Simoes AR, Staples G. Dissolution of Convolvulaceae tribe Merremieae and a new classification of the constituent genera. Bot J Linn Soc. 2017;183(4):561–86. https://doi.org/10.1093/botlinnean/box007.
Article
Google Scholar
Stevens PF. Angiosperm Phylogeny Website. Version 14, 2017. 2001 onwards. http://www.mobot.org/MOBOT/research/APweb/.
Google Scholar
Stefanovic S, Krueger L, Olmstead RG. Monophyly of the Convolvulaceae and circumscription of their major lineages based on DNA sequences of multiple chloroplast loci. Am J Bot. 2002;89(9):1510–22. https://doi.org/10.3732/ajb.89.9.1510.
Article
CAS
PubMed
Google Scholar
Stefanovic S, Olmstead RG. Testing the phylogenetic position of a parasitic plant (Cuscuta, Convolvulaceae, asteridae): Bayesian inference and the parametric bootstrap on data drawn from three genomes. Syst Biol. 2004;53(3):384–99. https://doi.org/10.1080/10635150490445896.
Article
PubMed
Google Scholar
Stefanovic S, Austin D, Olmstead R. Classification of Convolvulaceae: a phylogenetic approach. Syst Bot. 2009;28:791–806. https://doi.org/10.1043/02-45.1.
Article
Google Scholar
Eserman LA, Tiley GP, Jarret RL, Leebens-Mack JH, Miller RE. Phylogenetics and diversification of morning glories (tribe Ipomoeeae, Convolvulaceae) based on whole plastome sequences. Am J Bot. 2014;101(1):92–103. https://doi.org/10.3732/ajb.1300207.
Article
PubMed
Google Scholar
Park I, Yang S, Kim WJ, Noh P, Lee HO, Moon BC. The complete chloroplast genomes of six ipomoea species and indel marker development for the discrimination of authentic pharbitidis semen (seeds of I. nil or I. purpurea). Front. Plant Sci. 2018;9:965. https://doi.org/10.3389/fpls.2018.00965.
Article
Google Scholar
Sun J, Dong X, Cao Q, Xu T, Zhu M, Sun J, et al. A systematic comparison of eight new plastome sequences from Ipomoea L. PeerJ. 2019;7:e6563. https://doi.org/10.7717/peerj.6563.
Article
CAS
PubMed
PubMed Central
Google Scholar
Funk HT, Berg S, Krupinska K, Maier UG, Krause K. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol. 2007;7:45. https://doi.org/10.1186/1471-2229-7-45.
Article
CAS
PubMed
PubMed Central
Google Scholar
McNeal JR, Kuehl JV, Boore JL, de Pamphilis CW. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta. BMC Plant Biol. 2007;7. https://doi.org/10.1186/1471-2229-7-57.
Braukmann T, Kuzmina M, Stefanovic S. Plastid genome evolution across the genus Cuscuta (Convolvulaceae): two clades within subgenus Grammica exhibit extensive gene loss. J Exp Bot. 2013;64(4):977–89. https://doi.org/10.1093/jxb/ers391.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banerjee A, Stefanović S. Reconstructing plastome evolution across the phylogenetic backbone of the parasitic plant genus Cuscuta (Convolvulaceae). Bot J Linn Soc. 2020;194(4):423–38. https://doi.org/10.1093/botlinnean/boaa056.
Article
Google Scholar
Simoes AR, Culham A, Carine M. Resolving the unresolved tribe: a molecular phylogenetic framework for the Merremieae (Convolvulaceae). Bot J Linn Soc. 2015;179(3):374–87. https://doi.org/10.1111/boj.12339.
Article
Google Scholar
Shidhi PR, Biju VC, Anu S, Vipin CL, Deelip KR, Achuthsankar SN. Genome characterization, comparison and phylogenetic analysis of complete mitochondrial genome of evolvulus alsinoides reveals highly rearranged gene order in solanales. Life (Basel). 2021;11(8). https://doi.org/10.3390/life11080769.
