Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS, Wild R, et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science. 2007;318:1913–6. https://doi.org/10.1126/science.1146954.
Article
CAS
PubMed
Google Scholar
Stork NE, McBroom J, Gely C, Hamilton AJ. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc Natl Acad Sci U S A. 2015;112:7519–23. https://doi.org/10.1073/pnas.1502408112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hammond P. Species inventory. In: Groombridge B, editor. Global biodiversity: status of the Earth’s living resources. London: Chapman and Hall; 1992. p. 17–39. https://doi.org/10.1007/978-94-011-2282-5_4.
Chapter
Google Scholar
McKenna DD, Sequeira AS, Marvaldi AE, Farrell BD. Temporal lags and overlap in the diversification of weevils and flowering plants. Proc Natl Acad Sci U S A. 2009;106:7083–8. https://doi.org/10.1073/pnas.0810618106.
Article
PubMed
PubMed Central
Google Scholar
Oberprieler RG, Marvaldi AE, Anderson RS. Weevils, weevils, weevils everywhere*. Zootaxa. 2007;1668:491–520. https://doi.org/10.11646/zootaxa.1668.1.24.
Article
Google Scholar
Vega FE, Brown SM, Chen H, Shen E, Nair MB, Ceja-Navarro JA, et al. Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei. Sci Rep. 2015;5:12525. https://doi.org/10.1038/srep12525.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keeling CI, Yuen MM, Liao NY, Roderick Docking T, Chan SK, Taylor GA, et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol. 2013;14:R27. https://doi.org/10.1186/gb-2013-14-3-r27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hazzouri KM, Sudalaimuthuasari N, Kundu B, Nelson D, Al-Deeb MA, Le Mansour A, et al. The genome of pest Rhynchophorus ferrugineus reveals gene families important at the plant-beetle interface. Commun Biol. 2020;3:1–14. https://doi.org/10.1038/s42003-020-1060-8.
Article
CAS
Google Scholar
Zunjare R, Hossain F, Muthusamy V, Jha SK, Kumar P, Sekhar JC, et al. Genetic variability among exotic and indigenous maize inbreds for resistance to stored grain weevil (Sitophilus oryzae L.) infestation. Cogent Food Agric 2016;2:1137156. https://doi.org/10.1080/23311932.2015.1137156.
Longstaff BC. Biology of the grain pest species of the genus Sitophilus (Coleoptera: Curculionidae): a critical review. Prot Ecol. 1981;3:83–130.
Google Scholar
Grenier A-M, Mbaiguinam M, Delobel B. Genetical analysis of the ability of the rice weevil Sitophilus oryzae (Coleoptera, Curculionidae) to breed on split peas. Heredity. 1997;79:15–23. https://doi.org/10.1038/hdy.1997.118.
Article
Google Scholar
Champ BR, Dyte CE. FAO global survey of pesticide susceptibility of stored grain pests. FAO Plant Protec Bull. 1977;25(2):49–67.
Google Scholar
Nguyen TT, Collins PJ, Ebert PR. Inheritance and characterization of strong resistance to phosphine in Sitophilus oryzae (L.). PLoS One. 2015;10:e0124335. https://doi.org/10.1371/journal.pone.0124335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mills KA. Phosphine resistance: where to now? In: Donahaye EJ, Navarro S, Leesch JG, editors. Proceeding international conference on controlled atmosphere and fumigation in stored products; 2000 Oct 29-Nov 3. USA: Fresno; 2000. p. 583–91.
Google Scholar
Campbell JF. Fitness consequences of multiple mating on female Sitophilus oryzae L. (Coleoptera: Curculionidae). Environ Entomol. 2005;34:833–43. https://doi.org/10.1603/0046-225X-34.4.833.
Article
Google Scholar
Oakeson KF, Gil R, Clayton AL, Dunn DM, von Niederhausern AC, Hamil C, et al. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol Evol. 2014;6:76–93. https://doi.org/10.1093/gbe/evt210.
Article
PubMed
PubMed Central
Google Scholar
Heddi A, Charles H, Khatchadourian C, Bonnot G, Nardon P. Molecular characterization of the principal symbiotic bacteria of the weevil Sitophilus oryzae: a peculiar G + C content of an endocytobiotic DNA. J Mol Evol. 1998;47:52–61. https://doi.org/10.1007/pl00006362.
Article
CAS
PubMed
Google Scholar
Heddi A, Charles H, Khatchadourian C. Intracellular bacterial symbiosis in the genus Sitophilus: the ‘biological individual’ concept revisited. Res Microbiol. 2001;152:431–7. https://doi.org/10.1016/S0923-2508(01)01216-5.
Article
CAS
PubMed
Google Scholar
Lefèvre C, Charles H, Vallier A, Delobel B, Farrell B, Heddi A. Endosymbiont phylogenesis in the Dryophthoridae weevils: evidence for bacterial replacement. Mol Biol Evol. 2004;21:965–73. https://doi.org/10.1093/molbev/msh063.
Article
CAS
PubMed
Google Scholar
Clayton AL, Oakeson KF, Gutin M, Pontes A, Dunn DM, von Niederhausern AC, et al. A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect–bacterial symbioses. PLoS Genet. 2012;8:e1002990. https://doi.org/10.1371/journal.pgen.1002990.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, et al. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet. 2002;32:402–7. https://doi.org/10.1038/ng986.
Article
CAS
PubMed
Google Scholar
Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature, 2000;407:81–6. https://doi.org/10.1038/35024074.
Gil R, Belda E, Gosalbes MJ, Delaye L, Vallier A, Vincent-Monégat C, et al. Massive presence of insertion sequences in the genome of SOPE, the primary endosymbiont of the rice weevil Sitophilus oryzae. Int Microbiol Off J Span Soc Microbiol. 2008;11:41–8.
CAS
Google Scholar
Rebollo R, Romanish MT, Mager DL. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet. 2012;46:21–42. https://doi.org/10.1146/annurev-genet-110711-155621.
Article
CAS
PubMed
Google Scholar
Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, et al. Ten things you should know about transposable elements. Genome Biol. 2018;19:199. https://doi.org/10.1186/s13059-018-1577-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet. 2017;18:71–86. https://doi.org/10.1038/nrg.2016.139.
Article
CAS
PubMed
Google Scholar
Chen S, Li X. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes. BMC Evol Biol. 2007;7:46. https://doi.org/10.1186/1471-2148-7-46.
Article
CAS
PubMed
PubMed Central
Google Scholar
You M, Yue Z, He W, Yang X, Yang G, Xie M, et al. A heterozygous moth genome provides insights into herbivory and detoxification. Nat Genet. 2013;45:220–5. https://doi.org/10.1038/ng.2524.
Article
CAS
PubMed
Google Scholar
Singh KS, Troczka BJ, Duarte A, Balabanidou V, Trissi N, Paladino LZC, et al. The genetic architecture of a host shift: an adaptive walk protected an aphid and its endosymbiont from plant chemical defenses. Sci Adv. 2020;6:eaba1070. https://doi.org/10.1126/sciadv.aba1070.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carareto CMA, Hernandez EH, Vieira C. Genomic regions harboring insecticide resistance-associated Cyp genes are enriched by transposable element fragments carrying putative transcription factor binding sites in two sibling Drosophila species. Gene. 2014;537:93–9. https://doi.org/10.1016/j.gene.2013.11.080.
Rostant WG, Wedell N, Hosken DJ. Chapter 2 - Transposable Elements and Insecticide Resistance. In: Goodwin SF, Friedmann T, Dunlap JC, editors. Adv. Genet., vol. 78, Academic Press; 2012, p. 169–201. https://doi.org/10.1016/B978-0-12-394394-1.00002-X.
Mateo L, Ullastres A, González J. A transposable element insertion confers xenobiotic resistance in Drosophila. PLoS Genet. 2014;10:e1004560. https://doi.org/10.1371/journal.pgen.1004560.
Rech GE, Bogaerts-Márquez M, Barrón MG, Merenciano M, Villanueva-Cañas JL, Horváth V, et al. Stress response, behavior, and development are shaped by transposable element-induced mutations in Drosophila. PLoS Genet. 2019;15:e1007900. https://doi.org/10.1371/journal.pgen.1007900.
