Dunn C, Hejnol A, Matus D, Pang K, Browne W, Smith S, et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature. 2008;452:745–9.
Article
CAS
PubMed
Google Scholar
Van Soest R, Boury-Esnault N, Hooper J, Rützler K, De Voogd N, Alvarez de Glasby B, et al. World Porifera Database. The World Register of Marine Species (WoRMS); 2018.
Google Scholar
Maldonado M, Ribes M, van Duyl F. Nutrient fluxes through sponges: biology, budgets, and ecological implications. Adv Mar Biol. 2012;62:113–82.
Article
PubMed
Google Scholar
Pawlik J, McMurray S. The emerging ecological and biogeochemical importance of sponges on coral reefs. Ann Rev Mar Sci. 2020;12:315–37.
Article
PubMed
Google Scholar
Vogel S. Current-induced flow through living sponges in nature. Proc Natl Acad Sci. 1977;74:2069–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hentschel U, Piel J, Degnan S, Taylor M. Genomic insights into the marine sponge microbiome. Nat Rev Microbiol. 2012;10:641–54.
Article
CAS
PubMed
Google Scholar
Hentschel U, Usher K, Taylor M. Marine sponges as microbial fermenters. FEMS Microbiol Ecol. 2006;55:167–77.
Article
CAS
PubMed
Google Scholar
Pita L, Fraune S, Hentschel U. Emerging sponge models of animal-microbe symbioses. Front Microbiol. 2016;7:2102.
Article
PubMed
PubMed Central
Google Scholar
Taylor M, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–347.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thacker R, Freeman C. Sponge-microbe symbioses: recent advances and new directions. In: Becerro M, Uriz M, Maldonado M, Turon X, editors. Advances in Marine Biology, vol. 62. Amsterdam: Elsevier; 2012. p. 57–111.
Webster N, Taylor M. Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol. 2012;14:335–46.
Article
CAS
PubMed
Google Scholar
Webster N, Thomas T. The sponge hologenome. mBio. 2016;7:e00135–16.
Article
PubMed
PubMed Central
Google Scholar
Wilkinson C. Symbiotic interactions between marine sponges and algae. In: Reisser W, editor. Algae and Symbioses: Plants, Animals, Fungi, Viruses, Interactions Explored. Bristol: Lubrecht & Cramer Ltd; 1992.
Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 2007;5:782–91.
Article
CAS
PubMed
Google Scholar
Frost T. Sponge feeding: a review with a discussion of some continuing research. In: Harrison F, Cowden R, editors. Aspects of Sponge Biology. New York: Academic Press; 1976.
Google Scholar
Maldonado M, Zhang X, Cao X, Xue L, Cao H, Zhang W. Selective feeding by sponges on pathogenic microbes: a reassessment of potential for abatement of microbial pollution. Mar Ecol Prog Ser. 2010;403:75–80.
Article
Google Scholar
Schmittmann L, Jahn M, Pita L, Hentschel U. Decoding cellular dialogues between sponges, bacteria, and phages. In: Bosch T, Hadfield M, editors. Cellular Dialogues in the Holobiont. Boca Raton: CRC Press; 2020.
Maldonado M. Intergenerational transmission of symbiotic bacteria in oviparous and viviparous demosponges, with emphasis on intracytoplasmically-compartmented bacterial types. J Mar Biol Assoc UK. 2007;87:1701–13.
Article
Google Scholar
Brien P, Lévi C, Sarà M, Tuzet O, Vacelet J (Eds.): Traité de Zoologie. Antomie, Systématique, Biologie: Masson et Cie Éditeurs; 1973.
Google Scholar
Harrison F, De Vos L. Porifera. In: Harrison F, Westfall J, editors. Microscopic Anatomy of Invertebrates, vol. 2. Placozoa, Porifera, Cnidaria, and Ctenophora. Hoboken: John Wiley-Liss; 1991.
de Vos L, Rützler K, Boury-Esnault N, Donadey C, Vacelet J. Atlas of Sponge Morphology. Washington DC: Smithsonian Institution Press; 1991.
Boury-Esnault N, Rützler K. Thesaurus of Sponge Morphology. Smithsonian Contrib Zool. 1997.
Maldonado M. Metazoans: the rise of early animals. In: Vargas P, Zardoya R, editors. The tree of life: evolution and classification of living organisms. Sunderland: Sinauer; 2014. p. 182–205.
Simpson T. The cell biology of sponges. New York: Springer; 1984.
Book
Google Scholar
Stabili L, Licciano M, Longo C, Corriero G, Mercurio M. Evaluation of microbial accumulation capability of the commercial sponge Spongia officinalis var. adriatica (Schmidt) (Porifera, Demospongiae). Water Res. 2008;42:2499–506.
Article
CAS
PubMed
Google Scholar
Vacelet J. Etude en microscopie electronique de l’association entre bacteries et spongiaires du genre Verongia (Dictyoceratida). J Microsc Biol Cell. 1975;23:271–88.
Google Scholar
de Bary A. Die Erscheinung der Symbiose. Strassburg: De Gruyter; 1879.
Oulhen N, Schulz B, Carrier T. English translation of Heinrich Anton de Bary’s 1878 speech, ‘Die Erscheinung der Symbiose’ (‘De la symbiose’). Symbiosis. 2016;69:131–9.
Article
Google Scholar
Pita L, Rix L, Slaby B, Franke A, Hentschel U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome. 2018;6:46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robbins S, Song W, Engelberts J, Glasl B, Slaby B, Boyd J, et al. A genomic view of the microbiome of coral reef demosponges. ISME J. 2021;15:1641–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas T, Moitinho-Silva L, Lurgi M, Bjork J, Easson C, Astudillo-García C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:11870.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Schupp P, Pawlik J, et al. The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol Bull. 2014;227:78–88.
Article
PubMed
Google Scholar
Moitinho-Silva L, Steinert G, Nielsen S, Hardoim C, Wu Y-C, McCormack G, et al. Predicting the HMA-LMA status in marine sponges by machine learning. Front Microbiol. 2017;8:752.