Hoshino A, Jayakumar V, Nitasaka E, Toyoda A, Noguchi H, Itoh T, et al. Genome sequence and analysis of the Japanese morning glory Ipomoea nil. Nat Commun. 2016;7:13295. https://doi.org/10.1038/ncomms13295.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wicke S, Muller KF, de Pamphilis CW, Quandt D, Wickett NJ, Zhang Y, et al. Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell. 2013;25(10):3711–25. https://doi.org/10.1105/tpc.113.113373.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng YL, Wicke S, Li JW, Han Y, Lin CS, Li DZ, et al. Lineage-specific reductions of plastid genomes in an orchid tribe with partially and fully mycoheterotrophic species. Genome Biol Evol. 2016;8(7):2164–75. https://doi.org/10.1093/gbe/evw144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Revill MJ, Stanley S, Hibberd JM. Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta. J Exp Bot. 2005;56(419):2477–86. https://doi.org/10.1093/jxb/eri240.
Article
CAS
PubMed
Google Scholar
Sun G, Xu Y, Liu H, Sun T, Zhang J, Hettenhausen C, et al. Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nat Commun. 2018;9(1):2683. https://doi.org/10.1038/s41467-018-04721-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vogel A, Schwacke R, Denton AK, Usadel B, Hollmann J, Fischer K, et al. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat Commun. 2018;9(1):2515. https://doi.org/10.1038/s41467-018-04344-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
McNeal JR, Kuehl JV, Boore JL, Leebens-Mack J, dePamphilis CW. Parallel loss of plastid introns and their maturase in the genus Cuscuta. Plos One. 2009;4(6):e5982. https://doi.org/10.1371/journal.pone.0005982.
Article
CAS
PubMed
PubMed Central
Google Scholar
Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, et al. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell. 2001;13(3):645–58. https://doi.org/10.1105/tpc.13.3.645.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iorizzo M, Senalik D, Szklarczyk M, Grzebelus D, Spooner D, Simon P. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome. BMC Plant Biol. 2012;12(1):61. https://doi.org/10.1186/1471-2229-12-61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Downie SR, Jansen RK. A comparative analysis of whole plastid genomes from the apiales: expansion and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions. Syst Bot. 2015;40(1):336–51. https://doi.org/10.1600/036364415x686620.
Article
Google Scholar
Spooner DM, Ruess H, Iorizzo M, Senalik D, Simon P. Entire plastid phylogeny of the carrot genus (Daucus, Apiaceae): concordance with nuclear data and mitochondrial and nuclear DNA insertions to the plastid. Am J Bot. 2017;104(2):296–312. https://doi.org/10.3732/ajb.1600415.
Article
CAS
PubMed
Google Scholar
Straub SCK, Cronn RC, Edwards C, Fishbein M, Liston A. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae). Genome Biol Evol. 2013;5(10):1872–85. https://doi.org/10.1093/gbe/evt140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rabah SO, Lee C, Hajrah NH, Makki RM, Alharby HF, Alhebshi AM, et al. Plastome sequencing of ten nonmodel crop species uncovers a large insertion of mitochondrial DNA in cashew. Plant. Genome. 2017;10(3). https://doi.org/10.3835/plantgenome2017.03.0020.
Gandini CL, Sanchez-Puerta MV. Foreign plastid sequences in plant mitochondria are frequently acquired via mitochondrion-to-mitochondrion horizontal transfer. Sci Rep. 2017;7:43402. https://doi.org/10.1038/srep43402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma PF, Zhang YX, Guo ZH, Li DZ. Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus. Sci Rep. 2015;5:11608. https://doi.org/10.1038/srep11608.
Article
PubMed
PubMed Central
Google Scholar
Saarela JM, Wysocki WP, Barrett CF, Soreng RJ, Davis JI, Clark LG, et al. Plastid phylogenomics of the cool-season grass subfamily: clarification of relationships among early-diverging tribes. AoB Plants. 2015;7. https://doi.org/10.1093/aobpla/plv046.
Wysocki WP, Clark LG, Attigala L, Ruiz-Sanchez E, Duvall MR. Evolution of the bamboos (Bambusoideae; Poaceae): a full plastome phylogenomic analysis. BMC Evol Biol. 2015;15:50. https://doi.org/10.1186/s12862-015-0321-5.
