Elliott SJ, Bowsher JM. Regeneration in brass wind instruments. J Sound Vib. 1982;83(2):181–217. https://doi.org/10.1016/S0022-460X(82)80086-2.
Article
Google Scholar
Fabre B, Gilbert J, Hirschberg A, Pelorson X. Aeroacoustics of musical instruments. Annu Rev Fluid Mech. 2012;44(1):1–25. https://doi.org/10.1146/annurev-fluid-120710-101031.
Article
Google Scholar
Boutin H, Smith J, Wolfe J. Trombone lip mechanics with inertive and compliant loads (“lipping up and down”). J Acoust Soc Am. 2020;147(6):4133–44. https://doi.org/10.1121/10.0001466.
Article
PubMed
Google Scholar
Fant G. Acoustic theory of speech production. the Hague: Mouton & Co; 1960.
Google Scholar
Titze IR. Principles of voice production (second printing). Iowa City: National Center for Voice and Speech; 2000.
Google Scholar
Taylor AM, Charlton BD, Reby D. Vocal Production by Terrestrial Mammals: Source, Filter, and Function. In: Suthers RA, Fitch WT, Fay RR, Popper AN, editors. Vertebrate Sound Production and Acoustic Communication. Cham: Springer International Publishing; 2016. p. 229–59.
Titze I, Riede T, Mau T. Predicting achievable fundamental frequency ranges in vocalization across species. PLoS Comput Biol. 2016;12(6):e1004907. https://doi.org/10.1371/journal.pcbi.1004907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fletcher NH. A simple frequency-scaling rule for animal communication. J Acoust Soc Am. 2004;115(5):2334–8. https://doi.org/10.1121/1.1694997.
Article
PubMed
Google Scholar
Bowling DL, Garcia M, Dunn JC, Ruprecht R, Stewart A, Frommolt K-H, et al. Body size and vocalization in primates and carnivores. Sci Rep. 2017;7(1):1–11.
Article
Google Scholar
Reby D, Wyman M, Frey R, Passilongo D, Gilbert J, Locatelli Y, et al. Evidence of biphonation and source–filter interactions in the bugles of male North American wapiti (Cervus canadensis). J Exp Biol. 2016;219(8):1224–36. https://doi.org/10.1242/jeb.131219.
Article
CAS
PubMed
Google Scholar
Sissom DEF, Rice DA, Peters G. How cats purr. J Zool. 1991;223(1):67–78. https://doi.org/10.1111/j.1469-7998.1991.tb04749.x.
Article
Google Scholar
Charlton BD, Reby D. The evolution of acoustic size exaggeration in terrestrial mammals. Nat Commun. 2016;7(1):1–8.
Article
Google Scholar
Roberts LH. The rodent ultrasound production mechanism. Ultrasonics. 1975;13(2):83–8. https://doi.org/10.1016/0041-624X(75)90052-9.
Article
CAS
PubMed
Google Scholar
Riede T, Borgard HL, Pasch B. Laryngeal airway reconstruction indicates that rodent ultrasonic vocalizations are produced by an edge-tone mechanism. R Soc Open Sci. 2017;4(11):170976. https://doi.org/10.1098/rsos.170976.
Article
PubMed
PubMed Central
Google Scholar
Frey R, Volodin IA, Fritsch G, Volodina EV. Potential sources of high frequency and biphonic vocalization in the dhole (Cuon alpinus). PLoS One. 2016;11(1):e0146330. https://doi.org/10.1371/journal.pone.0146330.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azola A, Palmer J, Mulheren R, Hofer R, Fischmeister F, Fitch WT. The physiology of oral whistling: a combined radiographic and MRI analysis. J Appl Physiol. 2018;124(1):34–9. https://doi.org/10.1152/japplphysiol.00902.2016.
Article
PubMed
Google Scholar
Stoeger AS, de Silva S. African and Asian Elephant Vocal Communication: A Cross-Species Comparison. In: Witzany G, editor. Biocommunication of Animals. Dordrecht: Springer Netherlands; 2014. p. 21–39.
Boas J, Paulli S. The elephant’s head: studies in the comparative anatomy of the organs of the head of the Indian elephant and other mammals, Part II. Copenhagen; 1925.
