Love R. Chillin’ at the symposium with Plato: refrigeration in the ancient world. ASHRAE Trans. 2009;115:106.
CAS
Google Scholar
Boyle R. New experiments and observations touching cold. London: J. Crooke; 1665.
Google Scholar
Coriell LL, Greene AE, Silver RK. Historical development of cell and tissue culture freezing. Cryobiology. 1964;1(1):72–9.
Article
Google Scholar
Lovelock JE, Bishop MW. Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature. 1959;183(4672):1394–5.
Article
CAS
PubMed
Google Scholar
Lovelock JE. The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta. 1953;11(1):28–36.
Article
CAS
PubMed
Google Scholar
Mazur P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol. 1963;47(2):347–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wowk B. How cryoprotectants work. Cryonics. 2007;28:3.
Google Scholar
Takamatsu H, Zawlodzka S. Contribution of extracellular ice formation and the solution effects to the freezing injury of PC-3 cells suspended in NaCl solutions. Cryobiology. 2006;53(1):1–11.
Article
CAS
PubMed
Google Scholar
Persidsky MD. Lysosomes as primary targets of cryoinjury. Cryobiology. 1971;8(5):482–8.
Article
CAS
PubMed
Google Scholar
Wesley-Smith J, Walters C, Pammenter NW, Berjak P. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum. Ann Bot. 2015;115(6):991–1000.
Article
PubMed
PubMed Central
Google Scholar
Yu G, Yap YR, Pollock K, Hubel A. Characterizing intracellular ice formation of lymphoblasts using low-temperature Raman spectroscopy. Biophys J. 2017;112(12):2653–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuller BJ, Lane N, Benson EE. Life in the frozen state. Boca Raton: CRC Press; 2004.
Book
Google Scholar
Seki S, Mazur P. Effect of warming rate on the survival of vitrified mouse oocytes and on the recrystallization of intracellular ice. Biol Reprod. 2008;79(4):727–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grout B, Morris J, McLellan M. Cryopreservation and the maintenance of cell lines. Trends Biotechnol. 1990;8(10):293–7.
Article
CAS
PubMed
Google Scholar
Elliott GD, Wang S, Fuller BJ. Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology. 2017;76:74–91.
Article
CAS
PubMed
Google Scholar
Best BP. Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res. 2015;18(5):422–36.
Article
PubMed
PubMed Central
Google Scholar
Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949;164(4172):666.
Article
CAS
PubMed
Google Scholar
Lewis JK, Bischof JC, Braslavsky I, Brockbank KG, Fahy GM, Fuller BJ, Rabin Y, Tocchio A, Woods EJ, Wowk BG, et al. The grand challenges of organ banking: proceedings from the first global summit on complex tissue cryopreservation. Cryobiology. 2016;72(2):169–82.
Article
PubMed
Google Scholar
WHO: Keeping kidneys. Bull World Health Organization 2012, 90(10):718–719.
Ardehali A. 1. While millions and millions of lives have been saved, organ transplantation still faces massive problems after 50years; organ preservation is a big part of the solution. Cryobiology. 2015;71(1):164–5.
Article
Google Scholar
Ibrahim M, Vece G, Mehew J, Johnson R, Forsythe J, Klassen D, Callaghan C, Stewart D. An international comparison of deceased donor kidney utilization: what can the United States and the United Kingdom learn from each other? Am J transpl. 2020;20(5):1309–22.
Article
Google Scholar
Reese PP, Harhay MN, Abt PL, Levine MH, Halpern SD. New solutions to reduce discard of kidneys donated for transplantation. J Am Soc Nephrol. 2016;27(4):973–80.
Article
CAS
PubMed
Google Scholar
Taking Organ Utilisation to 2020 [https://www.odt.nhs.uk/odt-structures-and-standards/key-strategies/taking-organ-utilisation-to-2020/].
Israni AK, Zaun D, Bolch C, Rosendale JD, Schaffhausen C, Snyder JJ, Kasiske BL: OPTN/SRTR 2015 Annual data report: deceased organ donation. Am J Transplantation 2017, 17 Suppl 1:503–542.
Giwa S, Lewis JK, Alvarez L, Langer R, Roth AE, Church GM, Markmann JF, Sachs DH, Chandraker A, Wertheim JA, et al. The promise of organ and tissue preservation to transform medicine. Nature Biotechnol. 2017;35(6):530–42.
Article
CAS
Google Scholar
Ward A, Klassen DK, Franz KM, Giwa S, Lewis JK. Social, economic, and policy implications of organ preservation advances. Current Opinion Organ Transplantation. 2018;23(3):336–46.
Article
Google Scholar
Hosenpud JD, Edwards EB, Lin HM, Daily OP. Influence of HLA matching on thoracic transplant outcomes. An analysis from the UNOS/ISHLT Thoracic Registry. Circulation. 1996;94(2):170–4.
Article
CAS
PubMed
Google Scholar
Chen R, Wang B, Liu Y, Lin R, He J, Li D. A study of cryogenic tissue-engineered liver slices in calcium alginate gel for drug testing. Cryobiology. 2018;82:1–7.
Article
PubMed
CAS
Google Scholar
Pichugin Y, Fahy GM, Morin R. Cryopreservation of rat hippocampal slices by vitrification. Cryobiology. 2006;52(2):228–40.
Article
CAS
PubMed
Google Scholar
Li M, de Graaf IA, Groothuis GM. Precision-cut intestinal slices: alternative model for drug transport, metabolism, and toxicology research. Expert Opinion Drug Metabolism Toxicol. 2016;12(2):175–90.
Article
CAS
Google Scholar
de Graaf IA, Draaisma AL, Schoeman O, Fahy GM, Groothuis GM, Koster HJ. Cryopreservation of rat precision-cut liver and kidney slices by rapid freezing and vitrification. Cryobiology. 2007;54(1):1–12.
Article
PubMed
CAS
Google Scholar
de Graaf IA, Koster HJ. Cryopreservation of precision-cut tissue slices for application in drug metabolism research. Toxicol in Vitro. 2003;17(1):1–17.
Article
PubMed
Google Scholar
Truskey GA. Human microphysiological systems and organoids as in vitro models for toxicological studies. Front Public Health. 2018;6:185.
Article
PubMed
PubMed Central
Google Scholar
Sandow N, Kim S, Raue C, Päsler D, Klaft ZJ, Antonio LL, Hollnagel JO, Kovacs R, Kann O, Horn P, et al. Drug resistance in cortical and hippocampal slices from resected tissue of epilepsy patients: no significant impact of p-glycoprotein and multidrug resistance-associated proteins. Front Neurol. 2015;6:30.