Ullastres A, Merenciano M, González J. Regulatory regions in natural transposable element insertions drive interindividual differences in response to immune challenges in Drosophila. Genome Biol. 2021;22:265. https://doi.org/10.1186/s13059-021-02471-3.
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–5. https://doi.org/10.1126/science.1178534.
Article
CAS
PubMed
Google Scholar
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. https://doi.org/10.1038/35057062.
Article
CAS
PubMed
Google Scholar
Meyer A, Schloissnig S, Franchini P, Du K, Woltering JM, Irisarri I, et al. Giant lungfish genome elucidates the conquest of land by vertebrates. Nature. 2021:1–6. https://doi.org/10.1038/s41586-021-03198-8.
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. The genome sequence of Drosophila melanogaster. Science. 2000;287:2185–95. https://doi.org/10.1126/science.287.5461.2185.
Article
PubMed
Google Scholar
The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815. https://doi.org/10.1038/35048692.
Article
Google Scholar
Petersen M, Armisén D, Gibbs RA, Hering L, Khila A, Mayer G, et al. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. BMC Evol Biol. 2019;19:11. https://doi.org/10.1186/s12862-018-1324-9.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, et al. The locust genome provides insight into swarm formation and long-distance flight. Nat Commun. 2014;5:2957. https://doi.org/10.1038/ncomms3957.
Article
CAS
PubMed
Google Scholar
Kelley JL, Peyton JT, Fiston-Lavier A-S, Teets NM, Yee M-C, Johnston JS, et al. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nat Commun. 2014;5:4611. https://doi.org/10.1038/ncomms5611.
Article
CAS
PubMed
Google Scholar
Palacios-Gimenez OM, Koelman J, Palmada-Flores M, Bradford TM, Jones KK, Cooper SJB, et al. Comparative analysis of morabine grasshopper genomes reveals highly abundant transposable elements and rapidly proliferating satellite DNA repeats. BMC Biol. 2020;18:199. https://doi.org/10.1186/s12915-020-00925-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert C, Peccoud J, Cordaux R. Transposable elements and the evolution of insects. Annu Rev Entomol. 2021;66:355–72. https://doi.org/10.1146/annurev-ento-070720-074650.
Article
CAS
PubMed
Google Scholar
Sessegolo C, Burlet N, Haudry A. Strong phylogenetic inertia on genome size and transposable element content among 26 species of flies. Biol Lett. 2016;12:20160407. https://doi.org/10.1098/rsbl.2016.0407.
Article
PubMed
PubMed Central
Google Scholar
Ray DA, Grimshaw JR, Halsey MK, Korstian JM, Osmanski AB, Sullivan KAM, et al. Simultaneous TE analysis of 19 heliconiine butterflies yields novel insights into rapid TE-based genome diversification and multiple SINE births and deaths. Genome Biol Evol. 2019;11:2162–77. https://doi.org/10.1093/gbe/evz125.
Article
PubMed
PubMed Central
Google Scholar
Goubert C, Modolo L, Vieira C, Valiente Moro C, Mavingui P, Boulesteix M. De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti). Genome Biol Evol. 2015;7:1192–205. https://doi.org/10.1093/gbe/evv050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu Z (Jake), et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science. 2007;316:1718–23. https://doi.org/10.1126/science.1138878.
Article
CAS
PubMed
Google Scholar
Zhang S, Shen S, Peng J, Zhou X, Kong X, Ren P, et al. Chromosome-level genome assembly of an important pine defoliator, Dendrolimus punctatus (Lepidoptera; Lasiocampidae). Mol Ecol Resour. 2020;20:1023–37. https://doi.org/10.1111/1755-0998.13169.
Article
CAS
PubMed
Google Scholar
Seppey M, Manni M, Zdobnov EM. BUSCO: Assessing genome assembly and annotation completeness. In: Kollmar M, editor. Gene Prediction. Methods Mol Biol. 2019;1962. p. 227–45. https://doi.org/10.1007/978-1-4939-9173-0_14.
Silva AA, Braga LS, Corrêa AS, Holmes VR, Johnston JS, Oppert B, et al. Comparative cytogenetics and derived phylogenic relationship among Sitophilus grain weevils (Coleoptera, Curculionidae, Dryophthorinae). Comp Cytogenet. 2018;12:223–45. https://doi.org/10.3897/CompCytogen.v12i2.26412.
Article
PubMed
PubMed Central
Google Scholar
Tribolium Genome Sequencing Consortium, Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, et al. The genome of the model beetle and pest Tribolium castaneum. Nature. 2008;452:949–55. https://doi.org/10.1038/nature06784.
Article
CAS
Google Scholar
Dias GB, Altammami MA, El-Shafie HAF, Alhoshani FM, Al-Fageeh MB, Bergman CM, et al. Haplotype-resolved genome assembly enables gene discovery in the red palm weevil Rhynchophorus ferrugineus. Sci Rep. 2021;11:9987. https://doi.org/10.1038/s41598-021-89091-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Qahtani AH, Al-Khalifa MS, Al-Saleh AA. Karyotype, meiosis and sperm formation in the red palm weevil Rhynchophorus ferrugineus. Cytologia. 2014;79:235–42. https://doi.org/10.1508/cytologia.79.235.
Article
Google Scholar
Brun LO, Stuart J, Gaudichon V, Aronstein K, French-Constant RH. Functional haplodiploidy: a mechanism for the spread of insecticide resistance in an important international insect pest. Proc Natl Acad Sci U S A. 1995;92:9861–5. https://doi.org/10.1073/pnas.92.21.9861.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanier GN, Wood DL. Controlled mating, karyology, morphology, and sex-ratio in the Dendroctonus ponderosae complex. Ann Entomol Soc Am. 1968;61:517–26. https://doi.org/10.1093/aesa/61.2.517.
Article
Google Scholar
Stuart JJ, Mocelin G. Cytogenetics of chromosome rearrangements in Tribolium castaneum. Genome. 1995. https://doi.org/10.1139/g95-085.
Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics. 2017;33:2202–4. https://doi.org/10.1093/bioinformatics/btx153.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu B, Shi Y, Yuan J, Hu X, Zhang H, Li N, et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. ArXiv13082012 Q-Bio 2020.
Sun H, Ding J, Piednoël M, Schneeberger K. findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies. Bioinformatics. 2018;34:550–7. https://doi.org/10.1093/bioinformatics/btx637.
Article
CAS
PubMed
Google Scholar
McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biol. 2016;17:227. https://doi.org/10.1186/s13059-016-1088-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Initiative IGG. Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis. Science. 2014;344:380–6. https://doi.org/10.1126/science.1249656.
Article
CAS
Google Scholar
De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 2006;22:1269–71. https://doi.org/10.1093/bioinformatics/btl097.
Article
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7. https://doi.org/10.1093/nar/gkh340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. https://doi.org/10.1093/molbev/mst010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lassmann T, Sonnhammer ELL. Kalign--an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics. 2005;6:298. https://doi.org/10.1186/1471-2105-6-298.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace IM, O’Sullivan O, Higgins DG, Notredame C. M-coffee: combining multiple sequence alignment methods with T-coffee. Nucleic Acids Res. 2006;34:1692–9. https://doi.org/10.1093/nar/gkl091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–1973. https://doi.org/10.1093/bioinformatics/btp348.
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74. https://doi.org/10.1093/molbev/msu300.
Article
CAS
PubMed
Google Scholar
Huerta-Cepas J, Capella-Gutiérrez S, Pryszcz LP, Marcet-Houben M, Gabaldón T. PhylomeDB v4: zooming into the plurality of evolutionary histories of a genome. Nucleic Acids Res. 2014;42:D897–902. https://doi.org/10.1093/nar/gkt1177.
Article
CAS
PubMed
Google Scholar
Wehe A, Bansal MS, Burleigh JG, Eulenstein O. DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony. Bioinformatics. 2008;24:1540–1. https://doi.org/10.1093/bioinformatics/btn230.
Article
CAS
PubMed
Google Scholar
Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14:755–63. https://doi.org/10.1093/bioinformatics/14.9.755.