Soltis J. Vocal communication in African elephants (Loxodonta africana). Zoo Biol. 2010;29(2):192–209. https://doi.org/10.1002/zoo.20251.
Article
PubMed
Google Scholar
Janik VM, Slater PJB. Vocal learning in mammals. Adv Study Behav. 1997;26:59–99.
Tyack PL. A taxonomy for vocal learning. Philosophical Transactions of the Royal Society B. 2020;375(1789):20180406.
Fitch WT, Suthers RA. Vertebrate Vocal Production: An Introductory Overview. In: Suthers RA, Fitch WT, Fay RR, Popper AN, editors. Vertebrate Sound Production and Acoustic Communication. Cham: Springer International Publishing; 2016. p. 1–18.
Reichmuth C, Casey C. Vocal learning in seals, sea lions, and walruses. Curr Opin Neurobiol. 2014;28:66–71. https://doi.org/10.1016/j.conb.2014.06.011.
Article
CAS
PubMed
Google Scholar
McKay GM. Behavior and ecology of the Asiatic elephant in southeastern Ceylon. Smithson Contrib Zool. 1973;(125):1–113. https://doi.org/10.5479/si.00810282.125.
Nair S, Balakrishnan R, Seelamantula CS, Sukumar R. Vocalizations of wild Asian elephants (Elephas maximus): structural classification and social context. J Acoust Soc Am. 2009;126(5):2768–78. https://doi.org/10.1121/1.3224717.
Article
PubMed
Google Scholar
Herler A, Stoeger AS. Vocalizations and associated behaviour of Asian elephant (Elephas maximus) calves. Behaviour. 2012;149(6):575–99. https://doi.org/10.1163/156853912X648516.
Article
Google Scholar
de Silva S. Acoustic communication in the Asian elephant, Elephas maximus maximus. Behaviour. 2010;147(7):825–52. https://doi.org/10.1163/000579510X495762.
Article
Google Scholar
Poole JH, Tyack PL, Stoeger-Horwath AS, Watwood S. Elephants are capable of vocal learning. Nature. 2005;434(7032):455–6. https://doi.org/10.1038/434455a.
Article
CAS
PubMed
Google Scholar
Herbst CT, Stoeger AS, Frey R, Lohscheller J, Titze IR, Gumpenberger M, Fitch WT. How low can you go? Physical production mechanism of elephant infrasonic vocalizations. Science. 2012;337(6094):595–9. https://doi.org/10.1126/science.1219712.
Article
CAS
PubMed
Google Scholar
Ralls K, Fiorelli P, Gish S. Vocalizations and vocal mimicry in captive harbor seals, Phoca vitulina. Can J Zool. 1985;63(5):1050–6. https://doi.org/10.1139/z85-157.
Article
Google Scholar
Stoeger AS, Mietchen D, Oh S, de Silva S, Herbst CT, Kwon S, Fitch WT. An Asian elephant imitates human speech. Curr Biol. 2012;22(22):2144–8. https://doi.org/10.1016/j.cub.2012.09.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nandini S, Keerthipriya P, Vidya TNC. Group size differences may mask underlying similarities in social structure: a comparison of female elephant societies. Behav Ecol. 2017;29(1):145–59.
Article
Google Scholar
Turkalo AK, Wrege PH, Wittemyer G. Long-term monitoring of Dzanga Bai Forest elephants: forest clearing use patterns. PLoS One. 2013;8(12):e85154. https://doi.org/10.1371/journal.pone.0085154.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonaparte-Saller M, Mench JA. Assessing the dyadic social relationships of female african (Loxodonta africana) and asian (Elephas maximus) zoo elephants using proximity, tactile contact, and keeper surveys. Appl Anim Behav Sci. 2018;199:45–51. https://doi.org/10.1016/j.applanim.2017.10.011.
Article
Google Scholar
Harvey ND, Daly C, Clark N, Ransford E, Wallace S, Yon L. Social interactions in two groups of zoo-housed adult female Asian elephants (Elephas maximus) that differ in relatedness. Animals. 2018;8(8):132. https://doi.org/10.3390/ani8080132.