Article
PubMed
PubMed Central
Google Scholar
Liu F, Huang J, Ning B, Liu Z, Chen S, Zhao W. Drug discovery via human-derived stem cell organoids. Front Pharmacol. 2016;7:334.
PubMed
PubMed Central
Google Scholar
DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Economics. 2016;47:20–33.
Article
Google Scholar
Taylor MJ, Weegman BP, Baicu SC, Giwa SE. New approaches to cryopreservation of cells, tissues, and organs. Transfusion Med Hemotherapy. 2019;46(3):197–215.
Article
Google Scholar
Jang TH, Park SC, Yang JH, Kim JY, Seok JH, Park US, Choi CW, Lee SR, Han J. Cryopreservation and its clinical applications. Integr Med Res. 2017;6(1):12–8.
Article
PubMed
PubMed Central
Google Scholar
Mazur P. The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiol. 1977;14(3):251–72.
Article
CAS
Google Scholar
Nawroth F, Isachenko V, Dessole S, Rahimi G, Farina M, Vargiu N, Mallmann P, Dattena M, Capobianco G, Peters D, et al. Vitrification of human spermatozoa without cryoprotectants. Cryo Letters. 2002;23(2):93–102.
CAS
PubMed
Google Scholar
Sformo T, Walters K, Jeannet K, Wowk B, Fahy GM, Barnes BM, Duman JG. Deep supercooling, vitrification and limited survival to -100°C in the Alaskan beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae) larvae. J Exp Biol. 2010;213(3):502–9.
Article
CAS
PubMed
Google Scholar
Courbiere B, Odagescu V, Baudot A, Massardier J, Mazoyer C, Salle B, Lornage J. Cryopreservation of the ovary by vitrification as an alternative to slow-cooling protocols. Fertility Sterility. 2006;86(4 Suppl):1243–51.
Article
PubMed
Google Scholar
Fahy GM, Wowk B. Principles of ice-free cryopreservation by vitrification. Methods Mol Biol. 2021;2180:27–97.
Article
PubMed
Google Scholar
Fahy GM. Cryoprotectant toxicity neutralization. Cryobiology. 2010;60(3 Suppl):S45–53.
Article
CAS
PubMed
Google Scholar
Al-Azawi T, Tavukcuoglu S, Khaki AA, Al Hasani S. Cryopreservation of human oocytes, zygotes, embryos and blastocysts: a comparison study between slow freezing and ultra rapid (vitrification) methods. Middle East Fertility Society J. 2013;18(4):223–32.
Article
Google Scholar
Klocke S, Bündgen N, Köster F, Eichenlaub-Ritter U, Griesinger G. Slow-freezing versus vitrification for human ovarian tissue cryopreservation. Archives Gynecol Obstetrics. 2015;291(2):419–26.
Article
CAS
Google Scholar
Kroener C, Luyet B. Formation of cracks during the vitrification of glycerol solutions and disappearance of the cracks during rewarming. Biodynamica. 1966;10(198):47–52.
CAS
PubMed
Google Scholar
Fahy GM, Saur J, Williams RJ. Physical problems with the vitrification of large biological systems. Cryobiology. 1990;27(5):492–510.
Article
CAS
PubMed
Google Scholar
Saragusty J. Directional freezing for large volume cryopreservation. Methods Mol Biol. 2015;1257:381–97.
Article
PubMed
Google Scholar
Bahari L, Bein A, Yashunsky V, Braslavsky I. Directional freezing for the cryopreservation of adherent mammalian cells on a substrate. PLoS One. 2018;13(2):e0192265.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arav A, Friedman O, Natan Y, Gur E, Shani N. Rat hindlimb cryopreservation and transplantation: a step toward “organ banking”. Am J Transplantation. 2017;17(11):2820–8.
Article
CAS
Google Scholar
Gavish Z, Ben-Haim M, Arav A. Cryopreservation of whole murine and porcine livers. Rejuvenation Res. 2008;11(4):765–72.
Article
PubMed
Google Scholar
Arav A, Natan D: Directional freezing of reproductive cells and organs. Reproduction in domestic animals = Zuchthygiene 2012, 47 Suppl 4:193–196.
Mazur P. Freezing of living cells: mechanisms and implications. Am J Phys. 1984;247(3 Pt 1):C125–42.
Article
CAS
Google Scholar
Pegg DE. Principles of cryopreservation. Methods Mol Biol. 2007;368:39–57.
Article
CAS
PubMed
Google Scholar
Steif PS, Palastro MC, Rabin Y. The effect of temperature gradients on stress development during cryopreservation via vitrification. Cell Preservation Technology. 2007;5(2):104–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi T, Hirsh A, Erbe E, Williams RJ. Mechanism of cryoprotection by extracellular polymeric solutes. Biophys J. 1988;54(3):509–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asahina E, Shimada K, Hisada Y. A stable state of frozen protoplasm with invisible intracellular ice crystals obtained by rapid cooling. Exp Cell Res. 1970;59(3):349–58.
Article
CAS
PubMed
Google Scholar
Solanki PK, Bischof JC, Rabin Y. Thermo-mechanical stress analysis of cryopreservation in cryobags and the potential benefit of nanowarming. Cryobiology. 2017;76:129–39.
Article
PubMed
PubMed Central
Google Scholar
Manuchehrabadi N, Gao Z, Zhang J, Ring HL, Shao Q, Liu F, McDermott M, Fok A, Rabin Y, Brockbank KG et al: Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Science Transl Med 2017, 9(379).
Wusteman M, Robinson M, Pegg D. Vitrification of large tissues with dielectric warming: biological problems and some approaches to their solution. Cryobiology. 2004;48(2):179–89.
Article
CAS
PubMed
Google Scholar
Ruggera PS, Fahy GM. Rapid and uniform electromagnetic heating of aqueous cryoprotectant solutions from cryogenic temperatures. Cryobiology. 1990;27(5):465–78.
Article
CAS
PubMed
Google Scholar
Burdette EC, Wiggins S, Brown R, Karow AM. Microwave thawing of frozen kidneys: a theoretically based experimentally-effective design. Cryobiology. 1980;17(4):393–402.
Article
CAS
PubMed
Google Scholar
Wowk B, Corral A. 023 Adaptation of a commercial diathermy machine for radiofrequency warming of vitrified organs. Cryobiology. 2013;67(3):404.
Article
Google Scholar
Etheridge ML, Xu Y, Choi J, Bischof JC. 003 Radiofrequency heating of magnetic nanoparticle cryoprotectant solutions for improved cryopreservation protocols. Cryobiology. 2013;67(3):398–9.
