dispersal ecology and evolution. Oxford: Oxford University Press; 2012. p. 186–210.
Google Scholar
Carrasco LR, Harwood TD, Toepfer S, MacLeod A, Levay N, Kiss J, et al. Dispersal kernels of the invasive alien western corn rootworm and the effectiveness of buffer zones in eradication programmes in Europe. Ann Appl Biol. 2010;156(1):63–77.
Google Scholar
Furstenau TN, Cartwright RA. The effect of the dispersal kernel on isolation-by-distance in a continuous population. PeerJ. 2016;4:e1848.
PubMed
PubMed Central
Google Scholar
Turelli M, Barton NH. Deploying dengue-suppressing Wolbachia: robust models predict slow but effective spatial spread in Aedes aegypti. Theor Popul Biol. 2017;115:45–60.
PubMed
PubMed Central
Google Scholar
Saarman NP, Gloria-Soria A, Anderson EC, Evans BR, Pless E, Cosme LV, et al. Effective population sizes of a major vector of human diseases Aedes aegypti. Evol Appl. 2017;10:1031–9.
CAS
PubMed
PubMed Central
Google Scholar
Waples RS. Making sense of genetic estimates of effective population size. Mol Ecol. 2016;25(19):4689–91.
CAS
PubMed
Google Scholar
Pinsky ML, Saenz-Agudelo P, Salles OC, Almany GR, Bode M, Berumen ML, et al. Marine dispersal scales are congruent over evolutionary and ecological time. Curr Biol. 2017;27(1):149–54.
CAS
PubMed
Google Scholar
Neel MC, McKelvey K, Ryman N, Lloyd MW, Short Bull R, Allendorf FW, et al. Estimation of effective population size in continuously distributed populations: there goes the neighborhood. Heredity. 2013;111(3):189–99.
CAS
PubMed
PubMed Central
Google Scholar
Liew C, Curtis CF. Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti and Aedes albopictus, in Singapore. Med Vet Entomol. 2005;18(4):351–60.
Google Scholar
Chadee DD. Observations on the seasonal prevalence and vertical distribution patterns of oviposition by Aedes aegypti (L.) (Diptera: Culicidae) in urban high-rise apartments in Trinidad, West Indies. J Vector Ecol. 2004;29(2):323–30.
PubMed
Google Scholar
Crawford JE, Clarke DW, Criswell V, Desnoyer M, Cornel D, Deegan B, et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat Biotechnol. 2020;38:482–92.
CAS
PubMed
Google Scholar
Kura K, Khamis D, El Mouden C, Bonsall MB. Optimal control for disease vector management in SIT models: an integrodifference equation approach. J Math Biol. 2019;78(6):1821–39.
PubMed
PubMed Central
Google Scholar
Magori K, Legros M, Puente ME, Focks DA, Scott TW, Lloyd AL, et al. Skeeter buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies. PLoS Negl Trop Dis. 2009;3(9):e508.
PubMed
PubMed Central
Google Scholar
Sánchez CHM, Wu SL, Bennett JB, Marshall JM. MGDrivE: a modular simulation framework for the spread of gene drives through spatially explicit mosquito populations. Methods Ecol Evol. 2020;11(2):229–39.
Google Scholar
McCormack CP, Ghani AC, Ferguson NM. Fine-scale modelling finds that breeding site fragmentation can reduce mosquito population persistence. Commun Biol. 2019;2:273.
PubMed
PubMed Central
Google Scholar
National Environment Agency. Spatial genetics for mosquito control. NCBI Sequence Read Archive (SRA). 2020. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA639373.
Graham CF, Glenn TC, McArthur AG, Boreham DR, Kieran T, Lance S, et al. Impacts of degraded DNA on restriction enzyme associated DNA sequencing (RADSeq). Mol Ecol Resour. 2015;15(6):1304–15.
CAS
PubMed
Google Scholar
Matthews BJ, Dudchenko O, Kingan SB, Koren S, Antoshechkin I, Crawford JE, et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature. 2018;563(7732):501–7.
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
PubMed
PubMed Central
Google Scholar
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:356.
PubMed
PubMed Central
Google Scholar
Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26(22):2867–73.
CAS
PubMed
PubMed Central
Google Scholar
Degner EC, Harrington LC. Polyandry depends on postmating time interval in the dengue vector Aedes aegypti. Am J Trop Med Hyg. 2016;94(4):780–5.
PubMed
PubMed Central
Google Scholar
Helinski MEH, Valerio L, Facchinelli L, Scott TW, Ramsey J, Harrington LC. Evidence of polyandry for Aedes aegypti in semifield enclosures. Am J Trop Med Hyg. 2012;86(4):635–41.
PubMed
PubMed Central
Google Scholar
Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24(11):1403–5.
CAS
PubMed
Google Scholar
Hardy OJ, Vekemans X. SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes. 2002;2(4):618–20.
Google Scholar
Bowman AW, Azzalini A. Applied smoothing techniques for data analysis: the kernel approach with S-PLUS Illustrations. Oxford: Oxford University Press; 1997.
Google Scholar
Aguillon SM, Fitzpatrick JW, Bowman R, Schoech SJ, Clark AG, Coop G, et al. Deconstructing isolation-by-distance: the genomic consequences of limited dispersal. PLoS Genet. 2017;13(8):e1006911.
PubMed
PubMed Central
Google Scholar
Goslee SC, Urban DL. The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw. 2007;22(7):1–19.
Google Scholar
Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour. 2014;14(1):209–14.
CAS
PubMed
Google Scholar
Christophers RS. Aedes aegypti (L.), the yellow fever mosquito. Its life history, bionomics, and structure. London: Cambridge University Press; 1960.
Google Scholar
Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics. 2012;28(19):2537–9.
CAS
PubMed
PubMed Central
Google Scholar