Nevo E. Adaptive convergence and divergence of subterranean mammals. Annu Rev Ecol Syst. 1979;10(1):269–308.
Article
Google Scholar
Perez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, et al. Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci U S A. 2009;106(9):3059–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seluanov A, Hine C, Azpurua J, Feigenson M, Bozzella M, Mao Z, et al. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proc Natl Acad Sci U S A. 2009;106(46):19352–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, et al. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature. 2011;479(7372):223–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith ES, Omerbasic D, Lechner SG, Anirudhan G, Lapatsina L, Lewin GR. The molecular basis of acid insensitivity in the African naked mole-rat. Science. 2011;334(6062):1557–60.
Article
CAS
PubMed
Google Scholar
Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature. 2013;499(7458):346–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park TJ, Reznick J, Peterson BL, Blass G, Omerbasic D, Bennett NC, et al. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science. 2017;356(6335):307–11.
Article
CAS
PubMed
Google Scholar
Zhao Y, Tyshkovskiy A, Munoz-Espin D, Tian X, Serrano M, de Magalhaes JP, et al. Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence. Proc Natl Acad Sci U S A. 2018;115(8):1801–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avivi A, Albrecht U, Oster H, Joel A, Beiles A, Nevo E. Biological clock in total darkness: the Clock/MOP3 circadian system of the blind subterranean mole rat. Proc Natl Acad Sci U S A. 2001;98(24):13751–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashur-Fabian O, Avivi A, Trakhtenbrot L, Adamsky K, Cohen M, Kajakaro G, et al. Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation. Proc Natl Acad Sci U S A. 2004;101(33):12236–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shams I, Avivi A, Nevo E. Hypoxic stress tolerance of the blind subterranean mole rat: expression of erythropoietin and hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci U S A. 2004;101(26):9698–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nasser NJ, Nevo E, Shafat I, Ilan N, Vlodavsky I, Avivi A. Adaptive evolution of heparanase in hypoxia-tolerant Spalax: gene cloning and identification of a unique splice variant. Proc Natl Acad Sci U S A. 2005;102(42):15161–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avivi A, Gerlach F, Joel A, Reuss S, Burmester T, Nevo E, et al. Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc Natl Acad Sci U S A. 2010;107(50):21570–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorbunova V, Hine C, Tian X, Ablaeva J, Gudkov AV, Nevo E, et al. Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proc Natl Acad Sci U S A. 2012;109(47):19392–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang X, Nevo E, Han L, Levanon EY, Zhao J, Avivi A, et al. Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nat Commun. 2014;5:3966.
Article
CAS
PubMed
Google Scholar
Delaney MA, Ward JM, Walsh TF, Chinnadurai SK, Kerns K, Kinsel MJ, et al. Initial case reports of cancer in naked mole-rats (Heterocephalus glaber). Vet Pathol. 2016;53(3):691–6.
Article
CAS
PubMed
Google Scholar
Jarvis JU. Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science. 1981;212(4494):571–3.
Article
CAS
PubMed
Google Scholar
Buffenstein R, Woodley R, Thomadakis C, Daly TJ, Gray DA. Cold-induced changes in thyroid function in a poikilothermic mammal, the naked mole-rat. Am J Physiol Regul Integr Comp Physiol. 2001;280(1):R149–55.
Article
CAS
PubMed
Google Scholar
Davis-Walton J, Sherman PW. Sleep arrhythmia in the eusocial naked mole-rat. Naturwissenschaften. 1994;81(6):272–5.
Article
CAS
PubMed
Google Scholar
Mann MD, Rehkamper G, Reinke H, Frahm HD, Necker R, Nevo E. Size of somatosensory cortex and of somatosensory thalamic nuclei of the naturally blind mole rat, Spalax ehrenbergi. J Hirnforsch. 1997;38(1):47–59.
CAS
PubMed
Google Scholar
Kimchi T, Terkel J. Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. J Exp Biol. 2001;204(Pt 4):751–8.
Article
CAS
PubMed
Google Scholar
Widmer HR, Hoppeler H, Nevo E, Taylor CR, Weibel ER. Working underground: respiratory adaptations in the blind mole rat. Proc Natl Acad Sci U S A. 1997;94(5):2062–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du K, Yang L, He S. Phylogenomic analyses reveal a molecular signature linked to subterranean adaptation in rodents. BMC Evol Biol. 2015;15:287.