Article
Google Scholar
Fahy G. 041 Consequences and control of ice formation in the renal inner medulla. Cryobiology. 2013;67(3):409–10.
Article
Google Scholar
Evans S, Rachman MJ, Pegg DE. Design of a UHF applicator for rewarming of cryopreserved biomaterials. IEEE Trans Biomed Eng. 1992;39(3):217–25.
Article
CAS
PubMed
Google Scholar
Robinson MP, Wusteman MC, Wang L, Pegg DE. Electromagnetic re-warming of cryopreserved tissues: effect of choice of cryoprotectant and sample shape on uniformity of heating. Physics Medicine Biol. 2002;47(13):2311–25.
Article
Google Scholar
Vali G: - Ice nucleation—a review. In: Nucleation and Atmospheric Aerosols 1996. Edited by Kulmala M, Wagner PE. Amsterdam: Pergamon; 1996: 271–279.
Petersen A, Schneider H, Rau G, Glasmacher B. A new approach for freezing of aqueous solutions under active control of the nucleation temperature. Cryobiology. 2006;53(2):248–57.
Article
CAS
PubMed
Google Scholar
Wolkers WF, Balasubramanian SK, Ongstad EL, Zec HC, Bischof JC. Effects of freezing on membranes and proteins in LNCaP prostate tumor cells. Biochim Biophys Acta. 2007;1768(3):728–36.
Article
CAS
PubMed
Google Scholar
John Morris G, Acton E. Controlled ice nucleation in cryopreservation – a review. Cryobiology. 2013;66(2):85–92.
Article
CAS
PubMed
Google Scholar
Dalvi-Isfahan M, Hamdami N, Xanthakis E, Le-Bail A. Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields. J Food Engineering. 2017;195:222–34.
Article
Google Scholar
Morris GJ, Acton E, Faszer K, Franklin A, Yin H, Bodine R, Pareja J, Zaninovic N, Gosden R. Cryopreservation of murine embryos, human spermatozoa and embryonic stem cells using a liquid nitrogen-free, controlled rate freezer. Reproductive Biomed Online. 2006;13(3):421–6.
Article
CAS
Google Scholar
König O, Rechsteiner P, Trusch B, Andreoli C, Hulliger J. Equipment for controlling nucleation and tailoring the size of solution-grown single crystals. J Applied Crystallography. 1997;30(4):507–9.
Article
Google Scholar
Braslavsky I, Lipson SG. Electrofreezing effect and nucleation of ice crystals in free growth experiments. Appl Phys Lett. 1998;72(2):264–6.
Article
CAS
Google Scholar
Han X, Ma HB, Wilson C, Critser JK. Effects of nanoparticles on the nucleation and devitrification temperatures of polyol cryoprotectant solutions. Microfluidics Nanofluidics. 2007;4(4):357.
Article
CAS
Google Scholar
Margaritis A, Bassi AS. Principles and biotechnological applications of bacterial ice nucleation. Crit Rev Biotechnol. 1991;11(3):277–95.
Article
CAS
PubMed
Google Scholar
Anastassopoulos E. Agar plate freezing assay for the in situ selection of transformed ice nucleating bacteria. Cryobiology. 2006;53(2):276–8.
Article
CAS
PubMed
Google Scholar
Lundheim R. Physiological and ecological significance of biological ice nucleators. Philos Trans R Soc Lond Ser B Biol Sci. 2002;357(1423):937–43.
Article
CAS
Google Scholar
Zachariassen KE, Kristiansen E. Ice nucleation and antinucleation in nature. Cryobiology. 2000;41(4):257–79.
Article
CAS
PubMed
Google Scholar
Chow R, Blindt R, Chivers R, Povey M. The sonocrystallisation of ice in sucrose solutions: primary and secondary nucleation. Ultrasonics. 2003;41(8):595–604.
Article
CAS
PubMed
Google Scholar
Lindinger B, Mettin R, Chow R, Lauterborn W. Ice crystallization induced by optical breakdown. Phys Rev Lett. 2007;99(4):045701.
Article
CAS
PubMed
Google Scholar
Spindler R, Wolkers WF, Glasmacher B. Dimethyl sulfoxide and ethylene glycol promote membrane phase change during cryopreservation. Cryo letters. 2011;32(2):148–57.
CAS
PubMed
Google Scholar
Kharasch N, Thyagarajan BS. Structural basis for biological activities of dimethyl sulfoxide. Ann N Y Acad Sci. 1983;411:391–402.
Article
CAS
PubMed
Google Scholar
Arakawa T, Timasheff SN. Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Arch Biochem Biophys. 1983;224(1):169–77.
Article
CAS
PubMed
Google Scholar
Mantri S, Kanungo S, Mohapatra PC. Cryoprotective effect of disaccharides on cord blood stem cells with minimal use of DMSO. Indian J Hematol Blood Transfusion. 2015;31(2):206–12.
Article
Google Scholar
Hubel A, Darr TB, Chang A, Dantzig J. Cell partitioning during the directional solidification of trehalose solutions. Cryobiology. 2007;55(3):182–8.
Article
CAS
PubMed
Google Scholar
Baust JG, Gao D, Baust JM. Cryopreservation: an emerging paradigm change. Organogenesis. 2009;5(3):90–6.
Article
PubMed
PubMed Central
Google Scholar
Ock SA, Rho GJ. Effect of dimethyl sulfoxide (DMSO) on cryopreservation of porcine mesenchymal stem cells (pMSCs). Cell Transplant. 2011;20(8):1231–9.
Article
PubMed
Google Scholar
Bakken AM. Cryopreserving human peripheral blood progenitor cells. Current Stem Cell Research Therapy. 2006;1(1):47–54.
Article
CAS
PubMed
Google Scholar
Hess R, Bartels MJ, Pottenger LH. Ethylene glycol: an estimate of tolerable levels of exposure based on a review of animal and human data. Archives Toxicol. 2004;78(12):671–80.
Article
CAS
Google Scholar
Arakawa T, Kita Y, Timasheff SN. Protein precipitation and denaturation by dimethyl sulfoxide. Biophys Chem. 2007;131(1–3):62–70.
Article
CAS
PubMed
Google Scholar
Lai D, Ding J, Smith GW, Smith GD, Takayama S: Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification. Human reproduction (Oxford, England) 2015, 30(1):37–45.
Fahy GM, Wowk B, Pagotan R, Chang A, Phan J, Thomson B, Phan L. Physical and biological aspects of renal vitrification. Organogenesis. 2009;5(3):167–75.