Article
PubMed
PubMed Central
Google Scholar
Bayer K, Moitinho-Silva L, Brümmer F, Cannistraci C, Ravasi T, Hentschel U. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater. FEMS Microbiol Ecol. 2014;90:832–43.
Article
CAS
PubMed
Google Scholar
Rix L, Ribes M, Coma R, Jahn M, de Goeij J, van Oevelen D, et al. Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME J. 2020;14:2554–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marshall D, Keough M. The evolutionary ecology of offspring size in marine invertebrates. Adv Mar Biol. 2007;53.
Vance R. On reproductive strategies in marine benthic invertebrates. Am Nat. 1973;107:339–52.
Article
Google Scholar
Mousseau T, Fox C. The adaptive significance of maternal effects. Trends Ecol Evol. 1998;13:403–7.
Article
CAS
PubMed
Google Scholar
Carrier T, Reitzel A, Heyland A. Evolutionary ecology of marine invertebrate larvae. Oxford: Oxford University Press; 2018.
McEdward LR. Ecology of marine invertebrate larvae. Boca Raton: CRC Press; 1995.
Thorson G. Reproductive and larval ecology of marine bottom invertebrates. Biol Rev. 1950;25:1–45.
Article
CAS
PubMed
Google Scholar
Young C, Sewell M, Rice M, editors. Atlas of Marine Invertebrate Larvae. Cambridge: Academic Press; 2002.
Maldonado M. Embryonic development of verongid demosponges supports the independent acquisition of spongin skeletons as an alternative to the siliceous skeleton of sponges. Biol J Linn Soc. 2009;97:427–47.
Article
Google Scholar
Schmitt S, Weisz J, Lindquist N, Hentschel U. Vertical transmission of a phylogenetically complex microbial consortium in the viviparous sponge Ircinia felix. Appl Environ Microbiol. 2007;73:2067–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gloeckner V, Lindquist N, Schmitt S, Hentschel U. Ectyoplasia ferox, an experimentally tractable model for vertical microbial transmission in marine sponges. Microb Ecol. 2013;65:462–74.
Article
PubMed
Google Scholar
Maldonado M, Riesgo A. Reproduction in the phylum Porifera: a synoptic overview. Treballs Societat Catalana Biol. 2009;59:29–49.
Google Scholar
Riesgo A, Novo M, Sharma P, Peterson M, Maldonado M, Giribet G. Inferring the ancestral sexuality and reproductive condition in sponges (Porifera). Zool Scripta. 2014;43:101–17.
Article
Google Scholar
Boury-Esnault N, Efremova S, Bezac C, Vacelet J. Reproduction of a hexactinellid sponge: first description of gastrulation by cellular delamination in the Porifera. Invertebr Reprod Dev. 1999;35:187–201.
Article
Google Scholar
Reiswig H. Hexactinellida after 132 years of study -- what’s new? Bollettino dei Musei e Degli Istituti Biol dell'Univ Genova. 2004;68:71–84.
Google Scholar
Maldonado M. The ecology of the sponge larva. Can J Fish Aquat Sci. 2006;84:175–94.
Google Scholar
Maldonado M, Bergquist P. Phylum Porifera. In: Young C, Sewell M, Rice M, editors. Atlas of Marine Invertebrate Larvae. Cambridge: Academic Press; 2002.
Mileikovsky S. Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a re-evaluation. Mar Biol. 1971;10:193–213.
Article
Google Scholar
Shanks A. Pelagic larval duration and dispersal distance revisited. Biol Bull. 2009;216:373–85.
Article
PubMed
Google Scholar
Strathmann R. Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Annu Rev Ecol Syst. 1985;16:339–61.
Article
Google Scholar
Bright M, Bulgheresi S. A complex journey: transmission of microbial symbionts. Nat Rev Microbiol. 2010;8:218–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Funkhouser L, Bordenstein SR. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 2013;11:e1001631.
Article
CAS
PubMed
PubMed Central
Google Scholar
McFall-Ngai M. Unseen forces: the influence of bacteria on animal development. Dev Biol. 2002;242:1–14.
Article
CAS
PubMed
Google Scholar
Nyholm S. In the beginning: egg–microbe interactions and consequences for animal hosts. Philos Trans R Soc B. 2020;375:20190593.
Article
CAS
Google Scholar
Nyholm SV, Mcfall-Ngai MJ. The winnowing: establishing the squid-Vibrio symbiosis. Nat Rev Microbiol. 2004;2:632–42.
Article
CAS
PubMed
Google Scholar
Nyholm S, Stabb E, Ruby E, McFall-Ngai M. Establishment of an animal–bacterial association: recruiting symbiotic vibrios from the environment. Proc Natl Acad Sci. 2000;97:10231–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nyholm S, McFall-Ngai M. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat Rev Microbiol. 2021;19:666–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Douglas A. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43:17–37.
Article
CAS
PubMed
Google Scholar
Rodrigues de Oliveira B, Freitas-Silva J, Sanchez-Robinet C, Laport M. Transmission of the sponge microbiome: moving towards a unified model. Environ Microbiol Rep. 2020;12:619–38.
Article
Google Scholar
Russell S. Transmission mode is associated with environment type and taxa across bacteria-eukaryote symbioses: a systematic review and meta-analysis. FEMS Microbiol Lett. 2019;366:fnz013.
Article
CAS
PubMed
Google Scholar
Dosse G. Bakterien und pilzbefunde sowie pathologische und faülnisvorgänge in meeres und susswasserschwämmen. Z Parasitenkd. 1939;11:331–56.
Article
Google Scholar
Duboscq O, Tuzet O. Recherches complementaires sur l’ovogenèse, la fécondation et les premiers stades du développement des éponges calcaires. Arch Zool Exp Générale. 1942;81:395–466.