Article
PubMed
PubMed Central
Google Scholar
Shao Y, Li JX, Ge RL, Zhong L, Irwin DM, Murphy RW, et al. Genetic adaptations of the plateau zokor in high-elevation burrows. Sci Rep. 2015;5:17262.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davies KTJ, Bennett NC, Faulkes CG, Rossiter SJ. Limited evidence for parallel molecular adaptations associated with the subterranean niche in mammals: a comparative study of three superorders. Mol Biol Evol. 2018;35(10):2544–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Wang W, Zhang TZ, Li GH, He K, Huang JF, et al. Repeated functional convergent effects of NaV1.7 on acid insensitivity in hibernating mammals. Proc Biol Sci. 2014;281(1776):20132950.
PubMed
PubMed Central
Google Scholar
Malik A, Korol A, Hubner S, Hernandez AG, Thimmapuram J, Ali S, et al. Transcriptome sequencing of the blind subterranean mole rat, Spalax galili: utility and potential for the discovery of novel evolutionary patterns. Plos One. 2011;6(8):e21227.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malik A, Korol A, Weber M, Hankeln T, Avivi A, Band M. Transcriptome analysis of the spalax hypoxia survival response includes suppression of apoptosis and tight control of angiogenesis. BMC Genomics. 2012;13:615.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang X, Seim I, Huang Z, Gerashchenko MV, Xiong Z, Turanov AA, et al. Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes. Cell Rep. 2014;8(5):1354–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Albalat R, Canestro C. Evolution by gene loss. Nat Rev Genet. 2016;17(7):379–91.
Article
CAS
PubMed
Google Scholar
Wittkopp PJ, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet. 2012;13(1):59–69.
Article
CAS
Google Scholar
Bonduriansky R, Day T. Nongenetic inheritance and its evolutionary implications. Annu Rev Ecol Evol Syst. 2009;40:103–25.
Article
Google Scholar
Sharma V, Hecker N, Roscito JG, Foerster L, Langer BE, Hiller M. A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nat Commun. 2018;9(1):1215.
Article
PubMed
PubMed Central
Google Scholar
Huelsmann M, Hecker N, Springer MS, Gatesy J, Sharma V, Hiller M. Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations. Sci Adv. 2019;5(9):eaaw6671.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lachner J, Mlitz V, Tschachler E, Eckhart L. Epidermal cornification is preceded by the expression of a keratinocyte-specific set of pyroptosis-related genes. Sci Rep. 2017;7(1):17446.
Article
PubMed
PubMed Central
Google Scholar
Espregueira Themudo G, Alves LQ, Machado AM, Lopes-Marques M, da Fonseca RR, Fonseca M, et al. Losing genes: the evolutionary remodeling of cetacea skin. Front Mar Sci. 2020;7:592375.
Article
Google Scholar
Hecker N, Sharma V, Hiller M. Convergent gene losses illuminate metabolic and physiological changes in herbivores and carnivores. Proc Natl Acad Sci U S A. 2019;116(8):3036–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olson MV. When less is more: gene loss as an engine of evolutionary change. Am J Hum Genet. 1999;64(1):18–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emerling CA, Springer MS. Eyes underground: regression of visual protein networks in subterranean mammals. Mol Phylogenet Evol. 2014;78:260–70.
Article
CAS
PubMed
Google Scholar
Prudent X, Parra G, Schwede P, Roscito JG, Hiller M. Controlling for phylogenetic relatedness and evolutionary rates improves the discovery of associations between species’ phenotypic and genomic differences. Mol Biol Evol. 2016;33(8):2135–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emerling CA. Regressed but not gone: patterns of vision gene loss and retention in subterranean mammals. Integr Comp Biol. 2018;58(3):441–51.
Article
CAS
PubMed
Google Scholar
Vavouri T, Semple JI, Lehner B. Widespread conservation of genetic redundancy during a billion years of eukaryotic evolution. Trends Genet. 2008;24(10):485–8.
Article
CAS
PubMed
Google Scholar
Manni M, Berkeley MR, Seppey M, Simao FA, Zdobnov EM. BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38(10):4647–54.
Article
PubMed
PubMed Central
Google Scholar
Mitchell TW, Buffenstein R, Hulbert AJ. Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): a comparative study using shotgun lipidomics. Exp Gerontol. 2007;42(11):1053–62.
Article
CAS
PubMed
Google Scholar
Melixetian M, Klein DK, Sorensen CS, Helin K. NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol. 2009;11(10):1247–53.