Article
PubMed
PubMed Central
Google Scholar
Fahy GM, MacFarlane DR, Angell CA, Meryman HT. Vitrification as an approach to cryopreservation. Cryobiology. 1984;21(4):407–26.
Article
CAS
PubMed
Google Scholar
Rall WF. Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology. 1987;24(5):387–402.
Article
CAS
PubMed
Google Scholar
Nickell PK, Sass S, Verleye D, Blumenthal EM, Duman JG: Antifreeze proteins in the primary urine of larvae of the beetle Dendroides canadensis. J Experimental Biol 2013, 216(9):1695.
Leather SR, Walters KFA, Bale JS. The ecology of insect overwintering. Cambridge: Cambridge University Press; 1993.
Book
Google Scholar
Lee RE, Denlinger DL. Insects at low temperature: Chapman and Hall. New York: NY; 1991.
Book
Google Scholar
Wowk B, Leitl E, Rasch CM, Mesbah-Karimi N, Harris SB, Fahy GM. Vitrification enhancement by synthetic ice blocking agents. Cryobiology. 2000;40(3):228–36.
Article
CAS
PubMed
Google Scholar
Wowk B, Fahy GM. Inhibition of bacterial ice nucleation by polyglycerol polymers. Cryobiology. 2002;44(1):14–23.
Article
CAS
PubMed
Google Scholar
Tan X, Song E, Liu X, Liu G, Cheng H, Wan F. Successful vitrification of mouse ovaries using less-concentrated cryoprotectants with Supercool X-1000 supplementation. In vitro Cellular Developmental Biology Animal. 2012;48(2):69–74.
Article
PubMed
Google Scholar
Fahy GM, Wowk B, Wu J, Paynter S. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology. 2004;48(1):22–35.
Article
CAS
PubMed
Google Scholar
Ting AY, Yeoman RR, Lawson MS, Zelinski MB. Synthetic polymers improve vitrification outcomes of macaque ovarian tissue as assessed by histological integrity and the in vitro development of secondary follicles. Cryobiology. 2012;65(1):1–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fahy GM, Guan N, de Graaf IAM, Tan Y, Griffin L, Groothuis GMM. Cryopreservation of precision-cut tissue slices. Xenobiotica. 2013;43(1):113–32.
Article
CAS
PubMed
Google Scholar
Guan N, Blomsma SA, Fahy GM, Groothuis GMM, de Graaf IAM. Analysis of gene expression changes to elucidate the mechanism of chilling injury in precision-cut liver slices. Toxicology Vitro. 2013;27(2):890–9.
Article
CAS
Google Scholar
Ting AY, Yeoman RR, Campos JR, Lawson MS, Mullen SF, Fahy GM, Zelinski MB. Morphological and functional preservation of pre-antral follicles after vitrification of macaque ovarian tissue in a closed system. Hum Reprod. 2013;28(5):1267–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun H, Glasmacher B, Hofmann N. Compatible solutes improve cryopreservation of human endothelial cells. Cryo letters. 2012;33(6):485–93.
CAS
PubMed
Google Scholar
Freimark D, Sehl C, Weber C, Hudel K, Czermak P, Hofmann N, Spindler R, Glasmacher B. Systematic parameter optimization of a Me(2)SO- and serum-free cryopreservation protocol for human mesenchymal stem cells. Cryobiology. 2011;63(2):67–75.
Article
CAS
PubMed
Google Scholar
Hopkins JB, Badeau R, Warkentin M, Thorne RE. Effect of common cryoprotectants on critical warming rates and ice formation in aqueous solutions. Cryobiology. 2012;65(3):169–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kilbride P, Lamb S, Milne S, Gibbons S, Erro E, Bundy J, Selden C, Fuller B, Morris J. Spatial considerations during cryopreservation of a large volume sample. Cryobiology. 2016;73(1):47–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fahy GM, Wowk B, Wu J, Phan J, Rasch C, Chang A, Zendejas E. Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology. 2004;48(2):157–78.
Article
CAS
PubMed
Google Scholar
Wowk B, Darwin M, Harris SB, Russell SR, Rasch CM. Effects of solute methoxylation on glass-forming ability and stability of vitrification solutions. Cryobiology. 1999;39(3):215–27.
Article
CAS
PubMed
Google Scholar
Fahy GM, Wowk B, Wu J. Cryopreservation of complex systems: the missing link in the regenerative medicine supply chain. Rejuvenation Res. 2006;9(2):279–91.
Article
CAS
PubMed
Google Scholar
Fahy G: 16. Controlling cryoprotectant toxicity and chilling injury. Cryobiology 2015, 71(1):169.
Yeung JC, Krueger T, Yasufuku K, de Perrot M, Pierre AF, Waddell TK, Singer LG, Keshavjee S, Cypel M. Outcomes after transplantation of lungs preserved for more than 12 h: a retrospective study. Lancet Respiratory Med. 2017;5(2):119–24.
Article
Google Scholar
Berendsen TA, Bruinsma BG, Puts CF, Saeidi N, Usta OB, Uygun BE, Izamis ML, Toner M, Yarmush ML, Uygun K. Supercooling enables long-term transplantation survival following 4 days of liver preservation. Nat Med. 2014;20(7):790–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simpkins CE, Montgomery RA, Hawxby AM, Locke JE, Gentry SE, Warren DS, Segev DL. Cold ischemia time and allograft outcomes in live donor renal transplantation: is live donor organ transport feasible? Am J Transplantation. 2007;7(1):99–107.
Article
CAS
Google Scholar
Totsuka E, Fung JJ, Lee MC, Ishii T, Umehara M, Makino Y, Chang TH, Toyoki Y, Narumi S, Hakamada K, et al. Influence of cold ischemia time and graft transport distance on postoperative outcome in human liver transplantation. Surg Today. 2002;32(9):792–9.
Article
PubMed
Google Scholar
Bruinsma BG, Yeh H, Ozer S, Martins PN, Farmer A, Wu W, Saeidi N, Op den Dries S, Berendsen TA, Smith RN et al: Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. Am J Transpl 2014, 14(6):1400–1409.
Marco-Jimenez F, Garcia-Dominguez X, Jimenez-Trigos E, Vera-Donoso CD, Vicente JS. Vitrification of kidney precursors as a new source for organ transplantation. Cryobiology. 2015;70(3):278–82.
Article
PubMed
Google Scholar
Garcia-Dominguez X, Vera-Donoso CD, Jimenez-Trigos E, Vicente JS, Marco-Jimenez F. First steps towards organ banks: vitrification of renal primordial. Cryo Letters. 2016;37(1):47–52.