Article
PubMed Central
Google Scholar
Williams E, Carter A, Hall C, Bremner-Harrison S. Social interactions in zoo-housed elephants: factors affecting social relationships. Animals. 2019;9(10):747. https://doi.org/10.3390/ani9100747.
Article
PubMed Central
Google Scholar
Pardo MA, Poole JH, Stoeger AS, Wrege PH, O’Connell-Rodwell CE, Padmalal UK, de Silva S. Differences in combinatorial calls among the 3 elephant species cannot be explained by phylogeny. Behav Ecol. 2019;30(3):809–20. https://doi.org/10.1093/beheco/arz018.
Article
Google Scholar
Stoeger AS, Heilmann G, Zeppelzauer M, Ganswindt A, Hensman S, Charlton BD. Visualizing sound emission of elephant vocalizations: evidence for two rumble production types. PLoS One. 2012;7(11):e48907. https://doi.org/10.1371/journal.pone.0048907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baotic A, Stoeger AS. Sexual dimorphism in African elephant social rumbles. PLoS One. 2017;12(5):e0177411. https://doi.org/10.1371/journal.pone.0177411.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poole JH. Behavioral contexts of elephant acoustic communication. The Amboseli elephants: a long-term perspective on a long-lived mammal Chicago: The University of Chicago; 2011. p. 125–61. https://doi.org/10.7208/chicago/9780226542263.003.0009.
Book
Google Scholar
Soltis J, King LE, Douglas-Hamilton I, Vollrath F, Savage A. African elephant alarm calls distinguish between threats from humans and bees. PLoS One. 2014;9(2):e89403. https://doi.org/10.1371/journal.pone.0089403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sikes SK. Natural history of the African elephant. London: Weidenfield & Nicolson; 1971.
Google Scholar
Anthony R, Coupin F. Nouvelles recherches sur les cavites nasales de l, elephant d'Asie (Elephas indicus L.). Arch Anat Histol Embryol. 1925;4:107–47.
Google Scholar
Shoshani J. On the dissection of a female Asian elephant (Elephas maximus maxiums linnaeus, 1758) and data from other elephants. Elephant. 1982;2(1):3–93. https://doi.org/10.22237/elephant/1521731887.
Article
Google Scholar
Mergell P, Fitch WT, Herzel H. Modeling the role of nonhuman vocal membranes in phonation. J Acoust Soc Am. 1999;105(3):2020–8. https://doi.org/10.1121/1.426735.
Article
CAS
PubMed
Google Scholar
Madsen P, Jensen F, Carder D, Ridgway S. Dolphin whistles: a functional misnomer revealed by heliox breathing. Biol Lett. 2012;8(2):211–3. https://doi.org/10.1098/rsbl.2011.0701.
Article
CAS
PubMed
Google Scholar
Tyack PL, Miller EH. Vocal anatomy, acoustic communication and echolocation. In: Hoetzel R, editor. Marine Mammal Biology: An Evolutionary Approach. Oxford, UK: Blackwell Science; 2002. p. 142–84.
Isaza R. Respiratory system. In: Fowler M, Mikota SK, editors. Biology, medicine, and surgery of elephants. Hoboken: Wiley; 2008. p. 291–8.
Google Scholar
Miall LC, Greenwood F. The anatomy of the Indian elephant. J Anat Physiol. 1878;13(Pt 1):17–50.5.
CAS
PubMed
PubMed Central
Google Scholar
Shindo T, Mori M. Musculature of Indian elephant. Part III. Musculature of the trunk, neck and head. Okajimas Folia Anat Jpn. 1956;29(1–2):17–40. https://doi.org/10.2535/ofaj1936.29.1-2_17.
Article
PubMed
Google Scholar
Watson M. Contributions to the anatomy of the Indian elephant: part IV. Muscles and blood-vessels of the face and head. J Anat Physiol. 1874;9(Pt 1):118.
CAS
PubMed
PubMed Central
Google Scholar
Dumonceaux GA. Digestive system. In: Fowler M, Mikota SK, editors. Biology, medicine, and surgery of elephants. Hoboken: Wiley; 2008.
Google Scholar
Fletcher NH. Acoustic systems in biology. New York: Oxford University Press; 1992.