Article
CAS
PubMed
Google Scholar
Li Z, Zhang Q, Mao JH, Weise A, Mrasek K, Fan X, et al. An HDAC1-binding domain within FATS bridges p21 turnover to radiation-induced tumorigenesis. Oncogene. 2010;29(18):2659–71.
Article
CAS
PubMed
Google Scholar
Zhang X, Zhang Q, Zhang J, Qiu L, Yan SS, Feng J, et al. FATS is a transcriptional target of p53 and associated with antitumor activity. Mol Cancer. 2010;9:244.
Article
PubMed
PubMed Central
Google Scholar
Yan S, Qiu L, Ma K, Zhang X, Zhao Y, Zhang J, et al. FATS is an E2-independent ubiquitin ligase that stabilizes p53 and promotes its activation in response to DNA damage. Oncogene. 2014;33(47):5424–33.
Article
CAS
PubMed
Google Scholar
Bhat KP, Krishnamoorthy A, Dungrawala H, Garcin EB, Modesti M, Cortez D. RADX modulates RAD51 activity to control replication fork protection. Cell Rep. 2018;24(3):538–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drane P, Brault ME, Cui G, Meghani K, Chaubey S, Detappe A, et al. TIRR regulates 53BP1 by masking its histone methyl-lysine binding function. Nature. 2017;543(7644):211–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amangyeld T, Shin YK, Lee M, Kwon B, Seo YS. Human MUS81-EME2 can cleave a variety of DNA structures including intact Holliday junction and nicked duplex. Nucleic Acids Res. 2014;42(9):5846–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pepe A, West SC. Substrate specificity of the MUS81-EME2 structure selective endonuclease. Nucleic Acids Res. 2014;42(6):3833–45.
Article
CAS
PubMed
Google Scholar
Techer H, Koundrioukoff S, Carignon S, Wilhelm T, Millot GA, Lopez BS, et al. Signaling from Mus81-Eme2-dependent DNA damage elicited by Chk1 deficiency modulates replication fork speed and origin usage. Cell Rep. 2016;14(5):1114–27.
Article
CAS
PubMed
Google Scholar
Petruseva IO, Evdokimov AN, Lavrik OI. Genome stability maintenance in naked mole-rat. Acta Naturae. 2017;9(4):31–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Domankevich V, Eddini H, Odeh A, Shams I. Resistance to DNA damage and enhanced DNA repair capacity in the hypoxia-tolerant blind mole rat Spalax carmeli. J Exp Biol. 2018;221(8):jeb174540.
Article
PubMed
Google Scholar
Gan P, Patterson M, Velasquez A, Wang K, Tian D, Windle JJ, et al. Tnni3k alleles influence ventricular mononuclear diploid cardiomyocyte frequency. Plos Genet. 2019;15(10):e1008354.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aoyagi T, Wada T, Kojima F, Nagai M, Harada S, Hachisu M, et al. Inhibitors of aminopeptidase B suppress the development of hypertension in spontaneously hypertensive rats. Chem Pharm Bull (Tokyo). 1986;34(11):4852–4.
Article
CAS
Google Scholar
Borlaug BA, Melenovsky V, Marhin T, Fitzgerald P, Kass DA. Sildenafil inhibits beta-adrenergic-stimulated cardiac contractility in humans. Circulation. 2005;112(17):2642–9.
Article
CAS
PubMed
Google Scholar
Wang H, Wang L, Song L, Zhang YW, Ye J, Xu RX, et al. TNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I. Braz J Med Biol Res. 2013;46(2):128–37.
Article
PubMed
PubMed Central
Google Scholar
Arieli R, Ar A. Heart-rate responses of the mole rat (Spalax-Ehrenbergi) in hypercapnic, hypoxic, and cold conditions. Physiol Zool. 1981;54(1):14–21.
Article
Google Scholar
Grimes KM, Voorhees A, Chiao YA, Han HC, Lindsey ML, Buffenstein R. Cardiac function of the naked mole-rat: ecophysiological responses to working underground. Am J Physiol Heart Circ Physiol. 2014;306(5):H730–7.
Article
CAS
PubMed
Google Scholar
Grimes KM, Reddy AK, Lindsey ML, Buffenstein R. And the beat goes on: maintained cardiovascular function during aging in the longest-lived rodent, the naked mole-rat. Am J Physiol Heart Circ Physiol. 2014;307(3):H284–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005;11(2):214–22.