Article
PubMed
PubMed Central
Google Scholar
Burke SV, Ungerer MC, Duvall MR. Investigation of mitochondrial-derived plastome sequences in the Paspalum lineage (Panicoideae; Poaceae). BMC Plant Biol. 2018;18(1):152. https://doi.org/10.1186/s12870-018-1379-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Westwood JH, Yoder JI, Timko MP, dePamphilis CW. The evolution of parasitism in plants. Trends Plant Sci. 2010;15(4):227–35. https://doi.org/10.1016/j.tplants.2010.01.004.
Article
CAS
PubMed
Google Scholar
Nickrent DL. Parasitic angiosperms: how often and how many? Taxon. 2020;69(1):5–27. https://doi.org/10.1002/tax.12195.
Article
Google Scholar
Yoshida S, Kim S, Wafula EK, Tanskanen J, Kim YM, Honaas L, et al. Genome sequence of striga asiatica provides insight into the evolution of plant parasitism. Curr Biol. 2019;29(18):3041–3052 e3044. https://doi.org/10.1016/j.cub.2019.07.086.
Article
CAS
PubMed
Google Scholar
Cai L, Arnold BJ, Xi Z, Khost DE, Patel N, Hartmann CB, et al. Deeply altered genome architecture in the endoparasitic flowering plant Sapria himalayana Griff. (Rafflesiaceae). Curr Biol. 2021;31(5):1002–1011 e1009. https://doi.org/10.1016/j.cub.2020.12.045.
Article
CAS
PubMed
Google Scholar
Lyko P, Wicke S. Genomic reconfiguration in parasitic plants involves considerable gene losses alongside global genome size inflation and gene births. Plant Physiol. 2021. https://doi.org/10.1093/plphys/kiab192.
Wicke S, Naumann J. Molecular evolution of plastid genomes in parasitic flowering plants. In: Chaw S-M, Jansen RK, editors. Advances in botanical research: Academic Press; 2018. p. 315–47. https://doi.org/10.1016/bs.abr.2017.11.014.
Chapter
Google Scholar
Bellot S, Cusimano N, Luo S, Sun G, Zarre S, Groger A, et al. Assembled plastid and mitochondrial genomes, as well as nuclear genes, place the parasite family Cynomoriaceae in the Saxifragales. Genome Biol Evol. 2016;8(7):2214–30. https://doi.org/10.1093/gbe/evw147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cusimano N, Renner SS. Sequential horizontal gene transfers from different hosts in a widespread Eurasian parasitic plant, Cynomorium coccineum. Am J Bot. 2019;106(5):679–89. https://doi.org/10.1002/ajb2.1286.
Article
CAS
PubMed
Google Scholar
Sanchez-Puerta MV, Garcia LE, Wohlfeiler J, Ceriotti LF. Unparalleled replacement of native mitochondrial genes by foreign homologs in a holoparasitic plant. New Phytol. 2017;214(1):376–87. https://doi.org/10.1111/nph.14361.
Article
CAS
PubMed
Google Scholar
Sanchez-Puerta MV, Edera A, Gandini CL, Williams AV, Howell KA, Nevill PG, et al. Genome-scale transfer of mitochondrial DNA from legume hosts to the holoparasite Lophophytum mirabile (Balanophoraceae). Mol Phylogenet Evol. 2018;132:243–50. https://doi.org/10.1016/j.ympev.2018.12.006.
Article
CAS
PubMed
Google Scholar
Petersen G, Cuenca A, Moller IM, Seberg O. Massive gene loss in mistletoe (Viscum, Viscaceae) mitochondria. Sci Rep. 2015;5:17588. https://doi.org/10.1038/srep17588.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi K-S, Park S. Complete plastid and mitochondrial genomes of aeginetia indica reveal intracellular gene transfer (IGT), horizontal gene transfer (HGT), and cytoplasmic male sterility (CMS). Int J Mol Sci. 2021;22(11). https://doi.org/10.3390/ijms22116143.