CAS
PubMed
Google Scholar
Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Organization. 2001;79(3):214–21.
CAS
Google Scholar
Golchet G, Carr J, Harris MG: Why don’t we have enough cornea donors? A literature review and survey. Optometry (St Louis, Mo) 2000, 71(5):318–328.
Marquez-Curtis LA, McGann LE, Elliott JAW. Expansion and cryopreservation of porcine and human corneal endothelial cells. Cryobiology. 2017;77:1–13.
Article
CAS
PubMed
Google Scholar
Armitage WJ. Preservation of human cornea. Transfusion Med Hemotherapy. 2011;38(2):143–7.
Article
Google Scholar
Armitage WJ, Hall SC, Routledge C. Recovery of endothelial function after vitrification of cornea at -110 degrees C. Investigative Ophthalmology Visual Sci. 2002;43(7):2160–4.
Google Scholar
Hallam D, Collin J, Bojic S, Chichagova V, Buskin A, Xu Y, Lafage L, Otten EG, Anyfantis G, Mellough C et al: An induced pluripotent stem cell patient specific model of complement factor H (Y402H) polymorphism displays characteristic features of age-related macular degeneration and indicates a beneficial role for UV light exposure. Stem cells (Dayton, Ohio) 2017, 35(11):2305–2320.
Bunce C, Xing W, Wormald R. Causes of blind and partial sight certifications in England and Wales: April 2007-March. Eye (London, England) 2010. 2008;24(11):1692–9.
Article
Google Scholar
Wang JJ, Mitchell P, Smith W, Cumming RG. Bilateral involvement by age related maculopathy lesions in a population. Brit J Ophthalmol. 1998;82(7):743–7.
Article
CAS
Google Scholar
Pasovic L, Eidet JR, Olstad OK, Chen DF, Lyberg T, Utheim TP. Impact of storage temperature on the expression of cell survival genes in cultured ARPE-19 cells. Curr Eye Res. 2017;42(1):134–44.
Article
CAS
PubMed
Google Scholar
Durlu YK, Tamai M. Transplantation of retinal pigment epithelium using viable cryopreserved cells. Cell Transplant. 1997;6(2):149–62.
Article
CAS
PubMed
Google Scholar
Basu PK, Sarkar P, Menon I, Carre F, Persad S. Bovine retinal pigment epithelial cells cultured in vitro: growth characteristics, morphology, chromosomes, phagocytosis ability, tyrosinase activity and effect of freezing. Exp Eye Res. 1983;36(5):671–83.
Article
CAS
PubMed
Google Scholar
Honda S, Weigel A, Hjelmeland LM, Handa JT. Induction of telomere shortening and replicative senescence by cryopreservation. Biochemical Biophysical Research Communications. 2001;282(2):493–8.
Article
CAS
PubMed
Google Scholar
Valtink M, Engelmann K, Kruger R, Schellhorn ML, Loliger C, Puschel K, Richard G. Structure of a cell bank for transplantation of HLA-typed, cryopreserved human adult retinal pigment epithelial cells. Ophthalmologe. 1999;96(10):648–52.
Article
CAS
PubMed
Google Scholar
Pannicke T, Ivo Chao T, Reisenhofer M, Francke M, Reichenbach A. Comparative electrophysiology of retinal Müller glial cells-a survey on vertebrate species. Glia. 2017;65(4):533–68.
Article
PubMed
Google Scholar
Guidry C. The role of Müller cells in fibrocontractive retinal disorders. Progress Retinal Eye Research. 2005;24(1):75–86.
Article
CAS
Google Scholar
Biedermann B, Wolf S, Kohen L, Wiedemann P, Buse E, Reichenbach A, Pannicke T. Patch-clamp recording of Muller glial cells after cryopreservation. J Neurosci Methods. 2002;120(2):173–8.
Article
PubMed
Google Scholar
Frodl EM, Sauer H, Lindvall O, Brundin P. Effects of hibernation or cryopreservation on the survival and integration of striatal grafts placed in the ibotenate-lesioned rat caudate-putamen. Cell Transplant. 1995;4(6):571–7.
Article
CAS
PubMed
Google Scholar
Gage FH, Brundin P, Isacson O, Bjorklund A. Rat fetal brain tissue grafts survive and innervate host brain following five day pregraft tissue storage. Neurosci Lett. 1985;60(2):133–7.
Article
CAS
PubMed
Google Scholar
Nikkhah G, Eberhard J, Olsson M, Bjorklund A. Preservation of fetal ventral mesencephalic cells by cool storage: in-vitro viability and TH-positive neuron survival after microtransplantation to the striatum. Brain Res. 1995;687(1–2):22–34.
Article
CAS
PubMed
Google Scholar
Otto F, Gortz P, Fleischer W, Siebler M. Cryopreserved rat cortical cells develop functional neuronal networks on microelectrode arrays. J Neurosci Methods. 2003;128(1–2):173–81.
Article
PubMed
Google Scholar
Karlsson JO, Toner M. Long-term storage of tissues by cryopreservation: critical issues. Biomaterials. 1996;17(3):243–56.
Article
CAS
PubMed
Google Scholar
Luyet B, Gonzales F. Growth of nerve tissue after freezing in liquid nitrogen. Biodynamica. 1953;7(141–144):171–4.
CAS
PubMed
Google Scholar
Ichikawa J, Yamada RX, Muramatsu R, Ikegaya Y, Matsuki N, Koyama R. Cryopreservation of granule cells from the postnatal rat hippocampus. J Pharmacol Sci. 2007;104(4):387–91.
Article
CAS
PubMed
Google Scholar
Paynter SJ. Principles and practical issues for cryopreservation of nerve cells. Brain Res Bull. 2008;75(1):1–14.
Article
CAS
PubMed
Google Scholar
Ma XH, Shi Y, Hou Y, Liu Y, Zhang L, Fan WX, Ge D, Liu TQ, Cui ZF. Slow-freezing cryopreservation of neural stem cell spheres with different diameters. Cryobiology. 2010;60(2):184–91.
Article
CAS
PubMed
Google Scholar
Fang J, Zhang ZX. Cryopreservation of embryonic cerebral tissue of rat. Cryobiology. 1992;29(2):267–73.
Article
CAS
PubMed
Google Scholar
Das GD, Houle JD, Brasko J, Das KG. Freezing of neural tissues and their transplantation in the brain of rats: technical details and histological observations. J Neurosci Methods. 1983;8(1):1–15.