Nandwana MK, Bořil H, Hansen JH, editors. A new front-end for classification of non-speech sounds: a study on human whistle. ISCA INTERSPEECH 2015 Sep 6-10; Dresden, Germany. New York: Curran Associates, Inc.; 2016.
Google Scholar
Riede T, Suthers RA, Fletcher NH, Blevins WE. Songbirds tune their vocal tract to the fundamental frequency of their song. Proc Natl Acad Sci. 2006;103(14):5543–8. https://doi.org/10.1073/pnas.0601262103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stoeger AS, Zeppelzauer M, Baotic A. Age-group estimation in free-ranging African elephants based on acoustic cues of low-frequency rumbles. Bioacoustics. 2014;23(3):231–46. https://doi.org/10.1080/09524622.2014.888375.
Article
PubMed
PubMed Central
Google Scholar
Stoeger AS, Baotic A. Information content and acoustic structure of male African elephant social rumbles. Sci Rep. 2016;6(1):1–8.
Article
Google Scholar
Sibiryakova OV, Volodin IA, Volodina EV. Polyphony of domestic dog whines and vocal cues to body size. Current Zoology. 2020;67(2):165–76.
Mumby HS, Chapman SN, Crawley JA, Mar KU, Htut W, Soe AT, et al. Distinguishing between determinate and indeterminate growth in a long-lived mammal. BMC Evol Biol. 2015;15(1):1–9.
Article
Google Scholar
Mitani JC, Brandt KL. Social factors influence the acoustic variability in the long-distance calls of male chimpanzees. Ethology. 1994;96(3):233–52.
Article
Google Scholar
McCowan B, Reiss D. Whistle contour development in captive-born infant bottlenose dolphins (Tursiops truncatus): role of learning. J Comp Psychol. 1995;109(3):242–60. https://doi.org/10.1037/0735-7036.109.3.242.
Article
Google Scholar
Plotnik JM, de Waal FB. Asian elephants (Elephas maximus) reassure others in distress. PeerJ. 2014;2:e278. https://doi.org/10.7717/peerj.278.
Article
PubMed
PubMed Central
Google Scholar
Stoeger AS, Manger P. Vocal learning in elephants: neural bases and adaptive context. Curr Opin Neurobiol. 2014;28:101–7. https://doi.org/10.1016/j.conb.2014.07.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilden I, Herzel H, Peters G, Tembrock G. Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics. 1998;9(3):171–96. https://doi.org/10.1080/09524622.1998.9753394.
Article
Google Scholar
Fitch WT, Neubauer J, Herzel H. Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production. Anim Behav. 2002;63(3):407–18. https://doi.org/10.1006/anbe.2001.1912.
Article
Google Scholar
Riede T, Titze IR. Vocal fold elasticity of the Rocky Mountain elk (Cervus elaphus nelsoni)–producing high fundamental frequency vocalization with a very long vocal fold. J Exp Biol. 2008;211(13):2144–54. https://doi.org/10.1242/jeb.017004.
Article
PubMed
Google Scholar
Frey R, Riede T. The anatomy of vocal divergence in north American elk and European red deer. J Morphol. 2013;274(3):307–19. https://doi.org/10.1002/jmor.20092.
Article
PubMed
Google Scholar
Forbes WA. 4. On the anatomy of the African elephant (Elephas africanus, Blum.). Proc Zool Soc London. 1879;47(1):420–35.
Article
Google Scholar
Kühhaas P, Weissengruber GE. Der Larynx des Afrikanischen Elefanten: Eine anatomische Studie: Südwestdeutscher Verlag für Hochschulschriften; 2011.1
Meyer M, Palkopoulou E, Baleka S, Stiller M, Penkman KEH, Alt KW, Ishida Y, Mania D, Mallick S, Meijer T, Meller H, Nagel S, Nickel B, Ostritz S, Rohland N, Schauer K, Schüler T, Roca AL, Reich D, Shapiro B, Hofreiter M. Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution. Elife. 2017;6 https://doi.org/10.7554/eLife.25413.
Morton ES. On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. Am Nat. 1977;111(981):855–69. https://doi.org/10.1086/283219.