Skippington E, Barkman TJ, Rice DW, Palmer JD. Comparative mitogenomics indicates respiratory competence in parasitic Viscum despite loss of complex I and extreme sequence divergence, and reveals horizontal gene transfer and remarkable variation in genome size. BMC Plant Biol. 2017;17(1):49. https://doi.org/10.1186/s12870-017-0992-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skippington E, Barkman TJ, Rice DW, Palmer JD. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proc Natl Acad Sci U S A. 2015;112(27):E3515–24. https://doi.org/10.1073/pnas.1504491112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng Y, Xiang X, Akhter D, Pan R, Fu Z, Jin X. Mitochondrial phylogenomics of fagales provides insights into plant mitogenome mosaic evolution. Front Plant Sci. 2021;12. https://doi.org/10.3389/fpls.2021.762195.
Rayapuram N, Hagenmuller J, Grienenberger JM, Bonnard G, Giege P. The three mitochondrial encoded CcmF proteins form a complex that interacts with CCMH and c-type apocytochromes in Arabidopsis. J Biol Chem. 2008;283(37):25200–8. https://doi.org/10.1074/jbc.M802621200.
Article
CAS
PubMed
Google Scholar
des Francs-Small CC, Kroeger T, Zmudjak M, Ostersetzer-Biran O, Rahimi N, Small I, et al. A PORR domain protein required for rpl2 and ccmFC intron splicing and for the biogenesis of c-type cytochromes in Arabidopsis mitochondria. Plant J. 2012;69(6):996–1005. https://doi.org/10.1111/j.1365-313X.2011.04849.x.
Article
CAS
Google Scholar
Anderson BM, Krause K, Petersen G. Mitochondrial genomes of two parasitic Cuscuta species lack clear evidence of horizontal gene transfer and retain unusually fragmented ccmFC genes. BMC Genomics. 2021;22(1):816. https://doi.org/10.1186/s12864-021-08105-z.
Article
PubMed
PubMed Central
Google Scholar
Moller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics. 2001;17(7):646–53. https://doi.org/10.1093/bioinformatics/17.7.646.
Article
CAS
PubMed
Google Scholar
Hsu YW, Juan CT, Wang CM, Jauh GY. Mitochondrial heat shock protein 60s interact with what's this factor 9 to regulate RNA splicing of ccmFC and rpl2. Plant Cell Physiol. 2019;60(1):116–25. https://doi.org/10.1093/pcp/pcy199.
Article
CAS
PubMed
Google Scholar
Wolfe KH, Li WH, Sharp PM. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A. 1987;84(24):9054–8. https://doi.org/10.1073/pnas.84.24.9054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palmer JD, Herbon LA. Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol. 1988;28(1-2):87–97. https://doi.org/10.1007/BF02143500.
Article
CAS
PubMed
Google Scholar
Cole LW, Guo W, Mower JP, Palmer JD. High and variable rates of repeat-mediated mitochondrial genome rearrangement in a genus of plants. Mol Biol Evol. 2018;35(11):2773–85. https://doi.org/10.1093/molbev/msy176.
Article
CAS
PubMed
Google Scholar
Mower JP. Variation in protein gene and intron content among land plant mitogenomes. Mitochondrion. 2020;53:203–13. https://doi.org/10.1016/j.mito.2020.06.002.
Article
CAS
PubMed
Google Scholar
Grewe F, Viehoever P, Weisshaar B, Knoop V. A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucleic Acids Res. 2009;37(15):5093–104. https://doi.org/10.1093/nar/gkp532.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hecht J, Grewe F, Knoop V. Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes. Genome Biol Evol. 2011;3:344–58. https://doi.org/10.1093/gbe/evr027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo W, Grewe F, Fan W, Young GJ, Knoop V, Palmer JD, et al. Ginkgo and Welwitschia mitogenomes reveal extreme contrasts in gymnosperm mitochondrial evolution. Mol Biol Evol. 2016;33(6):1448–60. https://doi.org/10.1093/molbev/msw024.
Article
CAS
PubMed
Google Scholar
Guo W, Zhu A, Fan W, Adams RP, Mower JP. Extensive shifts from cis- to trans-splicing of gymnosperm mitochondrial introns. Mol Biol Evol. 2020;37(6):1615–20. https://doi.org/10.1093/molbev/msaa029.