Article
CAS
PubMed
Google Scholar
Higgins AZ, Cullen DK, LaPlaca MC, Karlsson JO. Effects of freezing profile parameters on the survival of cryopreserved rat embryonic neural cells. J Neurosci Methods. 2011;201(1):9–16.
Article
PubMed
Google Scholar
Negishi T, Ishii Y, Kawamura S, Kuroda Y, Yoshikawa Y. Cryopreservation of brain tissue for primary culture. Exp Anim. 2002;51(4):383–90.
Article
CAS
PubMed
Google Scholar
Quasthoff K, Ferrea S, Fleischer W, Theiss S, Schnitzler A, Dihne M, Walter J. Freshly frozen E18 rat cortical cells can generate functional neural networks after standard cryopreservation and thawing procedures. Cytotechnology. 2015;67(3):419–26.
Article
PubMed
Google Scholar
Robert MC, Juan de Paz L, Graf DA, Gazzin S, Tiribelli C, Bottai H, Rodriguez JV: Cryopreservation by slow cooling of rat neuronal cells. Cryobiology 2016, 72(3):191–197.
Paynter SJ, Andrews KJ, Vinh NN, Kelly CM, Rosser AE, Amso NN, Dunnett SB. Membrane permeability coefficients of murine primary neural brain cells in the presence of cryoprotectant. Cryobiology. 2009;58(3):308–14.
Article
CAS
PubMed
Google Scholar
Kawamoto JC, Barrett JN. Cryopreservation of primary neurons for tissue culture. Brain Res. 1986;384(1):84–93.
Article
CAS
PubMed
Google Scholar
Pischedda F, Montani C, Obergasteiger J, Frapporti G, Corti C, Rosato Siri M, Volta M, Piccoli G. Cryopreservation of primary mouse neurons: the benefit of Neurostore Cryoprotective Medium. Front Cell Neurosci. 2018;12:81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hancock CR, Wetherington JP, Lambert NA, Condie BG. Neuronal differentiation of cryopreserved neural progenitor cells derived from mouse embryonic stem cells. Biochemical Biophysical Research Communications. 2000;271(2):418–21.
Article
CAS
PubMed
Google Scholar
Sundlisaeter E, Wang J, Sakariassen PO, Marie M, Mathisen JR, Karlsen BO, Prestegarden L, Skaftnesmo KO, Bjerkvig R, Enger PO. Primary glioma spheroids maintain tumourogenicity and essential phenotypic traits after cryopreservation. Neuropathol Applied Neurobiol. 2006;32(4):419–27.
Article
CAS
Google Scholar
Purcell WM, Atterwill CK, Xu J. Cryopreservation of organotypic brain spheroid cultures. Alternatives Laboratory Animals. 2003;31(6):563–73.
Article
CAS
Google Scholar
Costa PF, Dias AF, Reis RL, Gomes ME. Cryopreservation of cell/scaffold tissue-engineered constructs. Tissue Engineering Part C, Methods. 2012;18(11):852–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10(6):771–85.
Article
CAS
PubMed
Google Scholar
Reichman S, Slembrouck A, Gagliardi G, Chaffiol A, Terray A, Nanteau C, Potey A, Belle M, Rabesandratana O, Duebel J et al: Generation of storable retinal organoids and retinal pigmented epithelium from adherent human iPS cells in xeno-free and feeder-free conditions. Stem Cells (Dayton, Ohio) 2017, 35(5):1176–1188.
Massie I, Selden C, Morris J, Hodgson H, Fuller B. Cryopreservation of encapsulated liver spheroids using a cryogen-free cooler: high functional recovery using a multi-step cooling profile. Cryo Letters. 2011;32(2):158–65.
CAS
PubMed
Google Scholar
Jitraruch S, Dhawan A, Hughes RD, Filippi C, Lehec SC, Glover L, Mitry RR. Cryopreservation of hepatocyte microbeads for clinical transplantation. Cell Transplant. 2017;26(8):1341–54.
Article
PubMed
PubMed Central
Google Scholar
Urbani L, Maghsoudlou P, Milan A, Menikou M, Hagen CK, Totonelli G, Camilli C, Eaton S, Burns A, Olivo A, et al. Long-term cryopreservation of decellularised oesophagi for tissue engineering clinical application. PLoS One. 2017;12(6):e0179341.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grant L, Raman R, Cvetkovic C, Ferrall-Fairbanks MC, Pagan-Diaz GJ, Hadley P, Ko E, Platt MO, Bashir R. Long-term cryopreservation and revival of tissue engineered skeletal muscle. Tissue Eng A. 2018.
Day AGE, Bhangra KS, Murray-Dunning C, Stevanato L, Phillips JB. The effect of hypothermic and cryogenic preservation on engineered neural tissue. Tissue engineering Part C, Methods. 2017;23(10):575–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukherjee N, Chen Z, Sambanis A, Song Y. Effects of cryopreservation on cell viability and insulin secretion in a model tissue-engineered pancreatic substitute (TEPS). Cell Transplant. 2005;14(7):449–56.
Article
PubMed
Google Scholar
Yin H, Cui L, Liu G, Cen L, Cao Y. Vitreous cryopreservation of tissue engineered bone composed of bone marrow mesenchymal stem cells and partially demineralized bone matrix. Cryobiology. 2009;59(2):180–7.
Article
CAS
PubMed
Google Scholar
Tam E, McGrath M, Sladkova M, AlManaie A, Alostaad A, de Peppo GM. Hypothermic and cryogenic preservation of tissue-engineered human bone. Ann N Y Acad Sci. 2020;1460(1):77–87.
Article
CAS
PubMed
Google Scholar
Chen F, Zhang W, Wu W, Jin Y, Cen L, Kretlow JD, Gao W, Dai Z, Wang J, Zhou G, et al. Cryopreservation of tissue-engineered epithelial sheets in trehalose. Biomaterials. 2011;32(33):8426–35.
Article
CAS
PubMed
Google Scholar
Wang X, Hua TC, Sun DW, Liu B, Yang G, Cao Y. Cryopreservation of tissue-engineered dermal replacement in Me2SO: toxicity study and effects of concentration and cooling rates on cell viability. Cryobiology. 2007;55(1):60–5.
Article
CAS
PubMed
Google Scholar
Rodriguez-Wallberg KA, Waterstone M, Anastácio A. Ice age: cryopreservation in assisted reproduction - an update. Reproductive Biol. 2019;19(2):119–26.
Article
Google Scholar
Condorelli M, Demeestere I. Challenges of fertility preservation in non-oncological diseases. Acta Obstet Gynecol Scand. 2019;98(5):638–46.
Article
PubMed
Google Scholar
Yang H, Ramstein J, Smith J. Non-oncologic indications for male fertility preservation. Current Urol Reports. 2019;20(9):51.