Article
Google Scholar
Briefer EF, Le Comber S. Vocal expression of emotions in mammals: mechanisms of production and evidence. J Zool. 2012;288(1):1–20. https://doi.org/10.1111/j.1469-7998.2012.00920.x.
Article
Google Scholar
Wilson DRWR, Hare JFHF. The adaptive utility of Richardson’s ground squirrel (Spermophilus richardsonii) short-range ultrasonic alarm signals. Can J Zool. 2006;84(9):1322–30. https://doi.org/10.1139/z06-120.
Article
Google Scholar
Karp D, Manser MB, Wiley EM, Townsend SW, Fusani L. Nonlinearities in meerkat alarm calls prevent receivers from habituating. Ethology. 2014;120(2):189–96. https://doi.org/10.1111/eth.12195.
Article
Google Scholar
Jansen DA, Cant MA, Manser MB. Segmental concatenation of individual signatures and context cues in banded mongoose (Mungos mungo) close calls. BMC Biol. 2012;10(1):1–11.
Article
Google Scholar
Volodina EV, Volodin IA, Isaeva IV, Unck C. Biphonation may function to enhance individual recognition in the dhole, Cuon alpinus. Ethology. 2006;112(8):815–25. https://doi.org/10.1111/j.1439-0310.2006.01231.x.
Article
Google Scholar
Filatova OA. Independent acoustic variation of the higher- and lower-frequency components of biphonic calls can facilitate call recognition and social affiliation in killer whales. PLoS One. 2020;15(7):e0236749. https://doi.org/10.1371/journal.pone.0236749.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morton ES. Predictions from the ranging hypothesis for the evolution of long distance signals in birds. Behaviour. 1986;99(1–2):65–86. https://doi.org/10.1163/156853986X00414.
Article
Google Scholar
Cheney DL, Seyfarth RM. Assessment of meaning and the detection of unreliable signals by vervet monkeys. Anim Behav. 1988;36(2):477–86. https://doi.org/10.1016/S0003-3472(88)80018-6.
Article
Google Scholar
McComb K, Moss C, Durant SM, Baker L, Sayialel S. Matriarchs as repositories of social knowledge in African elephants. Science. 2001;292(5516):491–4. https://doi.org/10.1126/science.1057895.
Article
CAS
PubMed
Google Scholar
McComb K, Moss C, Sayialel S, Baker L. Unusually extensive networks of vocal recognition in African elephants. Anim Behav. 2000;59(6):1103–9. https://doi.org/10.1006/anbe.2000.1406.
Article
CAS
PubMed
Google Scholar
McComb K, Reby D, Baker L, Moss C, Sayialel S. Long-distance communication of acoustic cues to social identity in African elephants. Anim Behav. 2003;65(2):317–29. https://doi.org/10.1006/anbe.2003.2047.
Article
Google Scholar
Taglialatela JP, Reamer L, Schapiro SJ, Hopkins WD. Social learning of a communicative signal in captive chimpanzees. Biol Lett. 2012;8(4):498–501. https://doi.org/10.1098/rsbl.2012.0113.
Article
PubMed
PubMed Central
Google Scholar
Griesser M, Suzuki TN. Kinship modulates the attention of naïve individuals to the mobbing behaviour of role models. Anim Behav. 2016;112:83–91. https://doi.org/10.1016/j.anbehav.2015.11.020.
Article
Google Scholar
Prado-Oviedo NA, Bonaparte-Saller MK, Malloy EJ, Meehan CL, Mench JA, Carlstead K, Brown JL. Evaluation of demographics and social life events of Asian (Elephas maximus) and African elephants (Loxodonta africana) in north American zoos. PLoS One. 2016;11(7):e0154750. https://doi.org/10.1371/journal.pone.0154750.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nieder A, Mooney R. The neurobiology of innate, volitional and learned vocalizations in mammals and birds. Philos Trans R Soc B. 2020;375(1789):20190054. https://doi.org/10.1098/rstb.2019.0054.
Article
Google Scholar
Janik VM, Slater PJ. The different roles of social learning in vocal communication. Anim Behav. 2000;60(1):1–11. https://doi.org/10.1006/anbe.2000.1410.