Google Scholar
Lévi C, Porte A. Ètude au microscope électronique de l'éponge Oscarella lobularis Schmidt et de sa larve amphiblastula. Cahiers Biol Mar. 1962;3:307–15.
Google Scholar
Eckelbarger K. Diversity of metazoan ovaries and vitellogenic mechanisms: implications for life history theory. Proc Biol Soc Washington. 1994;107:193–218.
Google Scholar
Eckelbarger K, Hodgson A. Invertebrate oogenesis – a review and synthesis: comparative ovarian morphology, accessory cell function and the origins of yolk precursors. Invertebr Reprod Dev. 2021;65:71–140.
Article
CAS
Google Scholar
Koutsouveli V, Cárdenas P, Santodomingo N, Marina A, Morato E, Rapp H, et al. The molecular machinery of gametogenesis in Geodia demosponges (Porifera): evolutionary origins of a conserved toolkit across animals. Mol Biol Evol. 2020;37:msaa183.
Levitan D. The ecology of fertilization in free-spawning invertebrates. In: McEdward L, editor. Ecology of Marine Invertebrate Larvae. Hoboken: CRC Press; 1995.
Fell P. Porifera. In: Adiyodi K, Adiyodi R, editors. Reproductive Biology of Invertebrates, vol. 4, Fertilization, Development and Parental Care. New York: Wiley; 1989.
Google Scholar
Maldonado M, Riesgo A. Gametogenesis, embryogenesis, and larval features of the oviparous sponge Petrosia ficiformis (Haplosclerida, Demospongiae). Mar Biol. 2009;156:2181–97.
Article
Google Scholar
Riesgo A, Maldonado M, Durfort M. Dynamics of gametogenesis, embryogenesis, and larval release in a Mediterranean homosclerophorid demosponge. Mar Freshw Res. 2007;58:398–417.
Article
Google Scholar
Ereskovsky A. The Comparative Embryology of Sponges. New York: Spinger; 2010.
Book
Google Scholar
Leys S, Ereskovsky A. Embryogenesis and larval differentiation in sponges. Can J Fish Aquat Sci. 2006;84:262–87.
Google Scholar
Usher K, Ereskovsky A. Larval development, ultrastructure and metamorphosis in Chondrilla australiensis Carter, 1873 (Demospongiae, Chondrosida, Chondrillidae). Invertebr Reprod Dev. 2005;47:51–62.
Article
Google Scholar
Sarà A, Cerrano C, Sarà M. Viviparous development in the Antarctic sponge Stylocordyla borealis Loven, 1868. Polar Biol. 2002;25:425–31.
Article
Google Scholar
Watanabe Y. The development of two species of Tetilla (Demosponge). Nat Sci Rep Ochanomizu Univ. 1978;29:71–106.
Google Scholar
Watanabe Y, Masuda Y. Structure of fiber bundles in the egg of Tetilla japonica and their possible function in development. In: Rützler K, editor. New Perspectives in Sponge Biology. Washington, D.C.: Smithsonian Institution Press; 1990. p. 193–9.
Google Scholar
Maldonado M. Sponge waste that fuels marine oligotrophic food webs: a re-assessment of its origin and nature. Mar Ecol. 2015;37.
Maldonado M, Cortadellas N, Trillias M, Rützler K. Endosymbiotic yeast maternally transmitted in a marine sponge. Biol Bull. 2005;209:94–106.
Article
CAS
PubMed
Google Scholar
Schmitt S, Angermeier H, Schiller R, Lindquist N, Hentschel U. Molecular microbial diversity survey of sponge reproductive stages and mechanistic insights into vertical transmission of microbial symbionts. Appl Environ Microbiol. 2008;74:7694–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riesgo A, Maldonado M. Ultrastructure of oogenesis of two oviparous demosponges: Axinella damicornis and Raspaciona aculeata (Porifera). Tissue Cell. 2009;41:51–65.
Article
PubMed
Google Scholar
Sciscioli M, Liaci L, Lepore E, Gherardi M, Simpson T. Ultrastructural study of the mature egg of the marine sponge Stelletta grubii (Porifera, Demospongiae). Mol Reprod Dev. 1991;28:346–50.
Article
CAS
PubMed
Google Scholar
Lanna E, Klautau M. Oogenesis and spermatogenesis in Paraleucilla magna (Porifera, Calcarea). Zoomorphology. 2010;129:249–61.
Article
Google Scholar
Kaye H. Sexual reproduction in four Caribbean commercial sponges. II. Oogenesis and transfer of bacterial symbionts. Invertebr Reprod Dev. 1991;19:13–24.
Article
Google Scholar
Sciscioli M, Lepore E, Gherardi M, Liaci L. Transfer of symbiotic bacteria in the mature oocyte of Geodia cydonium (Porifera, Demosponsgiae): an ultrastructural study. Cahiers Biol Mar. 1994;35:471–8.
Google Scholar
Webster N, Taylor M, Behnam F, Lücker S, Rattei T, Whalan S, et al. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol. 2010;12:2070–82.
CAS
PubMed
PubMed Central
Google Scholar
Ereskovsky A, Gonobobleva E, Vishnyakov A. Morphological evidence for vertical transmission of symbiotic bacteria in the viviparous sponge Halisarca dujardini Johnston (Porifera, Demospongiae, Halisarcida). Mar Biol. 2005;146:869–75.
Article
Google Scholar
Usher K, Sutton D, Toze S, Kuo J, Fromont J. Inter-generational transmission of microbial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Mar Freshw Res. 2005;56:125–31.
Article
Google Scholar
Warburton F. Inclusion of parental somatic cells in sponge larvae. Nature. 1961;191:1317.
Article
Google Scholar
Levi C, Levi P. Embryogénese de Chondrosia reniformis (Nardo), démosponge ovipare, et transmission des bactéries symbiotiques. Annal Sci Naturelles (Zoologie). 1976;18:367–80.