Article
Google Scholar
Baram S, Myers SA, Yee S, Librach CL. Fertility preservation for transgender adolescents and young adults: a systematic review. Hum Reprod Update. 2019;25(6):694–716.
Article
CAS
PubMed
Google Scholar
Singer ST, Sweeters N, Vega O, Higa A, Vichinsky E, Cedars M. Fertility potential in thalassemia major women: current findings and future diagnostic tools. Ann N Y Acad Sci. 2010;1202:226–30.
Article
PubMed
PubMed Central
Google Scholar
Kieran K, Shnorhavorian M. Fertility issues in pediatric urology. The Urologic Clinics North Am. 2018;45(4):587–99.
Article
Google Scholar
Smith MA, Altekruse SF, Adamson PC, Reaman GH, Seibel NL. Declining childhood and adolescent cancer mortality. Cancer. 2014;120(16):2497–506.
Article
PubMed
Google Scholar
Font-Gonzalez A, Mulder RL, Loeffen EA, Byrne J, van Dulmen-den Broeder E, van den Heuvel-Eibrink MM, Hudson MM, Kenney LB, Levine JM, Tissing WJ, et al. Fertility preservation in children, adolescents, and young adults with cancer: quality of clinical practice guidelines and variations in recommendations. Cancer. 2016;122(14):2216–23.
Article
PubMed
Google Scholar
Keegan TH, Ries LA, Barr RD, Geiger AM, Dahlke DV, Pollock BH, Bleyer WA. Comparison of cancer survival trends in the United States of adolescents and young adults with those in children and older adults. Cancer. 2016;122(7):1009–16.
Article
PubMed
Google Scholar
Donnez J, Dolmans MM. Fertility preservation in women. New England J Med. 2017;377(17):1657–65.
Article
Google Scholar
Mossad H, Morshedi M, Toner JP, Oehninger S. Impact of cryopreservation on spermatozoa from infertile men: implications for artificial insemination. Archives Andrology. 1994;33(1):51–7.
Article
CAS
Google Scholar
Vutyavanich T, Piromlertamorn W, Nunta S. Rapid freezing versus slow programmable freezing of human spermatozoa. Fertility Sterility. 2010;93(6):1921–8.
Article
CAS
PubMed
Google Scholar
Riva NS, Ruhlmann C, Iaizzo RS, Marcial López CA, Martínez AG. Comparative analysis between slow freezing and ultra-rapid freezing for human sperm cryopreservation. JBRA assisted reproduction. 2018;22(4):331–7.
PubMed
Google Scholar
Li YX, Zhou L, Lv MQ, Ge P, Liu YC, Zhou DX. Vitrification and conventional freezing methods in sperm cryopreservation: a systematic review and meta-analysis. Eur J Obstetrics Gynecol Reproductive Biol. 2019;233:84–92.
Article
CAS
Google Scholar
Horne G, Atkinson AD, Pease EH, Logue JP, Brison DR, Lieberman BA: Live birth with sperm cryopreserved for 21 years prior to cancer treatment: case report. Human Reproduction (Oxford, England) 2004, 19(6):1448–1449.
Feldschuh J, Brassel J, Durso N, Levine A. Successful sperm storage for 28 years. Fertility Sterility. 2005;84(4):1017.
Article
PubMed
Google Scholar
Szell AZ, Bierbaum RC, Hazelrigg WB, Chetkowski RJ. Live births from frozen human semen stored for 40 years. J Assisted Reproduction Genetics. 2013;30(6):743–4.
Article
Google Scholar
Hezavehei M, Sharafi M, Kouchesfahani HM, Henkel R, Agarwal A, Esmaeili V, Shahverdi A. Sperm cryopreservation: a review on current molecular cryobiology and advanced approaches. Reproductive Biomed Online. 2018;37(3):327–39.
Article
CAS
Google Scholar
Brinster RL: Male germline stem cells: from mice to men. Science (New York, NY) 2007, 316(5823):404–405.
Angarita AM, Johnson CA, Fader AN, Christianson MS. Fertility preservation: a key survivorship issue for young women with cancer. Front Oncol. 2016;6:102.
Article
PubMed
PubMed Central
Google Scholar
McLaren JF, Bates GW. Fertility preservation in women of reproductive age with cancer. Am J Obstetrics Gynecol. 2012;207(6):455–62.
Article
Google Scholar
Rezazadeh Valojerdi M, Eftekhari-Yazdi P, Karimian L, Hassani F, Movaghar B. Vitrification versus slow freezing gives excellent survival, post warming embryo morphology and pregnancy outcomes for human cleaved embryos. J Assisted Reproduction Genetics. 2009;26(6):347–54.
Article
Google Scholar
Loutradi KE, Kolibianakis EM, Venetis CA, Papanikolaou EG, Pados G, Bontis I, Tarlatzis BC. Cryopreservation of human embryos by vitrification or slow freezing: a systematic review and meta-analysis. Fertil Steril. 2008;90(1):186–93.
Article
PubMed
Google Scholar
Cobo A, García-Velasco JA, Coello A, Domingo J, Pellicer A, Remohí J: Oocyte vitrification as an efficient option for elective fertility preservation. Fertility Sterility 2016, 105(3):755–764.e758.
Hudson JN, Stanley NB, Nahata L, Bowman-Curci M, Quinn GP. New promising strategies in oncofertility. Expert Rev Qual Life Cancer Care. 2017;2(2):67–78.
Article
PubMed
PubMed Central
Google Scholar
Matson PL, Graefling J, Junk SM, Yovich JL, Edirisinghe WR. Cryopreservation of oocytes and embryos: use of a mouse model to investigate effects upon zona hardness and formulate treatment strategies in an in-vitro fertilization programme. Hum Reprod. 1997;12(7):1550–3.
Article
CAS
PubMed
Google Scholar
Boiso I, Martí M, Santaló J, Ponsá M, Barri PN, Veiga A. A confocal microscopy analysis of the spindle and chromosome configurations of human oocytes cryopreserved at the germinal vesicle and metaphase II stage. Hum Reprod. 2002;17(7):1885–91.
Article
PubMed
Google Scholar
Edgar DH, Gook DA. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum Reprod Update. 2012;18(5):536–54.
Article
PubMed
Google Scholar
Noyes N, Porcu E, Borini A. Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reproductive Biomed Online. 2009;18(6):769–76.
Article
CAS
Google Scholar
Zhao H, Jin L, Li Y, Zhang C, Wang R, Li Y, Huang W, Cui C, Zhang H, Wang H, et al. Oncofertility: what can we do from bench to bedside? Cancer Lett. 2019;442:148–60.