Article
CAS
PubMed
Google Scholar
Al-Shahrour F, Díaz-Uriarte R, Dopazo J. FatiGO: a web tool for finding significant associations of gene ontology terms with groups of genes. Bioinformatics. 2004;20:578–80. https://doi.org/10.1093/bioinformatics/btg455.
Article
CAS
PubMed
Google Scholar
Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8. https://doi.org/10.1093/molbev/msw046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90. https://doi.org/10.1093/bioinformatics/btg412.
Article
CAS
PubMed
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.
Google Scholar
Chung H-R, Schäfer U, Jäckle H, Böhm S. Genomic expansion and clustering of ZAD-containing C2H2 zinc-finger genes in Drosophila. EMBO Rep. 2002;3:1158–62. https://doi.org/10.1093/embo-reports/kvf243.
Chung H-R, Löhr U, Jäckle H. Lineage-specific expansion of the zinc finger associated domain ZAD. Mol Biol Evol. 2007;24:1934–43. https://doi.org/10.1093/molbev/msm121.
Article
CAS
PubMed
Google Scholar
Masson F, Vallier A, Vigneron A, Balmand S, Vincent-Monégat C, Zaidman-Rémy A, et al. Systemic infection generates a local-like immune response of the bacteriome organ in insect symbiosis. J Innate Immun. 2015;7:290–301. https://doi.org/10.1159/000368928.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reid WR, Sun H, Becnel JJ, Clark AG, Scott JG. Overexpression of a glutathione S-transferase (Mdgst) and a galactosyltransferase-like gene (Mdgt1) is responsible for imidacloprid resistance in house flies. Pest Manag Sci. 2019;75:37–44. https://doi.org/10.1002/ps.5125.
Article
CAS
PubMed
Google Scholar
Altincicek B, Knorr E, Vilcinskas A. Beetle immunity: identification of immune-inducible genes from the model insect Tribolium castaneum. Dev Comp Immunol. 2008;32:585–95. https://doi.org/10.1016/j.dci.2007.09.005.
Article
CAS
PubMed
Google Scholar
Podell S, Gaasterland T. DarkHorse: a method for genome-wide prediction of horizontal gene transfer. Genome Biol. 2007;8:R16. https://doi.org/10.1186/gb-2007-8-2-r16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen M, Ekstrom A, Li X, Yin Y. HGT-finder: a new tool for horizontal gene transfer finding and application to Aspergillus genomes. Toxins. 2015;7:4035–53. https://doi.org/10.3390/toxins7104035.
Nakabachi A. Horizontal gene transfers in insects. Curr Opin Insect Sci. 2015;7:24–9. https://doi.org/10.1016/j.cois.2015.03.006.
Article
PubMed
Google Scholar
Brelsfoard C, Tsiamis G, Falchetto M, Gomulski LM, Telleria E, Alam U, et al. Presence of extensive Wolbachia symbiont insertions discovered in the genome of its host Glossina morsitans morsitans. PLoS Negl Trop Dis. 2014;8:e2728. https://doi.org/10.1371/journal.pntd.0002728.
Nikoh N, Nakabachi A. Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol. 2009;7:12. https://doi.org/10.1186/1741-7007-7-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pauchet Y, Wilkinson P, Chauhan R, Ffrench-Constant RH. Diversity of beetle genes encoding novel plant cell wall degrading enzymes. PLoS One. 2010;5:e15635. https://doi.org/10.1371/journal.pone.0015635.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–32. https://doi.org/10.1093/nar/gkx1134.
Article
CAS
PubMed
Google Scholar
Terra WR, Cristofoletti PT. Midgut proteinases in three divergent species of Coleoptera. Comp Biochem Physiol B Biochem Mol Biol. 1996;113:725–30. https://doi.org/10.1016/0305-0491(95)02037-3.
Article
Google Scholar
Murdock LL, Brookhart G, Dunn PE, Foard DE, Kelley S, Kitch L, et al. Cysteine digestive proteinases in Coleoptera. Comp Biochem Physiol Part B Comp Biochem. 1987;87:783–7. https://doi.org/10.1016/0305-0491(87)90388-9.
Article
Google Scholar
Liang C, Brookhart G, Feng GH, Reeck GR, Kramer KJ. Inhibition of digestive proteinases of stored grain Coleoptera by oryzacystatin, a cysteine proteinase inhibitor from rice seed. FEBS Lett. 1991;278:139–42. https://doi.org/10.1016/0014-5793(91)80102-9.
Article
CAS
PubMed
Google Scholar
Mossé J. Acides aminés de 16 céréales et protéagineux : variations et clés du calcul de la composition en fonction du taux d’azote des grain(e)s. Conséquences nutritionnelles INRA Prod Anim 1990;3:103–19.
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5. https://doi.org/10.1093/nar/gkt1178.
Article
CAS
PubMed
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. https://doi.org/10.1186/1471-2105-10-421.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101. https://doi.org/10.1093/nar/gky418.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martynov AG, Elpidina EN, Perkin L, Oppert B. Functional analysis of C1 family cysteine peptidases in the larval gut of Тenebrio molitor and Tribolium castaneum. BMC Genomics. 2015;16:75. https://doi.org/10.1186/s12864-015-1306-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoville SD, Chen YH, Andersson MN, Benoit JB, Bhandari A, Bowsher JH, et al. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep. 2018;8:1931. https://doi.org/10.1038/s41598-018-20154-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jongsma MA, Bolter C. The adaptation of insects to plant protease inhibitors. J Insect Physiol. 1997;43:885–95. https://doi.org/10.1016/S0022-1910(97)00040-1.
Article
CAS
PubMed
Google Scholar
Ryan CA. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol. 1990;28:425–49. https://doi.org/10.1146/annurev.py.28.090190.002233.
Article
CAS
Google Scholar
Sosulski FW, Minja LA, Christensen DA. Trypsin inhibitors and nutritive value in cereals. Plant Foods Hum Nutr. 1988;38:23–34. https://doi.org/10.1007/BF01092307.
Article
CAS
PubMed
Google Scholar
Feng GH, Richardson M, Chen MS, Kramer KJ, Morgan TD, Reeck GR. α-Amylase inhibitors from wheat: amino acid sequences and patterns of inhibition of insect and human α-amylases. Insect Biochem Mol Biol. 1996;26:419–26. https://doi.org/10.1016/0965-1748(95)00087-9.
Article
CAS
PubMed
Google Scholar
Yetter MA, Saunders RM, Boles HP. Alpha-amylase inhibitors from wheat kernels as factors in resistance to postharvest insects. Cereal Chem. 1979;56:243–4.
CAS
Google Scholar
Agrawal S, Kelkenberg M, Begum K, Steinfeld L, Williams CE, Kramer KJ, et al. Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut. Insect Biochem Mol Biol. 2014;49:24–34. https://doi.org/10.1016/j.ibmb.2014.03.009.
Article
CAS
PubMed
Google Scholar
Tellam RL, Wijffels G, Willadsen P. Peritrophic matrix proteins. Insect Biochem Mol Biol. 1999;29:87–101. https://doi.org/10.1016/s0965-1748(98)00123-4.
Article
CAS
PubMed
Google Scholar
McKenna DD, Shin S, Ahrens D, Balke M, Beza-Beza C, Clarke DJ, et al. The evolution and genomic basis of beetle diversity. Proc Natl Acad Sci U S A. 2019;116:24729–37. https://doi.org/10.1073/pnas.1909655116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirsch R, Gramzow L, Theißen G, Siegfried BD, Ffrench-Constant RH, Heckel DG, et al. Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: key events in the evolution of herbivory in beetles. Insect Biochem Mol Biol. 2014;52:33–50. https://doi.org/10.1016/j.ibmb.2014.06.008.
Article
CAS
PubMed
Google Scholar
Shen Z, Denton M, Mutti N, Pappan K, Kanost MR, Reese JC, et al. Polygalacturonase from Sitophilus oryzae: possible horizontal transfer of a pectinase gene from fungi to weevils. J Insect Sci Online. 2003;3:24. https://doi.org/10.1093/jis/3.1.24.