Article
CAS
PubMed
Google Scholar
Malek O, Knoop V. Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort. RNA (New York, NY). 1998;4(12):1599–609.
Article
CAS
Google Scholar
Qiu YL, Palmer JD. Many independent origins of trans splicing of a plant mitochondrial group II intron. J Mol Evol. 2004;59(1):80–9. https://doi.org/10.1007/s00239-004-2606-y.
Article
CAS
PubMed
Google Scholar
Kim S, Yoon MK. Comparison of mitochondrial and chloroplast genome segments from three onion (Allium cepa L.) cytoplasm types and identification of a trans-splicing intron of cox2. Curr Genet. 2010;56(2):177–88. https://doi.org/10.1007/s00294-010-0290-6.
Article
CAS
PubMed
Google Scholar
Kim S, Bang H, Patil BS. Origin of three characteristic onion (Allium cepa L.) mitochondrial genome rearrangements in Allium species. Sci Hortic. 2013;157:24–31. https://doi.org/10.1016/j.scienta.2013.04.009.
Article
CAS
Google Scholar
Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, et al. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol. 1992;223(1):1–7.
Article
CAS
PubMed
Google Scholar
Handa H, Bonnard G, Grienenberger JM. The rapeseed mitochondrial gene encoding a homologue of the bacterial protein Ccl1 is divided into two independently transcribed reading frames. MGG Mol Gen Genet. 1996;252(3):292–302. https://doi.org/10.1007/bf02173775.
Article
CAS
PubMed
Google Scholar
Kim B, Kim K, Yang TJ, Kim S. Completion of the mitochondrial genome sequence of onion (Allium cepa L.) containing the CMS-S male-sterile cytoplasm and identification of an independent event of the ccmF N gene split. Curr Genet. 2016;62(4):873–85. https://doi.org/10.1007/s00294-016-0595-1.
Article
CAS
PubMed
Google Scholar
Choi IS, Ruhlman TA, Jansen RK. Comparative mitogenome analysis of the genus trifolium reveals independent gene fission of ccmFn and intracellular gene transfers in Fabaceae. Int J Mol Sci. 2020;21(6). https://doi.org/10.3390/ijms21061959.
Christensen AC. Genes and junk in plant mitochondria-repair mechanisms and selection. Genome Biol Evol. 2014;6(6):1448–53. https://doi.org/10.1093/gbe/evu115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bergthorsson U, Adams KL, Thomason B, Palmer JD. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature. 2003;424:197. https://doi.org/10.1038/nature01743.
Article
CAS
PubMed
Google Scholar
Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, et al. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm amborella. Science. 2013;342(6165):1468.
Article
CAS
PubMed
Google Scholar
Park S, Ruhlman TA, Weng ML, Hajrah NH, Sabir JSM, Jansen RK. Contrasting patterns of nucleotide substitution rates provide insight into dynamic evolution of plastid and mitochondrial genomes of geranium. Genome Biol Evol. 2017;9(6):1766–80. https://doi.org/10.1093/gbe/evx124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su L, Fukushima T, Prior A, Baruch M, Zajdel TJ, Ajo-Franklin CM. Modifying cytochrome c maturation can increase the bioelectronic performance of engineered Escherichia coli. ACS Synth Biol. 2020;9(1):115–24. https://doi.org/10.1021/acssynbio.9b00379.
Article
CAS
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020;21(1):241. https://doi.org/10.1186/s13059-020-02154-5.
Article
PubMed
PubMed Central
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. https://doi.org/10.1089/cmb.2012.0021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540–6. https://doi.org/10.1038/s41587-019-0072-8.
Article
CAS
PubMed
Google Scholar
Chan PP, Lowe TM. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol. 2019;1962:1–14. https://doi.org/10.1007/978-1-4939-9173-0_1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST plus : architecture and applications. BMC Bioinformatics. 2009;10. https://doi.org/10.1186/1471-2105-10-421.
Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH. Synteny and collinearity in plant genomes. Science. 2008;320(5875):486–8. https://doi.org/10.1126/science.1153917.
Article
CAS
PubMed
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. https://doi.org/10.1093/molbev/mst010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74. https://doi.org/10.1093/molbev/msu300.