Google Scholar
de Caralt S, Uriz M, Wijffels R. Vertical transmission and successive location of symbiotic bacteria during embryo development and larva formation in Corticium candelabrum (Porifera: Demospongiae). J Mar Biol Assoc UK. 2007;87:1693–9.
Article
Google Scholar
Boury-Esnault N. Ultrastructure de la larve parenchymella D'hamigera hamigera (Schmidt) (Démosponge, poecilosclerida) origine des cellules grises. Cahiers Biol Mar. 1976;17:9–20.
Google Scholar
Busch K, Wurz E, Rapp H, Bayer K, Franke A, Hentschel U. Chloroflexi dominate the deep-sea golf ball sponges Craniella zetlandica and Craniella infrequens throughout different life stages. Front Mar Sci. 2020;7:674.
Article
Google Scholar
Uriz M, Agell G, Blanquer A, Turon X, Casamayor E. Endosymbiotic calcifying bacteria: a new cue to the origin of calcification in Metazoa? Evolution. 2012;66:2993–9.
Article
PubMed
PubMed Central
Google Scholar
Woollacott R. Structure and swiming behavior of the larva of Haliclona tubifera (Porifera: Demospongiae). J Morphol. 1993;218:301–21.
Article
PubMed
Google Scholar
Amano S, Hori I. Metamorphosis of calcareous sponges I. Ultrastructure of free-swimming larvae. Invertebr Reprod Dev. 1992;21:81–90.
Article
Google Scholar
Enticknap J, Kelly M, Peraud O, Hill R. Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl Environ Microbiol. 2006;72:3724–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steger D, Ettinger-Epstein P, Whalan S, Hentschel U, de Nys R, Wagner M, et al. Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges. Environ Microbiol. 2006;10:1087–94.
Article
CAS
Google Scholar
Korotkova G, Aisenstadt T. A study of oogenesis of the marine sponge Haliscarca dujardini. I. The origin of the oogonia and early stages of oocyte development. Tsitologya. 1976;18:549–55.
Google Scholar
Lepore E, Sciscioli M, Gherardi M, Laici S. The ultrastructure of the mature oocyte and the nurse cells of the ceractinomorpha Petrosia ficiformis. Cahiers Biol Mar. 1995;36:15–20.
Google Scholar
Schmitt S. Vertical microbial transmission in Caribbean bacteriosponges: Julius-Maximilians-Universität Würzburg; 2007. https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/2015/file/SchmittPhDthesis2007.pdf.
Gaino E. Indagine ultrastrutturale sugli ovociti maturi dl Chondrilla nucula Schmidt (Porifera, Demospongiae). Cahiers Biol Mar. 1980;21:11–22.
Google Scholar
Jahn M, Arkhipova K, Markert S, Stigloher C, Lachnit T, Pita L, et al. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe. 2019;26:542–50.
Article
CAS
PubMed
Google Scholar
Laffy P, Botté E, Wood-Charlson E, Weynberg K, Rattei T, Webster N. Thermal stress modifies the marine sponge virome. Environ Microbiol Rep. 2019;11:690–8.
Article
CAS
PubMed
Google Scholar
Laffy P, Wood-Charlson E, Turaev D, Jutz S, Pascelli C, Botté E, et al. Reef invertebrate viromics: diversity, host specificity and functional capacity. Environ Microbiol. 2018;20:2125–41.
Article
PubMed
Google Scholar
Pascelli C, Laffy P, Botté E, Kupresanin M, Rattei T, Lurgi M, et al. Viral ecogenomics across the Porifera. Microbiome. 2020;8:144.
Article
PubMed
PubMed Central
Google Scholar
Vacelet J, Gallissian M. Virus-like particles in cells of the sponge Verongia cavernicola (Demospongiae, Dictyoceratida) and accompanying tissues changes. J Invertebr Pathol. 1978;31:246–54.
Article
Google Scholar
Jahn M, Lachnit T, Markert S, Stigloher C, Pita L, Ribes M, et al. Lifestyle of sponge symbiont phages by host prediction and correlative microscopy. ISME J. 2021;15:2001–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laffy P, Wood-Charlson E, Turaev D, Weynberg K, Botté E, van Oppen M, et al. HoloVir: a workflow for investigating the diversity and function of viruses in invertebrate holobionts. Front Microbiol. 2016;7:822.
Article
PubMed
PubMed Central
Google Scholar
Björk J, Díez-Vives C, Astudillo-García C, Archie E, Montoya J. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat Ecol Evol. 2019;3:1172–83.
Article
PubMed
PubMed Central
Google Scholar
Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann G, Cerrano C, et al. The sponge microbiome project. Gigascience. 2017;6:gix077.
Article
PubMed Central
Google Scholar
Snook R. Sperm in competition: not playing by the numbers. Trends Ecol Evol. 2005;20:46–53.
Article
PubMed
Google Scholar
Sacristán-Soriano O, Winkler M, Erwin P, Weisz J, Harriott O, Heussler G, et al. Ontogeny of symbiont community structure in two carotenoid-rich, viviparous marine sponges: comparison of microbiomes and analysis of culturable pigmented heterotrophic bacteria. Environ Microbiol Rep. 2019;11:249–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu S, Ou H, Liu T, Wang D, Zhao J. Structure and dynamics of microbiomes associated with the marine sponge Tedania sp. during its life cycle. FEMS Microbiol Ecol. 2018;94:fiy055.
Article
CAS
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Xu ZZ, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems. 2017;2:e00191–16.
Article
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.
Article
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
Article
CAS
Google Scholar
O’Brien PA, Webster NS, Miller DJ, Bourne DG. Host-microbe coevolution: applying evidence from model systems to complex marine invertebrate holobionts. mBio. 2019;10:e02241–18.
Article
PubMed
PubMed Central
Google Scholar
Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 2016;14:e2000225.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burke B, Steinberg P, Rusch D, Kjelleberg S, Thomas T. Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci. 2011;108:14288–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Louca S, Jacques S, Pires A, Leal J, Srivastava D, Parfrey L, et al. High taxonomic variability despite stable functional structure across microbial communities. Nat Ecol Evol. 2016;1:15.