Article
CAS
PubMed
Google Scholar
Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, Martinez-Madrid B, van Langendonckt A: Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet (London, England) 2004, 364(9443):1405–1410.
Meirow D, Ra’anani H, Shapira M, Brenghausen M, Derech Chaim S, Aviel-Ronen S, Amariglio N, Schiff E, Orvieto R, Dor J. Transplantations of frozen-thawed ovarian tissue demonstrate high reproductive performance and the need to revise restrictive criteria. Fertility Sterility. 2016;106(2):467–74.
Article
PubMed
Google Scholar
Biasin E, Salvagno F, Berger M, Nesi F, Quarello P, Vassallo E, Evangelista F, Marchino GL, Revelli A, Benedetto C, et al. Ovarian tissue cryopreservation in girls undergoing haematopoietic stem cell transplant: experience of a single centre. Bone Marrow Transplant. 2015;50(9):1206–11.
Article
CAS
PubMed
Google Scholar
Anderson RA, Wallace WHB, Telfer EE: Ovarian tissue cryopreservation for fertility preservation: clinical and research perspectives. Human Reproduction Open 2017, 2017(1).
Sun C, Yue J, He N, Liu Y, Zhang X, Zhang Y. Fundamental principles of stem cell banking. Adv Experimental Med Biol. 2016;951:31–45.
Article
CAS
Google Scholar
Harris DT. Stem cell banking for regenerative and personalized medicine. Biomedicines. 2014;2(1):50–79.
Article
PubMed
PubMed Central
Google Scholar
Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. New England J Med. 1989;321(17):1174–8.
Article
CAS
Google Scholar
Ballen KK, Verter F, Kurtzberg J. Umbilical cord blood donation: public or private? Bone Marrow Transplant. 2015;50(10):1271–8.
Article
CAS
PubMed
Google Scholar
Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood. 2013;122(4):491–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang CY, Liu CL, Ting CY, Chiu YT, Cheng YC, Nicholson MW, Hsieh PCH. Human iPSC banking: barriers and opportunities. J Biomed Sci. 2019;26(1):87.
Article
PubMed
PubMed Central
Google Scholar
Bojic S, Volarevic V, Ljujic B, Stojkovic M. Dental stem cells--characteristics and potential. Histology Histopathol. 2014;29(6):699–706.
CAS
Google Scholar
Hilkens P, Driesen RB, Wolfs E, Gervois P, Vangansewinkel T, Ratajczak J, Dillen Y, Bronckaers A, Lambrichts I. Cryopreservation and banking of dental stem cells. Advances Experimental Med Biol. 2016;951:199–235.
Article
CAS
Google Scholar
De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nature Cell Biol. 2019;21(7):801–11.
Article
PubMed
CAS
Google Scholar
Sarmiento M, Ramírez P, Parody R, Salas MQ, Beffermann N, Jara V, Bertín P, Pizarro I, Lorca C, Rivera E, et al. Advantages of non-cryopreserved autologous hematopoietic stem cell transplantation against a cryopreserved strategy. Bone Marrow Transplant. 2018;53(8):960–6.
Article
CAS
PubMed
Google Scholar
Alam HB. Trauma care: finding a better way. PLoS Med. 2017;14(7):e1002350.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lyon RM, Robertson CE, Clegg GR. Therapeutic hypothermia in the emergency department following out-of-hospital cardiac arrest. Emerg Med J. 2010;27(6):418.
Article
CAS
PubMed
Google Scholar
Kutcher ME, Forsythe RM, Tisherman SA: Emergency preservation and resuscitation for cardiac arrest from trauma. Int J Surg (London, England) 2016, 33(Pt B):209–212.
García-Roa M, Del Carmen Vicente-Ayuso M, Bobes AM, Pedraza AC, González-Fernández A, Martín MP, Sáez I, Seghatchian J, Gutiérrez L: Red blood cell storage time and transfusion: current practice, concerns and future perspectives. Blood transfusion = Trasfusione del sangue 2017, 15(3):222–231.
Nordeen CA, Martin SL: Engineering human stasis for long-duration spaceflight. Physiology (Bethesda, Md) 2019, 34(2):101–111.
Choukèr A, Bereiter-Hahn J, Singer D, Heldmaier G. Hibernating astronauts-science or fiction? Pflugers Arch. 2019;471(6):819–28.
Article
PubMed
CAS
Google Scholar
Ayre M, Zancanaro C, Malatesta M. Morpheus - hypometabolic stasis in humans for long term space flight. J Br Interplanet Soc. 2004;57:325.
Google Scholar
Torpor inducing transfer habitat for human stasis to Mars [https://ntrs.nasa.gov/citations/20180008683].
Advancing torpor inducing transfer habitats for human stasis to Mars [https://ntrs.nasa.gov/citations/20180007195].
Tinganelli W, Hitrec T, Romani F, Simoniello P, Squarcio F, Stanzani A, Piscitiello E, Marchesano V, Luppi M, Sioli M et al: Hibernation and radioprotection: gene expression in the liver and testicle of rats irradiated under synthetic torpor. Int J Mol Sci 2019, 20(2).
Mazur P. Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos. Cell Biophys. 1990;17(1):53–92.
Article
CAS
PubMed
Google Scholar
Schneider U, Mazur P. Osmotic consequences of cryoprotectant permeability and its relation to the survival of frozen-thawed embryos. Theriogenology. 1984;21(1):68–79.
Article
CAS
Google Scholar
Benson JD, Chicone CC, Critser JK. Analytical optimal controls for the state constrained addition and removal of cryoprotective agents. Bull Math Biol. 2012;74(7):1516–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kashuba CM, Benson JD, Critser JK. Rationally optimized cryopreservation of multiple mouse embryonic stem cell lines: I--comparative fundamental cryobiology of multiple mouse embryonic stem cell lines and the implications for embryonic stem cell cryopreservation protocols. Cryobiology. 2014;68(2):166–75.
Article
CAS
PubMed
Google Scholar
Weng L, Chen C, Zuo J, Li W. Molecular dynamics study of effects of temperature and concentration on hydrogen-bond abilities of ethylene glycol and glycerol: implications for cryopreservation. J Phys Chem A. 2011;115(18):4729–37.
Article
CAS
PubMed
Google Scholar
Baxter SJ, Lathe GH. Biochemical effects on kidney of exposure to high concentrations of dimethyl sulphoxide. Biochem Pharmacol. 1971;20(6):1079–91.
Article
CAS
PubMed
Google Scholar