Article
Google Scholar
Vellozo AF, Véron AS, Baa-Puyoulet P, Huerta-Cepas J, Cottret L, Febvay G, et al. CycADS: an annotation database system to ease the development and update of BioCyc databases. Database. 2011;2011:bar008. https://doi.org/10.1093/database/bar008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karp PD, Midford PE, Billington R, Kothari A, Krummenacker M, Latendresse M, et al. Pathway tools version 23.0 update: software for pathway/genome informatics and systems biology. Brief Bioinform. 2019. https://doi.org/10.1093/bib/bbz104.
Baa-Puyoulet P, Parisot N, Febvay G, Huerta-Cepas J, Vellozo AF, Gabaldón T, et al. ArthropodaCyc: a CycADS powered collection of BioCyc databases to analyse and compare metabolism of arthropods. Database. 2016;2016:baw081. https://doi.org/10.1093/database/baw081.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vigneron A, Masson F, Vallier A, Balmand S, Rey M, Vincent-Monégat C, et al. Insects recycle endosymbionts when the benefit is over. Curr Biol. 2014;24:2267–73. https://doi.org/10.1016/j.cub.2014.07.065.
Article
CAS
PubMed
Google Scholar
Heddi A, Grenier A-M, Khatchadourian C, Charles H, Nardon P. Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont, and Wolbachia. Proc Natl Acad Sci U S A. 1999;96:6814–9. https://doi.org/10.1073/pnas.96.12.6814.
Grenier AM, Nardon C, Nardon P. The role of symbiotes in flight activity of Sitophilus weevils. Entomol Exp Appl. 1994;70:201–8. https://doi.org/10.1111/j.1570-7458.1994.tb00748.x.
Article
Google Scholar
Rio RVM, Lefevre C, Heddi A, Aksoy S. Comparative genomics of insect-symbiotic bacteria: influence of host environment on microbial genome composition. Appl Environ Microbiol. 2003;69:6825–32. https://doi.org/10.1128/aem.69.11.6825-6832.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker JE, Woo SM. Purification, partial characterization, and postembryonic levels of amylases from Sitophilus oryzae and Sitophilus granarius. Arch Insect Biochem Physiol. 1985;2:415–28. https://doi.org/10.1002/arch.940020409.
Article
CAS
Google Scholar
Wicker C. Differential vitamin and choline requirements of symbiotic and aposymbiotic S. oryzae (Coleoptera: Curculionidae). Comp Biochem Physiol A Physiol. 1983;76:177–82. https://doi.org/10.1016/0300-9629(83)90311-0.
Article
Google Scholar
Heddi A, Lestienne P, Wallace DC, Stepien G. Steady state levels of mitochondrial and nuclear oxidative phosphorylation transcripts in Kearns-Sayre syndrome. Biochim Biophys Acta. 1994;1226:206–12. https://doi.org/10.1016/0925-4439(94)90030-2.
Article
CAS
PubMed
Google Scholar
Hernández L, Afonso D, Rodríguez EM, Díaz C. Phenolic compounds in wheat grain cultivars. Plant Foods Hum Nutr Dordr Neth. 2011;66:408–15. https://doi.org/10.1007/s11130-011-0261-1.
Article
CAS
Google Scholar
Panfili G, Fratianni A, Irano M. Improved normal-phase high-performance liquid chromatography procedure for the determination of carotenoids in cereals. J Agric Food Chem. 2004;52:6373–7. https://doi.org/10.1021/jf0402025.
Article
CAS
PubMed
Google Scholar
Hall RJ, Thorpe S, Thomas GH, Wood AJ. Simulating the evolutionary trajectories of metabolic pathways for insect symbionts in the genus Sodalis. Microb Genomics. 2020;6:e000378. https://doi.org/10.1099/mgen.0.000378.
Article
CAS
Google Scholar
Wieschaus E, Nüsslein-Volhard C. The Heidelberg screen for pattern mutants of Drosophila: a personal account. Annu Rev Cell Dev Biol. 2016;32:1–46. https://doi.org/10.1146/annurev-cellbio-113015-023138.
Schmidt-Ott U, Lynch JA. Emerging developmental genetic model systems in holometabolous insects. Curr Opin Genet Dev. 2016;39:116–28. https://doi.org/10.1016/j.gde.2016.06.004.
Article
CAS
PubMed
Google Scholar
Schmitt-Engel C, Schultheis D, Schwirz J, Ströhlein N, Troelenberg N, Majumdar U, et al. The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology. Nat Commun. 2015;6:7822. https://doi.org/10.1038/ncomms8822.
Article
CAS
PubMed
Google Scholar
Peel AD. The evolution of developmental gene networks: lessons from comparative studies on holometabolous insects. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363:1539–47. https://doi.org/10.1098/rstb.2007.2244.
Article
Google Scholar
Herndon N, Shelton J, Gerischer L, Ioannidis P, Ninova M, Dönitz J, et al. Enhanced genome assembly and a new official gene set for Tribolium castaneum. BMC Genomics. 2020;21:47. https://doi.org/10.1186/s12864-019-6394-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tiegs OW, Murray FV. Memoirs: the embryonic development of Calandra oryzae. J Cell Sci. 1938;s2-80:159–273.
Article
Google Scholar
Duncan EJ, Benton MA, Dearden PK. Canonical terminal patterning is an evolutionary novelty. Dev Biol. 2013;377:245–61. https://doi.org/10.1016/j.ydbio.2013.02.010.
Article
CAS
PubMed
Google Scholar
Sano H, Renault AD, Lehmann R. Control of lateral migration and germ cell elimination by the Drosophila melanogaster lipid phosphate phosphatases Wunen and Wunen 2. J Cell Biol. 2005;171:675–83. https://doi.org/10.1083/jcb.200506038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Savard J, Marques-Souza H, Aranda M, Tautz D. A segmentation gene in Tribolium produces a polycistronic mRNA that codes for multiple conserved peptides. Cell. 2006;126:559–69. https://doi.org/10.1016/j.cell.2006.05.053.
Article
CAS
PubMed
Google Scholar
Angelini DR, Kaufman TC. Comparative developmental genetics and the evolution of arthropod body plans. Annu Rev Genet. 2005;39:95–119. https://doi.org/10.1146/annurev.genet.39.073003.112310.
Article
CAS
PubMed
Google Scholar
Shippy TD, Brown SJ, Denell RE. maxillopedia is the Tribolium ortholog of proboscipedia. Evol Dev. 2000;2:145–51. https://doi.org/10.1046/j.1525-142x.2000.00055.x.
Angelini DR, Smith FW, Jockusch EL. Extent with modification: leg patterning in the beetle Tribolium castaneum and the evolution of serial homologs. G3. 2012;2:235–48. https://doi.org/10.1534/g3.111.001537.
Ober KA, Jockusch EL. The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle, Tribolium castaneum. Dev Biol. 2006;294:391–405. https://doi.org/10.1016/j.ydbio.2006.02.053.
Article
CAS
PubMed
Google Scholar
Mirth CK, Anthony Frankino W, Shingleton AW. Allometry and size control: what can studies of body size regulation teach us about the evolution of morphological scaling relationships? Curr Opin Insect Sci. 2016;13:93–8. https://doi.org/10.1016/j.cois.2016.02.010.
Article
PubMed
Google Scholar
Nijhout HF, Callier V. Developmental mechanisms of body size and wing-body scaling in insects. Annu Rev Entomol. 2015;60:141–56. https://doi.org/10.1146/annurev-ento-010814-020841.
Article
CAS
PubMed
Google Scholar
Huybrechts J, Bonhomme J, Minoli S, Prunier-Leterme N, Dombrovsky A, Abdel-Latief M, et al. Neuropeptide and neurohormone precursors in the pea aphid, Acyrthosiphon pisum. Insect Mol Biol. 2010;19(Suppl 2):87–95. https://doi.org/10.1111/j.1365-2583.2009.00951.x.