Article
PubMed
Google Scholar
Botté E, Nielsen S, Wahab M, Webster J, Robbins S, Thomas T, et al. Changes in the metabolic potential of the sponge microbiome under ocean acidification. Nat Commun. 2019;10:4134.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moitinho-Silva L, Seridi L, Ryu T, Voolstra CR, Ravasi T, Hentschel U. Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics. Environ Microbiol. 2014;16:3683–98.
Moitinho-Silva L, Díez-Vives C, Batani G, Esteves A, Jahn M, Thomas T. Integrated metabolism in sponge–microbe symbiosis revealed by genome-centered metatranscriptomics. ISME J. 2017;11:1651–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slaby B, Hackl T, Horn H, Bayer K, Hentschel U. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME J. 2017;11:2465–78.
Article
PubMed
PubMed Central
Google Scholar
Morgan S. The timing of larval release. In: McEdward L, editor. Ecology of Marine Invertebrate Larvae: CRC Press; 1995.
Google Scholar
Starr M, Himmelman J, Therriault J. Direct coupling of marine invertebrate spawning with phytoplankton blooms. Science. 1990;247:1071–4.
Article
CAS
PubMed
Google Scholar
Amano S. Morning release of larvae controlled by the light in an intertidal sponge, Callyspongia ramosa. Biol Bull. 1988;175:181–4.
Article
Google Scholar
Hoppe W, Reichert M. Predictable annual mass release of gametes by the coral reef sponge Neofibularia nolitangere (Porifera: Demospongiae). Mar Biol. 1987;74:277–85.
Article
Google Scholar
Lindquist N, Bolster R, Laing K. Timing of larval release by two Caribbean demosponges. Mar Ecol Prog Ser. 1997;155:309–13.
Article
Google Scholar
Kaye H, Reiswig H. Sexual reproduction in four Caribbean commercial sponges. III. Larval behaviour, settlement and metamorphosis. Invertebr Reprod Dev. 1991;19:25–35.
Article
Google Scholar
Maldonado M, George S, Young C, Vequerizo I. Depth regulation in parenchymella larvae of a demosponge: relative roles of skeletogenesis, biochemical changes and behavior. Mar Ecol Prog Ser. 1997;148:115–24.
Article
Google Scholar
Maldonado M, Young C. Effects of physical factors on larval behavior, settlement and recruitment of four tropical demosponges. Mar Ecol Prog Ser. 1996;138:169–80.
Article
Google Scholar
Rumrill S. Natural mortality of marine invertebrate larvae. Ophelia. 1990;32:163–98.
Article
Google Scholar
Morgan S. Life and death in the plankton: larval mortality and adaptation. In: McEdwards L, editor. Ecology of Marine Invertebrate Larvae. Boca Raton: CRC Press; 1995. p. 279–321.
Carrier T, Macrander J, Reitzel A. A microbial perspective on the life-history evolution of marine invertebrate larvae: if, where, and when to feed. Mar Ecol. 2018;39:e12490.
Article
Google Scholar
Lindquist N, Hay M. Palatability and chemical defense of marine invertebrate larvae. Ecol Monographs. 1996;66:431–50.
Article
Google Scholar
Lindquist N. Chemical defense of early life stages of benthic marine invertebrates. J Chem Ecol. 2002;28:1987–2000.
Article
CAS
PubMed
Google Scholar
Lopanik N, Lindquist N, Targett N. Potent cytotoxins produced by a microbial symbiont protect host larvae from predation. Oecologia. 2004;139:131–9.
Article
PubMed
Google Scholar
Lopanik N, Targett N, Lindquist N. Ontogeny of a symbiont-produced chemical defense in Bugula neritina (Bryozoa). Mar Ecol Prog Ser. 2006;327:183–91.
Article
CAS
Google Scholar
Proksch P. Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon. 1994;32:639–55.
Article
CAS
PubMed
Google Scholar
Abdul Wahab M, Maldonado M, Luter H, Jones R, Ricardo G. Effects of sediment resuspension on the larval stage of the model sponge Carteriospongia foliascens. Sci Total Environ. 2019;695:133837.
Article
CAS
PubMed
Google Scholar
Ettinger-Epstein P, Whalan S, Battershill C, de Nys R. A hierarchy of settlement cues influences larval behaviour in a coral reef sponge. Mar Ecol Prog Ser. 2008;365:103–13.
Article
Google Scholar
Hodin J, Ferner M, Heyland A, Gaylord B. I feel that! Fluid dynamics and sensory aspects of larval settlement across scales. In: Carrier T, Reitzel A, Heyland A, editors. Evolutionary Ecology of Marine Invertebrate Larvae. Oxford: Oxford University Press; 2018.
Google Scholar
Young C. Behavior and locomotion during the dispersal phase of larval life. In: McEdward L, editor. Ecology of Marine Invertebrate Larvae. Boca Raton: CRC Press; 1995.
Chia F-S, Buckland-Nicks J, Young C. Locomotion of marine invertebrate larvae: a review. Can J Zool. 1984;62.
Pechenik J. Larval experience and latent effects—metamorphosis is not a new beginning. Integr Comp Biol. 2006;46:323–33.
Article
PubMed
Google Scholar
Carrier T, Reitzel A. Symbiotic life of echinoderm larvae. Front Ecol Evol. 2020;7:509.
Article
Google Scholar
Kohl K, Carey H. A place for host-microbe symbiosis in the comparative physiologist's toolbox. J Exp Biol. 2016;219:3496–504.
Article
PubMed
Google Scholar
Carrier T, Reitzel A. Convergent shifts in host-associated microbial communities across environmentally elicited phenotypes. Nat Commun. 2018;9:952.
Article
PubMed
PubMed Central
CAS
Google Scholar
Byrne M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol: Annu Rev. 2011;49:1–42.
Google Scholar
Byrne M, Przeslawski R. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr Comp Biol. 2013;53:582–96.