Article
CAS
PubMed
Google Scholar
Perez NG, Piaggio MR, Ennis IL, Garciarena CD, Morales C, Escudero EM, et al. Chiappe de Cingolani G, Yang XP, Cingolani HE: Phosphodiesterase 5A inhibition induces Na+/H+ exchanger blockade and protection against myocardial infarction. Hypertension. 2007;49(5):1095–103.
Article
CAS
PubMed
Google Scholar
Tedford RJ, Hemnes AR, Russell SD, Wittstein IS, Mahmud M, Zaiman AL, et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail. 2008;1(4):213–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giannetta E, Isidori AM, Galea N, Carbone I, Mandosi E, Vizza CD, et al. Chronic inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: A randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation. 2012;125(19):2323–33.
Article
CAS
PubMed
Google Scholar
Vagnozzi RJ, Gatto GJ Jr, Kallander LS, Hoffman NE, Mallilankaraman K, Ballard VL, et al. Inhibition of the cardiomyocyte-specific kinase TNNI3K limits oxidative stress, injury, and adverse remodeling in the ischemic heart. Sci Transl Med. 2013;5(207):207ra141.
Article
PubMed
PubMed Central
Google Scholar
Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, et al. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet. 2017;49(9):1346–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer WK, Jamison J, Richter R, Woods SE, Partha R, Kowalczyk A, et al. Ancient convergent losses of Paraoxonase 1 yield potential risks for modern marine mammals. Science. 2018;361(6402):591–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deming JD, Pak JS, Brown BM, Kim MK, Aung MH, Eom YS, et al. Visual cone arrestin 4 contributes to visual function and cone health. Invest Ophthalmol Vis Sci. 2015;56(9):5407–16.
Article
PubMed
PubMed Central
Google Scholar
MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45(D1):D896–901.
Article
CAS
PubMed
Google Scholar
Deng X, Sabino EC, Cunha-Neto E, Ribeiro AL, Ianni B, Mady C, et al. Genome wide association study (GWAS) of Chagas cardiomyopathy in Trypanosoma cruzi seropositive subjects. Plos One. 2013;8(11):e79629.
Article
PubMed
PubMed Central
Google Scholar
Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat genet. 2018;50(10):1412–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feitosa MF, Kraja AT, Chasman DI, Sung YJ, Winkler TW, Ntalla I, et al. Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries. Plos One. 2018;13(6):e0198166.
Article
PubMed
PubMed Central
Google Scholar
Ramírez J, van Duijvenboden S, Ntalla I, Mifsud B, Warren HR, Tzanis E, et al. Thirty loci identified for heart rate response to exercise and recovery implicate autonomic nervous system. Nat Commun. 2018;9(1):1–10.
Article
Google Scholar
Giri A, Hellwege JN, Keaton JM, Park J, Qiu C, Warren HR, et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat Genet. 2019;51(1):51–62.
Article
CAS
PubMed
Google Scholar
Lassot I, Robbins I, Kristiansen M, Rahmeh R, Jaudon F, Magiera MM, et al. Trim17, a novel E3 ubiquitin-ligase, initiates neuronal apoptosis. Cell Death Differ. 2010;17(12):1928–41.
Article
CAS
PubMed
Google Scholar
Ramirez JM, Folkow LP, Blix AS. Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annu Rev Physiol. 2007;69(1):113–43.
Article
CAS
PubMed
Google Scholar
Li K, Hong W, Jiao H, Wang GD, Rodriguez KA, Buffenstein R, et al. Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax. Proc Natl Acad Sci U S A. 2015;112(38):11905–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber RE, Heath ME, White FN. Oxygen binding functions of blood and hemoglobin from the Chinese pangolin, Manis pentadactyla: possible implications of burrowing and low body temperature. Respir Physiol. 1986;64(1):103–12.
Article
CAS
PubMed
Google Scholar
Choo SW, Rayko M, Tan TK, Hari R, Komissarov A, Wee WY, et al. Pangolin genomes and the evolution of mammalian scales and immunity. Genome Res. 2016;26(10):1312–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magiera MM, Mora S, Mojsa B, Robbins I, Lassot I, Desagher S. Trim17-mediated ubiquitination and degradation of Mcl-1 initiate apoptosis in neurons. Cell Death Differ. 2013;20(2):281–92.