Article
CAS
PubMed
Google Scholar
Gurska D, Vargas Jentzsch IM, Panfilio KA. Unexpected mutual regulation underlies paralogue functional diversification and promotes epithelial tissue maturation in Tribolium. Commun Biol. 2020;3:552. https://doi.org/10.1038/s42003-020-01250-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dönitz J, Schmitt-Engel C, Grossmann D, Gerischer L, Tech M, Schoppmeier M, et al. iBeetle-base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum. Nucleic Acids Res. 2015;43:D720–5. https://doi.org/10.1093/nar/gku1054.
Article
CAS
PubMed
Google Scholar
Jasrapuria S, Arakane Y, Osman G, Kramer KJ, Beeman RW, Muthukrishnan S. Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem Mol Biol. 2010;40:214–27. https://doi.org/10.1016/j.ibmb.2010.01.011.
Article
CAS
PubMed
Google Scholar
Jasrapuria S, Specht CA, Kramer KJ, Beeman RW, Muthukrishnan S. Gene families of cuticular proteins analogous to peritrophins (CPAPs) in Tribolium castaneum have diverse functions. PLoS One. 2012;7:e49844. https://doi.org/10.1371/journal.pone.0049844.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balabanidou V, Kefi M, Aivaliotis M, Koidou V, Girotti JR, Mijailovsky SJ, et al. Mosquitoes cloak their legs to resist insecticides. Proc Biol Sci. 2019;286:20191091. https://doi.org/10.1098/rspb.2019.1091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arakane Y, Lomakin J, Gehrke SH, Hiromasa Y, Tomich JM, Muthukrishnan S, et al. Formation of rigid, non-flight forewings (elytra) of a beetle requires two major cuticular proteins. PLoS Genet. 2012;8:e1002682. https://doi.org/10.1371/journal.pgen.1002682.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ioannidou ZS, Theodoropoulou MC, Papandreou NC, Willis JH, Hamodrakas SJ. CutProtFam-Pred: detection and classification of putative structural cuticular proteins from sequence alone, based on profile hidden Markov models. Insect Biochem Mol Biol. 2014;52:51–9. https://doi.org/10.1016/j.ibmb.2014.06.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gerardo NM, Altincicek B, Anselme C, Atamian H, Barribeau SM, de Vos M, et al. Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol. 2010;11:R21. https://doi.org/10.1186/gb-2010-11-2-r21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C-R, Zhang S, Xia J, Li F-F, Xia W-Q, Liu S-S, et al. The immune strategy and stress response of the mediterranean species of the Bemisia tabaci complex to an orally delivered bacterial pathogen. PLoS One. 2014;9:e94477. https://doi.org/10.1371/journal.pone.0094477.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salcedo-Porras N, Guarneri A, Oliveira PL, Lowenberger C. Rhodnius prolixus: identification of missing components of the IMD immune signaling pathway and functional characterization of its role in eliminating bacteria. PLoS One. 2019;14:e0214794. https://doi.org/10.1371/journal.pone.0214794.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maire J, Vincent-Monégat C, Masson F, Zaidman-Rémy A, Heddi A. An IMD-like pathway mediates both endosymbiont control and host immunity in the cereal weevil Sitophilus spp. Microbiome. 2018;6:6. https://doi.org/10.1186/s40168-017-0397-9.
Article
PubMed
PubMed Central
Google Scholar
Maire J, Vincent-Monégat C, Balmand S, Vallier A, Hervé M, Masson F, et al. Weevil pgrp-lb prevents endosymbiont TCT dissemination and chronic host systemic immune activation. Proc Natl Acad Sci U S A. 2019;116:5623–32. https://doi.org/10.1073/pnas.1821806116.
Sheehan G, Garvey A, Croke M, Kavanagh K. Innate humoral immune defences in mammals and insects: the same, with differences ? Virulence. 2018;9:1625–39. https://doi.org/10.1080/21505594.2018.1526531.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strand MR. The insect cellular immune response. Insect Sci. 2008;15:1–14. https://doi.org/10.1111/j.1744-7917.2008.00183.x.
Article
CAS
Google Scholar
He Y, Cao X, Li K, Hu Y, Chen Y, Blissard G, et al. A genome-wide analysis of antimicrobial effector genes and their transcription patterns in Manduca sexta. Insect Biochem Mol Biol. 2015;62:23–37. https://doi.org/10.1016/j.ibmb.2015.01.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol. 2007;25:697–743. https://doi.org/10.1146/annurev.immunol.25.022106.141615.
Article
CAS
PubMed
Google Scholar
De Gregorio E, Spellman PT, Rubin GM, Lemaitre B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci U S A. 2001;98:12590–5. https://doi.org/10.1073/pnas.221458698.
Waterhouse RM, Kriventseva EV, Meister S, Xi Z, Alvarez KS, Bartholomay LC, et al. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science. 2007;316:1738–43. https://doi.org/10.1126/science.1139862.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou Z, Evans JD, Lu Z, Zhao P, Williams M, Sumathipala N, et al. Comparative genomic analysis of the Tribolium immune system. Genome Biol. 2007;8:R177. https://doi.org/10.1186/gb-2007-8-8-r177.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao X, He Y, Hu Y, Wang Y, Chen Y-R, Bryant B, et al. The immune signaling pathways of Manduca sexta. Insect Biochem Mol Biol. 2015;62:64–74. https://doi.org/10.1016/j.ibmb.2015.03.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arp AP, Hunter WB, Pelz-Stelinski KS. Annotation of the Asian citrus psyllid genome reveals a reduced innate immune system. Front Physiol. 2016;7. https://doi.org/10.3389/fphys.2016.00570.
Kang X, Dong F, Shi C, Liu S, Sun J, Chen J, et al. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data. 2019;6:148. https://doi.org/10.1038/s41597-019-0154-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palmer WJ, Jiggins FM. Comparative genomics reveals the origins and diversity of arthropod immune systems. Mol Biol Evol. 2015;32:2111–29. https://doi.org/10.1093/molbev/msv093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith CA. Structure, function and dynamics in the mur family of bacterial cell wall ligases. J Mol Biol. 2006;362:640–55. https://doi.org/10.1016/j.jmb.2006.07.066.
Article
CAS
PubMed
Google Scholar
Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, et al. The Drosophila immune response against gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature. 2002;416:640–4. https://doi.org/10.1038/nature734.
Choe K-M, Werner T, Stöven S, Hultmark D, Anderson KV. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science. 2002;296:359–62. https://doi.org/10.1126/science.1070216.
Kleino A, Silverman N. The Drosophila IMD pathway in the activation of the humoral immune response. Dev Comp Immunol. 2014;42. https://doi.org/10.1016/j.dci.2013.05.014.
Park JT. Why does Escherichia coli recycle its cell wall peptides? Mol Microbiol. 1995;17:421–6. https://doi.org/10.1111/j.1365-2958.1995.mmi_17030421.x.
Article
CAS
PubMed
Google Scholar
Johnson JW, Fisher JF, Mobashery S. Bacterial cell-wall recycling. Ann N Y Acad Sci. 2013;1277:54–75. https://doi.org/10.1111/j.1749-6632.2012.06813.x.
Article
CAS
PubMed
Google Scholar
Kaneko T, Yano T, Aggarwal K, Lim J-H, Ueda K, Oshima Y, et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nat Immunol. 2006;7:715–23. https://doi.org/10.1038/ni1356.
Bosco-Drayon V, Poidevin M, Boneca IG, Narbonne-Reveau K, Royet J, Charroux B. Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host Microbe. 2012;12:153–65. https://doi.org/10.1016/j.chom.2012.06.002.
Neyen C, Poidevin M, Roussel A, Lemaitre B. Tissue- and ligand-specific sensing of Gram-negative infection in Drosophila by PGRP-LC isoforms and PGRP-LE. J Immunol Baltim Md 1950. 2012;189:1886–97. https://doi.org/10.4049/jimmunol.1201022.
Tindwa H, Patnaik BB, Kim DH, Mun S, Jo YH, Lee BL, et al. Cloning, characterization and effect of TmPGRP-LE gene silencing on survival of Tenebrio molitor against Listeria monocytogenes infection. Int J Mol Sci. 2013;14:22462–82. https://doi.org/10.3390/ijms141122462.
Michel T, Reichhart JM, Hoffmann JA, Royet J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature. 2001;414:756–9. https://doi.org/10.1038/414756a.