Article
CAS
PubMed
Google Scholar
Hoegh-Guldberg O, Mumby P, Hooten A, Steneck R, Greenfield P, Gomez E, et al. Coral reefs under rapid climate change and ocean acidification. Science. 2007;318:1737–42.
Article
CAS
PubMed
Google Scholar
Oliver E, Donat M, Burrows M, Moore P, Smale D, Alexander L, et al. Longer and more frequent marine heatwaves over the past century. Nat Commun. 2018;9:1324.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bennett H, Altenrath C, Woods L, Davy S, Webster N, Bell J. Interactive effects of temperature and pCO2 on sponges: from the cradle to the grave. Glob Chang Biol. 2017;23:2031–46.
Article
PubMed
Google Scholar
Luter H, Anderson M, Versteegen E, Laffy P, Uthicke S, Bell J, et al. Cross-generational effects of climate change on the microbiome of a photosynthetic sponge. Mol Ecol. 2020;22:4732–44.
CAS
Google Scholar
Webster N, Botte E, Soo R, Whalan S. The larval sponge holobiont exhibits high thermal tolerance. Environ Microbiol Rep. 2011;3:756–62.
Article
PubMed
Google Scholar
Webster N, Pantile R, Botté E, Abdo D, Andreakis N, Whalan S. A complex life cycle in a warming planet: gene expression in thermally stressed sponges. Mol Ecol. 2013;3:752–62.
Google Scholar
Luter H, Whalan S, Andreakis N, Wahab M, Botté E, Negri A, et al. The effects of crude oil and dispersant on the larval sponge holobiont. mSystems. 2019;4:e00743–19.
Article
PubMed
PubMed Central
Google Scholar
Sieber M, Pita L, Weiland-Bräuer N, Dirksen P, Wang J, Mortzfeld B, et al. Neutrality in the metaorganism. PLoS Biol. 2019;17:e3000298.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bishop C, Brandhorst B. On nitric oxide signaling, metamorphosis, and the evolution of biphasic life cycles. Evol Dev. 2003;5:542–50.
Article
CAS
PubMed
Google Scholar
Heyland A, Moroz L. Cross-kingdom hormonal signaling: an insight from thyroid hormone functions in marine larvae. J Exp Biol. 2005;208:4355–61.
Article
CAS
PubMed
Google Scholar
Ueda N, Richards G, Degnan B, Kranz A, Adamska M, Croll R, et al. An ancient role for nitric oxide in regulating the animal pelagobenthic life cycle: evidence from a marine sponge. Sci Rep. 2016;6:1–14.
Article
CAS
Google Scholar
Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier M, Mitros T, et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 2010;466:720–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fieth R, Gauthier M-E, Bayes J, Green K, Degnan S. Ontogenetic changes in the bacterial symbiont community of the tropical demosponge Amphimedon queenslandica: metamorphosis is a new beginning. Front Mar Sci. 2016;3:228.
Article
Google Scholar
Gauthier M-E, Watson J, Degnan S. Draft genomes shed light on the dual bacterial symbiosis that dominates the microbiome of the coral reef sponge Amphimedon queenslandica. Front Mar Sci. 2016;3:196.
Article
Google Scholar
Song H, Hewitt O, Degnan S. Arginine biosynthesis by a bacterial symbiont enables nitric oxide production and facilitates larval settlement in the marine-sponge host. Curr Biol. 2021;31:433–7.
Article
CAS
PubMed
Google Scholar
Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol. 2008;6:725–40.
Article
CAS
PubMed
Google Scholar
Hadfield M, Paul V. Natural chemical cues for settlement and metamorphosis of marine-invertebrate larvae. In: McClintock J, Baker B, editors. Marine Chemical Ecology. Boca Raton: CRC Press; 2001.
Cavalcanti G, Alker A, Delherbe N, Malter K, Shikuma N. The influence of bacteria on animal metamorphosis. Annu Rev Microbiol. 2020;74:137–58.
Article
CAS
PubMed
Google Scholar
Pawlik J. Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr Mar Biol: Annu Rev. 1992;30:273–335.
Google Scholar
Whalan S, Webster N. Sponge larval settlement cues: the role of microbial biofilms in a warming ocean. Sci Rep. 2014;4:4072.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woollacott R, Hadfield M. Induction of metamorphosis in larvae of a sponge. Invertebr Biol. 1996;115:257–62.
Article
Google Scholar
Shikuma N, Pilhofer M, Weiss G, Hadfield M, Jensen G, Newman D. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science. 2014;343:529–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Unabia C, Hadfield M. Role of bacteria in larval settlement and metamorphosis of the polychaete Hydroides elegans. Mar Biol. 1999;133:55–64.
Article
Google Scholar
Ericson C, Eisenstein F, Medeiros J, Malter K, Cavalcanti G, Zeller R, et al. A contractile injection system stimulates tubeworm metamorphosis by translocating a proteinaceous effector. Elife. 2019;8:e46845.
Article
PubMed
PubMed Central
Google Scholar
Amano S, Hori I. Metamorphosis of calcareous sponges II. Cell rearrangement and differentiation in metamorphosis. Invertebr Reprod Dev. 1993;24:13–26.
Article
Google Scholar
Bergquist P, Green C. An ultrastructural study of settlement and metamorphosis in sponge larvae. Cahiers Biol Mar. 1977;18:289–302.
Google Scholar
Conaco C, Neveu P, Zhou H, Arcila M, Degnan S, Degnan B, et al. Transcriptome profiling of the demosponge Amphimedon queenslandica reveals genome-wide events that accompany major life cycle transitions. BMC Genomics. 2012;13:209.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leys S, Kamarul Zaman A, Boury-Esnault N. Three-dimensional fate mapping of larval tissues through metamorphosis in the glass sponge Oopsacas minuta. Invertebr Biol. 2016;135:259–72.