Article
CAS
PubMed
Google Scholar
Wemmer C, Mishra H. Observational learning by an Asiatic elephant of an unusual sound production method. Mammalia. 1982;46:556–655.
Google Scholar
Wemmer C, Mishra H, Dinerstein E. Unusual use of the trunk for sound production in a captive Asian elephant: a second case. J Bombay Nat Hist Soc. 1985;82:187.
Google Scholar
Soltis J. The signal functions of early infant crying. Behav Brain Sci. 2004;27(4):443–58. https://doi.org/10.1017/S0140525X0400010X.
Article
PubMed
Google Scholar
Liao DA, Zhang YS, Cai LX, Ghazanfar AA. Internal states and extrinsic factors both determine monkey vocal production. Proc Natl Acad Sci. 2018;115(15):3978–83. https://doi.org/10.1073/pnas.1722426115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vernes SC, Wilkinson GS. Behaviour, biology and evolution of vocal learning in bats. Philos Trans R Soc B. 2020;375(1789):20190061. https://doi.org/10.1098/rstb.2019.0061.
Article
Google Scholar
Suthers RA, Fattu JM. Mechanisms of sound production by echolocating bats. Am Zool. 1973;13(4):1215–26. https://doi.org/10.1093/icb/13.4.1215.
Article
Google Scholar
Jones G, Teeling EC. The evolution of echolocation in bats. Trends Ecol Evol. 2006;21(3):149–56. https://doi.org/10.1016/j.tree.2006.01.001.
Article
PubMed
Google Scholar
Holland RA, Waters DA, Rayner JM. Echolocation signal structure in the Megachiropteran bat Rousettus aegyptiacus Geoffroy 1810. J Exp Biol. 2004;207(25):4361–9. https://doi.org/10.1242/jeb.01288.
Article
PubMed
Google Scholar
Kingsley EP, Eliason CM, Riede T, Li Z, Hiscock TW, Farnsworth M, Thomson SL, Goller F, Tabin CJ, Clarke JA. Identity and novelty in the avian syrinx. Proc Natl Acad Sci. 2018;115(41):10209–17. https://doi.org/10.1073/pnas.1804586115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suthers R, Goller F, Pytte C. The neuromuscular control of birdsong. Philos Trans R Soc Lond B Biol Sci. 1999;354(1385):927–39. https://doi.org/10.1098/rstb.1999.0444.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller PJO, Roos MMH. Breathing. In: Würsig B, Thewissen JGM, Kovacs KM, editors. Encyclopedia of Marine Mammals (Third Edition). London: Academic Press; 2018. p. 140–3.
Fitch WT. Sequence and hierarchy in vocal rhythms and phonology. Ann N Y Acad Sci. 2019;1453(1):29–46. https://doi.org/10.1111/nyas.14215.
Article
PubMed
PubMed Central
Google Scholar
Dea O. Ethogram of elephant behaviors. In: Olson D, editor. Elephant husbandry resource guide. Lawrence: Allen Press; 2004.
Google Scholar
Boersma P, editor. Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. Proceedings of the institute of phonetic sciences: Citeseer; 1993.
Google Scholar
Bates D, Machler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2014;67:1–48.
Forstmeier W, Schielzeth H. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner's curse. Behav Ecol Sociobiol. 2011;65(1):47–55. https://doi.org/10.1007/s00265-010-1038-5.
Article
PubMed
Google Scholar
Dobson AJ, Barnett AG. An introduction to generalized linear models. Boca Raton: CRC press; 2018.
Nieuwenhuis R, Te Grotenhuis M, Pelzer B. Influence. ME: tools for detecting influential data in mixed effects models. R J. 2012;4(2):38–47. https://doi.org/10.32614/RJ-2012-011.
Article
Google Scholar
Field A, Miles J, Field Z. Discovering statistics using R: Sage publications; 2012.
Google Scholar
Tabachnick B, Fidell L. Using multivariate statistics. 6th ed. Boston: Pearson/Allyn & Bacon; 2013.
Google Scholar
Mundry R, Sommer C. Discriminant function analysis with nonindependent data: consequences and an alternative. Anim Behav. 2007;74(4):965–76. https://doi.org/10.1016/j.anbehav.2006.12.028.
Article
Google Scholar