Wang J, Song X, Wang M. Peptidoglycan recognition proteins in hematophagous arthropods. Dev Comp Immunol. 2018;83:89–95. https://doi.org/10.1016/j.dci.2017.12.017.
Article
CAS
PubMed
Google Scholar
Chowdhury M, Li C-F, He Z, Lu Y, Liu X-S, Wang Y-F, et al. Toll family members bind multiple Spätzle proteins and activate antimicrobial peptide gene expression in Drosophila. J Biol Chem. 2019;294:10172–81. https://doi.org/10.1074/jbc.RA118.006804.
Valanne S, Wang J-H, Rämet M. The Drosophila Toll signaling pathway. J Immunol Baltim Md 1950. 2011;186:649–56. https://doi.org/10.4049/jimmunol.1002302.
Muhammad A, Habineza P, Wang X, Xiao R, Ji T, Hou Y, et al. Spätzle homolog-mediated toll-like pathway regulates innate immune responses to maintain the homeostasis of gut microbiota in the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Front Microbiol. 2020;11:846. https://doi.org/10.3389/fmicb.2020.00846.
Article
PubMed
PubMed Central
Google Scholar
Gupta SK, Kupper M, Ratzka C, Feldhaar H, Vilcinskas A, Gross R, et al. Scrutinizing the immune defence inventory of Camponotus floridanus applying total transcriptome sequencing. BMC Genomics. 2015;16:540. https://doi.org/10.1186/s12864-015-1748-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bang IS. JAK/STAT signaling in insect innate immunity. Entomol Res. 2019;49:339–53. https://doi.org/10.1111/1748-5967.12384.
Article
CAS
Google Scholar
Wu Q, Patočka J, Kuča K. Insect antimicrobial peptides, a mini review. Toxins. 2018;10. https://doi.org/10.3390/toxins10110461.
Callewaert L, Michiels CW. Lysozymes in the animal kingdom. J Biosci. 2010;35:127–60. https://doi.org/10.1007/s12038-010-0015-5.
Article
CAS
PubMed
Google Scholar
Mohrig W, Messner B. Lysozyme as antibacterial agent in honey and bees venom. Acta Biol Med Ger. 1968;21:85–95.
CAS
PubMed
Google Scholar
Hultmark D. Insect lysozymes. EXS. 1996;75:87–102. https://doi.org/10.1007/978-3-0348-9225-4_6.
Article
CAS
PubMed
Google Scholar
Beckert A, Wiesner J, Baumann A, Pöppel A-K, Vogel H, Vilcinskas A. Two c-type lysozymes boost the innate immune system of the invasive ladybird Harmonia axyridis. Dev Comp Immunol. 2015;49:303–12. https://doi.org/10.1016/j.dci.2014.11.020.
Article
CAS
PubMed
Google Scholar
Beckert A, Wiesner J, Schmidtberg H, Lehmann R, Baumann A, Vogel H, et al. Expression and characterization of a recombinant i-type lysozyme from the harlequin ladybird beetle Harmonia axyridis. Insect Mol Biol. 2016;25:202–15. https://doi.org/10.1111/imb.12213.
Article
CAS
PubMed
Google Scholar
Brandazza A, Angeli S, Tegoni M, Cambillau C, Pelosi P. Plant stress proteins of the thaumatin-like family discovered in animals. FEBS Lett. 2004;572:3–7. https://doi.org/10.1016/j.febslet.2004.07.003.
Article
CAS
PubMed
Google Scholar
Anselme C, Pérez-Brocal V, Vallier A, Vincent-Monegat C, Charif D, Latorre A, et al. Identification of the weevil immune genes and their expression in the bacteriome tissue. BMC Biol. 2008;6:43. https://doi.org/10.1186/1741-7007-6-43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masson F, Moné Y, Vigneron A, Vallier A, Parisot N, Vincent-Monégat C, et al. Weevil endosymbiont dynamics is associated with a clamping of immunity. BMC Genomics. 2015;16:819. https://doi.org/10.1186/s12864-015-2048-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung KT, Ourth DD. Viresin. A novel antibacterial protein from immune hemolymph of Heliothis virescens pupae. Eur J Biochem. 2000;267:677–83. https://doi.org/10.1046/j.1432-1327.2000.01034.x.
Article
CAS
PubMed
Google Scholar
Benoit JB, Adelman ZN, Reinhardt K, Dolan A, Poelchau M, Jennings EC, et al. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nat Commun. 2016;7:10165. https://doi.org/10.1038/ncomms10165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA, Clark JM, et al. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci U S A. 2010;107:12168–73. https://doi.org/10.1073/pnas.1003379107.
Article
PubMed
PubMed Central
Google Scholar
Pachebat JA, van Keulen G, Whitten MMA, Girdwood S, Del Sol R, Dyson PJ, et al. Draft genome sequence of Rhodococcus rhodnii strain LMG5362, a symbiont of Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae), the principle vector of Trypanosoma cruzi. Genome Announc. 2013;1. https://doi.org/10.1128/genomeA.00329-13.
Rispe C, Legeai F, Nabity PD, Fernández R, Arora AK, Baa-Puyoulet P, et al. The genome sequence of the grape Phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest. BMC Biol. 2020;18:90. https://doi.org/10.1186/s12915-020-00820-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishide Y, Kageyama D, Yokoi K, Jouraku A, Tanaka H, Futahashi R, et al. Functional crosstalk across IMD and Toll pathways: insight into the evolution of incomplete immune cascades. Proc R Soc B Biol Sci. 2019;286:20182207. https://doi.org/10.1098/rspb.2018.2207.
Matetovici I, De Vooght L, Van Den Abbeele J. Innate immunity in the tsetse fly (Glossina), vector of African trypanosomes. Dev Comp Immunol. 2019;98:181–8. https://doi.org/10.1016/j.dci.2019.05.003.
Article
CAS
PubMed
Google Scholar
Login FH, Balmand S, Vallier A, Vincent-Monégat C, Vigneron A, Weiss-Gayet M, et al. Antimicrobial peptides keep insect endosymbionts under control. Science. 2011;334:362–5. https://doi.org/10.1126/science.1209728.
Article
CAS
PubMed
Google Scholar
Chaudhry MQ. Phosphine resistance. Pestic Outlook. 2000;11:88–91. https://doi.org/10.1039/B006348G.
Article
CAS
Google Scholar
Chaudhry MQ. A review of the mechanisms involved in the action of phosphine as an insecticide and phosphine resistance in stored-product insects. Pestic Sci. 1997;49:213–28.
Article
CAS
Google Scholar
Athié I, Gomes RAR, Bolonhezi S, Valentini SRT, De Castro MFPM. Effects of carbon dioxide and phosphine mixtures on resistant populations of stored-grain insects. J Stored Prod Res. 1998;34:27–32. https://doi.org/10.1016/S0022-474X(97)00026-X.
Article
Google Scholar
Rajendran S. Phosphine resistance in stored grain insect pests in India. Proc. 7th Int. Work. Conf. Stored-Prod. Prot., 1998, p. 14–9.
Zeng L. Development and countermeasures of phosphine resistance in stored grain insects in Guangdong, China, 642–647. Proc. Seventh Int. Work. Conf. Stored-Prod. Prot. Eds J Zuxun Quan Yongsheng T Xianchang G Lianghua14–19 Oct. 1998 Beijing China Sichuan Publ. House Sci. Technol. Chengdu China, 1999.
Benhalima H, Chaudhry MQ, Mills KA, Price NR. Phosphine resistance in stored-product insects collected from various grain storage facilities in Morocco. J Stored Prod Res. 2004;40:241–9. https://doi.org/10.1016/S0022-474X(03)00012-2.
Article
CAS
Google Scholar
Pimentel MAG, Faroni LRD, da Silva FH, Batista MD, Guedes RNC. Spread of phosphine resistance among brazilian populations of three species of stored product insects. Neotrop Entomol. 2010;39:101–7. https://doi.org/10.1590/S1519-566X2010000100014.