Article
Google Scholar
Nakanishi N, Stoupin D, Degnan S, Degnan B. Sensory flask cells in sponge larvae regulate metamorphosis via calcium signaling. Integr Comp Biol. 2015;55:1018–27.
Article
CAS
PubMed
Google Scholar
Bosch T, Guillemin K, McFall-Ngai M. Evolutionary “experiments” in symbiosis: the study of model animals provides insights into the mechanisms underlying the diversity of host–microbe interactions. BioEssays. 2019;41:1800256.
Article
Google Scholar
Douglas A. Simple animal models for microbiome research. Nat Rev Microbiol. 2019;17:764–75.
Article
CAS
PubMed
Google Scholar
Ruby E. Symbiotic conversations are revealed under genetic interrogation. Nat Rev Microbiol. 2008;6:752–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bosch T. The model zoologist: how should we think about animals, model animals, and non-model model animals? Zoology. 2020;138:125749.
Article
PubMed
Google Scholar
Bosch T, McFall-Ngai M. Metaorganisms as the new frontier. Zoology. 2011;114:185–90.
Article
PubMed
Google Scholar
Strathmann M. Reproduction and development of marine invertebrates of the northern Pacific coast: data and methods for the study of eggs, embryos, and larvae. Seattle: University of Washington Press; 1987.
Strathmann R. Culturing larvae of marine invertebrates. In: Carroll D, Stricker S, editors. Developmental Biology of the Sea Urchin and Other Marine Invertebrates. Berlin/Heidelberg: Springer; 2014.
Hodin J, Heyland A, Mercier A, Pernet B, Cohen D, Hamel J-F, et al. Culturing echinoderm larvae through metamorphosis. In: Foltz K, Hamdoun A, editors. Methods in Cell Biology, vol. 150; 2019.
Google Scholar
Kirchhoff N, Eddy S, Brown N. Out-of-season gamete production in Strongylocentrotus droebachiensis: photoperiod and temperature manipulation. Aquaculture. 2010;303:77–85.
Article
Google Scholar
Darling J, Reitzel AM, Burton P, Mazza M, Ryan JF, Sullivan JC, et al. Rising starlet: the starlet sea anemone, Nematostella vectensis. Bioessays. 2005;27:211–21.
Fritzenwanker J, Technau U. Induction of gametogenesis in the basal cnidarian Nematostella vectensis (Anthozoa). Dev Genes Evol. 2002;212:99–103.
Article
PubMed
Google Scholar
Chaves-Fonnegra A, Maldonado M, Blackwelder P, Lopez J. Asynchronous reproduction and multi-spawning in the coral-excavating sponge Cliona delitrix. J Mar Biol Assoc UK. 2015;96:515–28.
Article
Google Scholar
Witter U, Barthel D, Tendal O. The reproductive cycle of the sponge Halichondria panicea Pallas (1766) and its relationship to temperature and salinity. J Exp Mar Biol Ecol. 1994;183:41–52.
Article
Google Scholar
Wahab M, de Nys R, Webster N, Whalan S. Larval behaviours and their contribution to the distribution of the intertidal coral reef sponge Carteriospongia foliascens. PLoS One. 2014;9:e98181.
Article
PubMed
PubMed Central
CAS
Google Scholar
Franzenburg S, Walter J, Kunzel S, Wang J, Baines J, Bosch T, et al. Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc Natl Acad Sci U S A. 2013;110:E3730–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Domin H, Zurita-Gutiérrez Y, Scotti M, Buttlar J, Hentschel U, Fraune S. Predicted bacterial interactions affect in vivo microbial colonization dynamics in Nematostella. Front Microbiol. 2018;9:728.
Article
PubMed
PubMed Central
Google Scholar
Schuh N, Carrier T, Schrankel C, Reitzel A, Heyland A, Rast J. Bacterial exposure mediates developmental plasticity and resistance of lethal Vibrio lentus infection in purple sea urchin (Strongylocentrotus purpuratus) larvae. Front Immunol. 2020;10:3014.
Leigh B, Liberti A, Dishaw L. Generation of germ-free Ciona intestinalis for studies of gut-microbe interactions. Front Microbiol. 2016;7:2092.
Boje A. Die etablierung einer reproduzierbaren methode, um sterile larven des seeigels Strongylocentrotus purpuratus zu produzieren: Christian-Albrechts-Universität zu Kiel; 2020.
Google Scholar
Fraune S, Anton-Erxleben F, Augustin R, Franzenburg S, Knop M, Schröder K, et al. Bacteria–bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance. ISME J. 2014;9:1543–56.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pham L, Kanther M, Semova I, Rawls J. Methods for generating and colonizing gnotobiotic zebrafish. Nat Protoc. 2008;3:1862–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubin-Blum M, Antony C, Sayavedra L, Martínez-Pérez C, Birgel D, Peckmann J, et al. Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts. ISME J. 2019;13:1209–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas T, Rusch D, DeMaere M, Yung P, Lewis M, Halpern A, et al. Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J. 2010;4:1557–67.
Article
CAS
PubMed
Google Scholar
Radax R, Rattei T, Lanzen A, Bayer C, Rapp H, Urich T, et al. Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community. Environ Microbiol. 2012;14:1308–24.
Ikmi A, McKinney S, Delventhal K, Gibson M. TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun. 2014;5:5486.
Article
CAS
PubMed
Google Scholar
Lin C-Y, Su Y-H. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system. Dev Biol. 2016;409:420–8.
Article
CAS
PubMed
Google Scholar
Neal S, de Jong D, Seaver E. CRISPR/CAS9 mutagenesis of a single r-opsin gene blocks phototaxis in a marine larva. Proc R Soc B. 2019;286:20182491.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geier B, Sogin E, Michellod D, Janda M, Kompauer M, Spengler B, et al. Spatial metabolomics of in situ host–microbe interactions at the micrometre scale. Nat Microbiol. 2020;5:498–510.
Article
CAS
PubMed
Google Scholar
Friedman J, Alm E. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2013;8:e1002687.