Article
CAS
PubMed
Google Scholar
Agueda-Pinto A, Alves LQ, Neves F, McFadden G, Jacobs BL, Castro LFC, et al. Convergent loss of the necroptosis pathway in disparate mammalian lineages shapes viruses countermeasures. Front Immunol. 2021;12:747737.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopes-Marques M, Machado AM, Alves LQ, Fonseca MM, Barbosa S, Sinding M-HS, et al. Complete inactivation of sebum-producing genes parallels the loss of sebaceous glands in Cetacea. Mol Biol Evol. 2019;36(6):1270–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Grus WE, Zhang J. Gene losses during human origins. Plos Biol. 2006;4(3):e52.
Article
PubMed
PubMed Central
Google Scholar
Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, et al. Positive natural selection in the human lineage. Science. 2006;312(5780):1614–20.
Article
CAS
PubMed
Google Scholar
Lu Y, Oura S, Matsumura T, Oji A, Sakurai N, Fujihara Y, et al. CRISPR/Cas9-mediated genome editing reveals 30 testis-enriched genes dispensable for male fertility in mice. Biol Reprod. 2019;101(2):501–11.
Article
PubMed
PubMed Central
Google Scholar
He X, Xie W, Li H, Cui Y, Wang Y, Guo X, et al. The testis-specifically expressed gene Trim69 is not essential for fertility in mice. J Biomed Res. 2021;35(1):47–60.
Article
Google Scholar
Liu J, Zhang C, Wang XL, Ly P, Belyi V, Xu-Monette ZY, et al. E3 ubiquitin ligase TRIM32 negatively regulates tumor suppressor p53 to promote tumorigenesis. Cell Death Differ. 2014;21(11):1792–804.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weinreich DM, Delaney NF, Depristo MA, Hartl DL. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science. 2006;312(5770):111–4.
Article
CAS
PubMed
Google Scholar
Szamecz B, Boross G, Kalapis D, Kovacs K, Fekete G, Farkas Z, et al. The genomic landscape of compensatory evolution. Plos Biol. 2014;12(8):e1001935.
Article
PubMed
PubMed Central
Google Scholar
The Ensembl database. http://useast.ensembl.org/index.html. Accessed Oct 2014.
The NCBI database. https://www.ncbi.nlm.nih.gov. Accessed Oct 2014
Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002;12(4):656–64.
CAS
PubMed
PubMed Central
Google Scholar
She R, Chu JS, Wang K, Pei J, Chen N. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 2009;19(1):143–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res. 2004;14(5):988–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang ZD, Frankish A, Hunt T, Harrow J, Gerstein M. Identification and analysis of unitary pseudogenes: historic and contemporary gene losses in humans and other primates. Genome Biol. 2010;11(3):R26.
Article
PubMed
PubMed Central
Google Scholar
MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science. 2012;335(6070):823–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma V, Schwede P, Hiller M. CESAR 2.0 substantially improves speed and accuracy of comparative gene annotation. Bioinformatics. 2017;33(24):3985–7.
Article
CAS
PubMed
Google Scholar
Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, et al. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Bioproject. 2011; https://identifiers.org/GEO/GSE30337.
Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, et al. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Bioproject. 2011; https://identifiers.org/bioproject/PRJNA68323.
Li K-X, Hong W, Jiao H-W, Wang G-D, Rodriguez KA, Buffenstein R, et al. Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax. Bioproject https://identifiers.org/bioproject/PRJNA285131. 2015.
Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol. 2015;32(3):820–32.
Article
CAS
PubMed
Google Scholar
Loytynoja A, Goldman N. An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci U S A. 2005;102(30):10557–62.
Article
PubMed
PubMed Central
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540–52.
Article
CAS
PubMed
Google Scholar
Guo DK, Zhu Y, Sun HY, Xu XY, Zhang S, Hao ZB, et al. Pharmacological activation of REV-ERBα represses LPS-induced microglial activation through the NF-κB pathway. Acta Pharmacol Sin. 2019;40(1):26–34.
Article
CAS
PubMed
Google Scholar
Yu W, Wang B, Zhou L, Xu G. Endoplasmic reticulum stress-mediated p62 downregulation inhibits apoptosis via c-Jun upregulation. Biomol Ther (Seoul). 2021;29(2):195–204.
Article
Google Scholar
Shen X, Zhao YF, Xu SQ, Wang L, Cao HM, Cao Y, et al. Cathepsin L induced PC-12 cell apoptosis via activation of B-Myb and regulation of cell cycle proteins. Acta Pharmacol Sin. 2019;40(11):1394–403.
Article
CAS
PubMed
PubMed Central
Google Scholar