Article
CAS
PubMed
Google Scholar
Nguyen TT, Collins PJ, Duong TM, Schlipalius DI, Ebert PR. Genetic conservation of phosphine resistance in the rice weevil Sitophilus oryzae (L.). J Hered. 2016;107:228–37. https://doi.org/10.1093/jhered/esw001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holloway JC, Falk MG, Emery RN, Collins PJ, Nayak MK. Resistance to phosphine in Sitophilus oryzae in Australia: a national analysis of trends and frequencies over time and geographical spread. J Stored Prod Res. 2016;69:129–37. https://doi.org/10.1016/j.jspr.2016.07.004.
Article
Google Scholar
Agrafioti P, Athanassiou CG, Nayak MK. Detection of phosphine resistance in major stored-product insects in Greece and evaluation of a field resistance test kit. J Stored Prod Res. 2019;82:40–7. https://doi.org/10.1016/j.jspr.2019.02.004.
Article
Google Scholar
Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019;47:D351–60. https://doi.org/10.1093/nar/gky1100.
Article
CAS
PubMed
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–32. https://doi.org/10.1093/nar/gky995.
Article
CAS
PubMed
Google Scholar
Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, et al. New and continuing developments at PROSITE. Nucleic Acids Res. 2013;41:D344–7. https://doi.org/10.1093/nar/gks1067.
Article
CAS
PubMed
Google Scholar
Scott JG, Wen Z. Cytochromes P450 of insects: the tip of the iceberg. Pest Manag Sci. 2001;57:958–67. https://doi.org/10.1002/ps.354.
Article
CAS
PubMed
Google Scholar
Hu F, Ye K, Tu X-F, Lu Y-J, Thakur K, Jiang L, et al. Identification and expression profiles of twenty-six glutathione S-transferase genes from rice weevil, Sitophilus oryzae (Coleoptera: Curculionidae). Int J Biol Macromol. 2018;120:1063–71. https://doi.org/10.1016/j.ijbiomac.2018.08.185.
Article
CAS
PubMed
Google Scholar
Kim K, Yang JO, Sung J-Y, Lee J-Y, Park JS, Lee H-S, et al. Minimization of energy transduction confers resistance to phosphine in the rice weevil, Sitophilus oryzae. Sci Rep. 2019;9:14605. https://doi.org/10.1038/s41598-019-50972-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schlipalius DI, Tuck AG, Jagadeesan R, Nguyen T, Kaur R, Subramanian S, et al. Variant linkage analysis using de novo transcriptome sequencing identifies a conserved phosphine resistance gene in insects. Genetics. 2018;209:281–90. https://doi.org/10.1534/genetics.118.300688.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haddi K, Valbon WR, Viteri Jumbo LO, de Oliveira LO, Guedes RNC, Oliveira EE. Diversity and convergence of mechanisms involved in pyrethroid resistance in the stored grain weevils, Sitophilus spp. Sci Rep. 2018;8:16361. https://doi.org/10.1038/s41598-018-34513-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanton AG, Peterson BF. Symbiont-mediated insecticide detoxification as an emerging problem in insect pests. Front Microbiol. 2020;11. https://doi.org/10.3389/fmicb.2020.547108.
Carey AF, Carlson JR. Insect olfaction from model systems to disease control. Proc Natl Acad Sci U S A. 2011;108:12987–95. https://doi.org/10.1073/pnas.1103472108.
Article
PubMed
PubMed Central
Google Scholar
Andersson MN, Newcomb RD. Pest control compounds targeting insect chemoreceptors: another silent spring? Front Ecol Evol. 2017;5. https://doi.org/10.3389/fevo.2017.00005.
Leal WS. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol. 2013;58:373–91. https://doi.org/10.1146/annurev-ento-120811-153635.
Article
CAS
PubMed
Google Scholar
Hassanali A, Herren H, Khan Z, Pickett J, Woodcock C. Integrated pest management: the push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363:611–21. https://doi.org/10.1098/rstb.2007.2173.
Article
Google Scholar
Hatano E, Saveer AM, Borrero-Echeverry F, Strauch M, Zakir A, Bengtsson M, et al. A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signalling pathways. BMC Biol. 2015;13:75. https://doi.org/10.1186/s12915-015-0188-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ukeh DA, Woodcock CM, Pickett JA, Birkett MA. Identification of host kairomones from maize, Zea mays, for the maize weevil, Sitophilus zeamais. J Chem Ecol. 2012;38:1402–9. https://doi.org/10.1007/s10886-012-0191-x.
Article
CAS
PubMed
Google Scholar
Germinara GS, De Cristofaro A, Rotundo G. Behavioral responses of adult Sitophilus granarius to individual cereal volatiles. J Chem Ecol. 2008;34:523–9. https://doi.org/10.1007/s10886-008-9454-y.
Article
CAS
PubMed
Google Scholar
Phillips JK, Walgenbach CA, Klein JA, Burkholder WE, Schmuff NR, Fales HM. (R (*),S (*))-5-hydroxy-4-methyl-3-heptanone male-produced aggregation pheromone of Sitophilus oryzae (L.) and S. zeamais Motsch. J Chem Ecol. 1985;11:1263–74. https://doi.org/10.1007/BF01024114.
Article
CAS
PubMed
Google Scholar
Schmuff NR, Phillips JK, Burkholder WE, Fales HM, Chen C-W, Roller PP, et al. The chemical identification of the rice weevil and maize weevil aggregation pheromone. Tetrahedron Lett. 1984;25:1533–4. https://doi.org/10.1016/S0040-4039(01)90002-4.
Article
CAS
Google Scholar
Mitchell RF, Schneider TM, Schwartz AM, Andersson MN, McKenna DD. The diversity and evolution of odorant receptors in beetles (Coleoptera). Insect Mol Biol. 2020;29:77–91. https://doi.org/10.1111/imb.12611.
Article
CAS
PubMed
Google Scholar
de Bruyne M, Baker TC. Odor detection in insects: volatile codes. J Chem Ecol. 2008;34:882–97. https://doi.org/10.1007/s10886-008-9485-4.
Article
CAS
PubMed
Google Scholar
Benton R, Sachse S, Michnick SW, Vosshall LB. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 2006;4:e20. https://doi.org/10.1371/journal.pbio.0040020.
Brand P, Robertson HM, Lin W, Pothula R, Klingeman WE, Jurat-Fuentes JL, et al. The origin of the odorant receptor gene family in insects. ELife. 2018;7. https://doi.org/10.7554/eLife.38340.
Montagné N, de Fouchier A, Newcomb RD, Jacquin-Joly E. Advances in the identification and characterization of olfactory receptors in insects. Prog Mol Biol Transl Sci. 2015;130:55–80. https://doi.org/10.1016/bs.pmbts.2014.11.003.
Article
CAS
PubMed
Google Scholar
Mansourian S, Stensmyr MC. The chemical ecology of the fly. Curr Opin Neurobiol. 2015;34:95–102. https://doi.org/10.1016/j.conb.2015.02.006.
Article
CAS
PubMed
Google Scholar
Carey AF, Wang G, Su C-Y, Zwiebel LJ, Carlson JR. Odorant reception in the malaria mosquito Anopheles gambiae. Nature. 2010;464:66–71. https://doi.org/10.1038/nature08834.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang G, Carey AF, Carlson JR, Zwiebel LJ. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci U S A. 2010;107:4418–23. https://doi.org/10.1073/pnas.0913392107.
Article
PubMed
PubMed Central
Google Scholar
de Fouchier A, Walker WB, Montagné N, Steiner C, Binyameen M, Schlyter F, et al. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nat Commun. 2017;8:15709. https://doi.org/10.1038/ncomms15709.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo M, Du L, Chen Q, Feng Y, Zhang J, Zhang X, et al. Odorant receptors for detecting flowering plant cues are functionally conserved across moths and butterflies. Mol Biol Evol. 2020. https://doi.org/10.1093/molbev/msaa300.