Article
CAS
PubMed
Google Scholar
Al-Mohanna T, Ahsan N, Bokros NT, Dimlioglu G, Reddy KR, Shankle M, et al. Proteomics and proteogenomics analysis of sweetpotato ( Ipomoea batatas) Leaf and Root. J Proteome Res. 2019;18(7):2719–34. https://doi.org/10.1021/acs.jproteome.8b00943.
Article
CAS
PubMed
Google Scholar
Deutsch EW, Mendoza L, Shteynberg D, Slagel J, Sun Z, Moritz RL. Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl. 2015;9(7-8):745–54. https://doi.org/10.1002/prca.201400164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Moeinzadeh MH, Kuhl H, Helmuth J, Xiao P, Haas S, et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants. 2017;3(9):696–703. https://doi.org/10.1038/s41477-017-0002-z.
Article
CAS
PubMed
Google Scholar
Wu S, Lau KH, Cao Q, Hamilton JP, Sun H, Zhou C, et al. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nat Commun. 2018;9(1):4580. https://doi.org/10.1038/s41467-018-06983-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, et al. The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun. 2014;5:3833. https://doi.org/10.1038/ncomms4833.
Article
CAS
PubMed
Google Scholar
Amborella Genome P. The Amborella genome and the evolution of flowering plants. Science. 2013;342(6165):1241089. https://doi.org/10.1126/science.1241089.
Article
CAS
Google Scholar
Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, et al. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet. 2016;48(6):657–66. https://doi.org/10.1038/ng.3565.
Article
CAS
PubMed
Google Scholar
Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313(5793):1596–604. https://doi.org/10.1126/science.1128691.
Article
CAS
PubMed
Google Scholar
Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, et al. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res. 2007;35(Database issue):D883–7. https://doi.org/10.1093/nar/gkl976.
Article
CAS
PubMed
Google Scholar
Tomato GC. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485(7400):635–41. https://doi.org/10.1038/nature11119.
Article
CAS
Google Scholar
Sharma SK, Bolser D, de Boer J, Sonderkaer M, Amoros W, Carboni MF, et al. Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3 (Bethesda). 2013;3(11):2031–47. https://doi.org/10.1534/g3.113.007153.
Article
CAS
PubMed Central
Google Scholar
Olsen JL, Rouze P, Verhelst B, Lin YC, Bayer T, Collen J, et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature. 2016;530(7590):331–5. https://doi.org/10.1038/nature16548.
Article
CAS
PubMed
Google Scholar
Fei Z, Joung JG, Tang X, Zheng Y, Huang M, Lee JM, et al. Tomato Functional Genomics Database: a comprehensive resource and analysis package for tomato functional genomics. Nucleic Acids Res. 2011;39(Database issue):D1156–63. https://doi.org/10.1093/nar/gkq991.
Article
CAS
PubMed
Google Scholar
Hirsch CD, Hamilton JP, Childs KL, Cepela J, Crisovan E, Vaillancourt B, et al. Spud DB: a resource for mining sequences, genotypes, and phenotypes to accelerate potato breeding. The Plant. Genome. 2014;7(1). https://doi.org/10.3835/plantgenome2013.12.0042.
Lim B, Cheng S. Organelle transcriptomes in plants. Transcriptomics: Open Access. 2013;02(01). https://doi.org/10.4172/2329-8936.1000e106.
Liu Y, Su W, Wang L, Lei J, Chai S, Zhang W, et al. Integrated transcriptome, small RNA and degradome sequencing approaches proffer insights into chlorogenic acid biosynthesis in leafy sweet potato. Plos One. 2021;16(1):e0245266. https://doi.org/10.1371/journal.pone.0245266.
Article
CAS
PubMed
PubMed Central
Google Scholar
Organelle genome sequencing of morning glories raw sequence reads. NCBI BioProject PRJNA737311. (2021). https://www.ncbi.nlm.nih.gov/bioproject/PRJNA737311
Feng Y. Convolvulaceae-mitogenome-project. (2021). GitHub https://github.com/fengyanlei33/Convolvulaceae-mitogenome-project