Pask GM, Slone JD, Millar JG, Das P, Moreira JA, Zhou X, et al. Specialized odorant receptors in social insects that detect cuticular hydrocarbon cues and candidate pheromones. Nat Commun. 2017;8:297. https://doi.org/10.1038/s41467-017-00099-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slone JD, Pask GM, Ferguson ST, Millar JG, Berger SL, Reinberg D, et al. Functional characterization of odorant receptors in the ponerine ant, Harpegnathos saltator. Proc Natl Acad Sci U S A. 2017;114:8586–91. https://doi.org/10.1073/pnas.1704647114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitchell RF, Hughes DT, Luetje CW, Millar JG, Soriano-Agatón F, Hanks LM, et al. Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae. Insect Biochem Mol Biol. 2012;42:499–505. https://doi.org/10.1016/j.ibmb.2012.03.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuvaraj J, Roberts R, Sonntag Y, Hou X, Grosse-Wilde E, Machara A, et al. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol. 2021;19:16. https://doi.org/10.1101/2020.03.07.980797.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antony B, Johny J, Montagné N, Jacquin-Joly E, Capoduro R, Cali K, et al. Pheromone receptor of the globally invasive quarantine pest of the palm tree, the red palm weevil (Rhynchophorus ferrugineus). Mol Ecol. 2021;30(9):2025–39. https://doi.org/10.1111/mec.15874.
Article
CAS
PubMed
Google Scholar
Keller O, Odronitz F, Stanke M, Kollmar M, Waack S. Scipio: using protein sequences to determine the precise exon/intron structures of genes and their orthologs in closely related species. BMC Bioinformatics. 2008;9:278. https://doi.org/10.1186/1471-2105-9-278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slater GSC, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31. https://doi.org/10.1186/1471-2105-6-31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res. 2004;14:988–95. https://doi.org/10.1101/gr.1865504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. https://doi.org/10.1093/sysbio/syq010.
Article
CAS
PubMed
Google Scholar
Lefort V, Longueville J-E, Gascuel O. SMS: smart model selection in PhyML. Mol Biol Evol. 2017;34:2422–4. https://doi.org/10.1093/molbev/msx149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol. 2006;55:539–52. https://doi.org/10.1080/10635150600755453.
Article
PubMed
Google Scholar
Makałowski W, Gotea V, Pande A, Makałowska I. Transposable elements: Classification, identification, and their use as a tool for comparative genomics. In: Anisimova M, editor. Evol. Genomics Stat. Comput. Methods, New York, NY: Springer; 2019, p. 177–207. https://doi.org/10.1007/978-1-4939-9074-0_6.
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A. 2020;117:9451–7. https://doi.org/10.1073/pnas.1921046117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 2019;20:275. https://doi.org/10.1186/s13059-019-1905-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–7. https://doi.org/10.1126/science.1257570.
Article
CAS
PubMed
Google Scholar
Hernandez-Hernandez EM, Fernández-Medina RD, Navarro-Escalante L, Nuñez J, Benavides-Machado P, Carareto CMA. Genome-wide analysis of transposable elements in the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): description of novel families. Mol Gen Genomics. 2017;292:565–83. https://doi.org/10.1007/s00438-017-1291-7.
Article
CAS
Google Scholar
Amorin I, Melo E, Moura R, Wallau G. Diverse mobilome of Dichotomius (Luederwaldtinia) schiffleri (Coleoptera: Scarabaeidae) reveals long-range horizontal transfer events of DNA transposons. Mol Gen Genomics. 2020. https://doi.org/10.1007/s00438-020-01703-8.
Feschotte C, Zhang X, Wessler SR. Miniature inverted-repeat transposable elements and their relationship to established DNA transposons. Mob DNA II. 2002:1147–58. https://doi.org/10.1128/9781555817954.ch50.
Feschotte C, Mouchès C. Recent amplification of miniature inverted-repeat transposable elements in the vector mosquito Culex pipiens: characterization of the Mimo family. Gene. 2000;250:109–16. https://doi.org/10.1016/S0378-1119(00)00187-6.
Article
CAS
PubMed
Google Scholar
Feschotte C, Swamy L, Wessler SR. Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs). Genetics. 2003;163:747–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu C, Chen J, Zhang Y, Hu Q, Su W, Kuang H. Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol Biol Evol. 2012;29:1005–17. https://doi.org/10.1093/molbev/msr282.
Article
CAS
PubMed
Google Scholar
Feng Y. Plant MITEs: useful tools for plant genetics and genomics. Genomics Proteomics Bioinformatics. 2003;1:90–100. https://doi.org/10.1016/S1672-0229(03)01013-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sela N, Kim E, Ast G. The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates. Genome Biol. 2010;11:R59. https://doi.org/10.1186/gb-2010-11-6-r59.
Article
PubMed
PubMed Central
Google Scholar
Petrov DA. DNA loss and evolution of genome size in Drosophila. Genetica. 2002 May;115(1):81–91.
Petrov DA, Hartl DL. High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol. 1998;15:293–302. https://doi.org/10.1093/oxfordjournals.molbev.a025926.
Article
CAS
PubMed
Google Scholar
Pasyukova EG, Nuzhdin SV. Doc and copia instability in an isogenic Drosophila melanogaster stock. Mol Gen Genet MGG. 1993;240:302–6. https://doi.org/10.1007/BF00277071.
Article
CAS
PubMed
Google Scholar
Ashburner M, Bergman CM. Drosophila melanogaster: a case study of a model genomic sequence and its consequences. Genome Res. 2005;15:1661–7. https://doi.org/10.1101/gr.3726705.
Article
CAS
PubMed
Google Scholar
Czech B, Hannon GJ. One loop to rule them all: the ping-pong cycle and piRNA-guided silencing. Trends Biochem Sci. 2016;41:324–37. https://doi.org/10.1016/j.tibs.2015.12.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sienski G, Dönertas D, Brennecke J. Transcriptional silencing of transposons by Piwi and Maelstrom and its impact on chromatin state and gene expression. Cell. 2012;151:964–80. https://doi.org/10.1016/j.cell.2012.10.040.
Andersen PR, Tirian L, Vunjak M, Brennecke J. A heterochromatin-dependent transcription machinery drives piRNA expression. Nature. 2017;549:54–9. https://doi.org/10.1038/nature23482.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007;8:272–85. https://doi.org/10.1038/nrg2072.
Article
CAS
PubMed
Google Scholar
Bewick AJ, Vogel KJ, Moore AJ, Schmitz RJ. Evolution of DNA methylation across insects. Mol Biol Evol. 2017;34:654–65. https://doi.org/10.1093/molbev/msw264.
Article
CAS
PubMed
Google Scholar
Ninova M, Griffiths-Jones S, Ronshaugen M. Abundant expression of somatic transposon-derived piRNAs throughout Tribolium castaneum embryogenesis. Genome Biol. 2017;18:184. https://doi.org/10.1186/s13059-017-1304-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mongelli V, Saleh M-C. Bugs are not to be silenced: small RNA pathways and antiviral responses in insects. Annu Rev Virol. 2016;3:573–89. https://doi.org/10.1146/annurev-virology-110615-042447.
Article
CAS
PubMed
Google Scholar
Chambeyron S, Seitz H. Insect small non-coding RNA involved in epigenetic regulations. Curr Opin Insect Sci. 2014;1:1–9. https://doi.org/10.1016/j.cois.2014.05.001.
Article
PubMed
Google Scholar
Ishizu H, Siomi H, Siomi MC. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev. 2012;26:2361–73. https://doi.org/10.1101/gad.203786.112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lewis SH, Quarles KA, Yang Y, Tanguy M, Frézal L, Smith SA, et al. Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat Ecol Evol. 2018;2:174–81. https://doi.org/10.1038/s41559-017-0403-4.
Article
PubMed
Google Scholar
Guan D-L, Ding R-R, Hu X-Y, Yang X-R, Xu S-Q, Gu W, et al. Cadmium-induced genome-wide DNA methylation changes in growth and oxidative metabolism in Drosophila melanogaster. BMC Genomics. 2019;20:356. https://doi.org/10.1186/s12864-019-5688-z.
Article
PubMed
PubMed Central
Google Scholar
Provataris P, Meusemann K, Niehuis O, Grath S, Misof B. Signatures of DNA methylation across insects suggest reduced DNA methylation levels in Holometabola. Genome Biol Evol. 2018;10:1185–97. https://doi.org/10.1093/gbe/evy066.
Article
CAS