Article
CAS
Google Scholar
Kurtz Z, Müller C, Miraldi E, Littman D, Blaser M, Bonneau R. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bang C, Dagan T, Deines P, Dubilier N, Duschl W, Fraune S, et al. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology. 2018;127:1–19.
Article
PubMed
Google Scholar
Vijayan N, Lema KA, Nedved BT, Hadfield MG. Microbiomes of the polychaete Hydroides elegans (Polychaeta: Serpulidae) across its life-history stages. Mar Biol. 2019;166:19.
Article
CAS
Google Scholar
Salerno J, Macko S, Hallam S, Bright M, Won Y-J, Mckiness Z, et al. Characterization of symbiont populations in life-history stages of mussels from chemosynthetic environments. Biol Bull. 2005;208:145–55.
Article
PubMed
Google Scholar
Sipe A, Wilbur A, Cary S. Bacterial symbiont transmission in the wood-boring shipworm Bankia setacea (Bivalvia: Teredinidae). Appl Environ Microbiol. 2000;66:1685–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woollacott R. Association of bacteria with bryozoan larvae. Mar Biol. 1981;65:155–8.
Article
Google Scholar
Apprill A, Marlow HQ, Martindale MQ, Rappe MS. Specificity of associations between bacteria and the coral Pocillopora meandrina during early development. Appl Environ Microbiol. 2012;78:7467–75.
Sharp KH, Distel D, Paul VJ. Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J. 2012;6:790–801.
Gil-Turnes M, Hay M, Fenical W. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science. 1989;246:116–8.
Article
CAS
PubMed
Google Scholar
Guri M, Durand L, Cueff-Gauchard V, Zbinden M, Crassous P, Bruce Shillito B, et al. Acquisition of epibiotic bacteria along the life cycle of the hydrothermal shrimp Rimicaris exoculata. ISME J. 2012;6:597–609.
Article
CAS
PubMed
Google Scholar
Carrier T, Leigh B, Deaker D, Devens H, Wray G, Bordenstein S, et al. Microbiome reduction and endosymbiont gain from a switch in sea urchin life-history. Proc Natl Acad Sci. 2021;118:e2022023118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klussmann-Kolb A, Brodie G. Internal storage and production of symbiotic bacteria in the reproductive system of a tropical marine gastropod. Mar Biol. 1999;133:443–7.
Article
Google Scholar
Carrier T, Reitzel A. Bacterial community dynamics during embryonic and larval development of three confamilial echinoids. Mar Ecol Prog Ser. 2019;611:179–88.
Article
CAS
Google Scholar
Cerra A, Byrne M, Hoegh-Guldberg O. Developments of the hyaline layer around the planktonic embryos and larvae of the asteroid Patiriella calcar and the presence of associated bacteria. Invertebr Reprod Dev. 1997;31:337–43.
Article
Google Scholar
Pradea T. A mixed self: the role of symbiosis in development. Biol Theory. 2011;6:80–8.
Article
Google Scholar
Gilbert SF, Sapp J, Tauber AI. A symbiotic view of life: we have never been individuals. Q Rev Biol. 2012;87:325–41.
Article
PubMed
Google Scholar
Gilbert S. Developmental plasticity and developmental symbiosis: the return of Evo-Devo. Curr Top Dev Biol. 2016;116:415–33.
Article
PubMed
Google Scholar
Vacelet J. Planktonic armoured propagules of the excavating sponge Alectona (Porifera: Demospongiae) are larvae: evidence from Alectona wallichii and A. mesatlantica sp. nov. Memoirs Queensland Museum. 1999;14:627–42.
Google Scholar
Gallissian M, Vacelet J. Ultrastructure de quelques stades de l’ovogenese de spongiares de genre Verongia (Dictyoceratida). ilnnales des Sciences Natllrelles, vol. 18; 1976.
Google Scholar
Usher K, Kuo J, Fromont J, Sutton D. Vertical transmission of cyanobacterial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Hydrobiologia. 2001;461:15–23.
Article
Google Scholar
Lepore E, Sciscioli M, Liaci L, Santarelli G, Gaino G. Sexual reproduction of Cinachyra tarentina (Porifera, Demospongiae). Italian J Zool. 2000;67:153–8.
Article
Google Scholar
Vacelet J, Fiala-Medioni A, Fisher C, Boury-Esnault N. Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge. Mar Ecol Prog Ser. 1996;145:77–85.
Article
Google Scholar
Mariani S, Piscitelli M, Uriz M. Temporal and spatial co-occurrence in spawning and larval release of Cliona viridis (Porfiera: Hadromerida). J Mar Biol Assoc UK. 2001;81:565–7.
Article
Google Scholar
Sharp K, Eam B, Faulkner D, Haygood M. Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microbiol. 2007;73:622–9.
Uriz M, Turon X, Becerro M. Morphology and ultrastructure of the swimming larvae of Crambe crambe (Demospongiae, Poecilosclerida). Invertebr Biol. 2005;120:295–307.
Article
Google Scholar
Koutsouveli V, Taboada S, Moles J, Cristobo J, Rios P, Bertran A, et al. Insights into the reproduction of some Antarctic dendroceratid, poecilosclerid, and haplosclerid demosponges. PLoS One. 2018;13:e0192267.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bergman O, Haber M, Mayzel B, Anderson M, Shpigel M, Hill R, et al. Marine-based cultivation of Diacarnus sponges and the bacterial community composition of wild and maricultured sponges and their larvae. Marine Biotechnol. 2011;13:1169–82.
Article
CAS
Google Scholar
Oren M, Steindler L, Ilan M. Transmission, plasticity and the molecular identification of cyanobacterial symbionts in the Red Sea sponge Diacarnus erythraenus. Mar Biol. 2005;148:35–41.
Article
CAS
Google Scholar
Sciscioli M, Lepore E. Indagine ultrastructturale sugli ovociti di Erylus discophorus (Schmidt) (Porfiera, Tetractinellida). Oebalia. 1989;15:939–41.
Google Scholar
Gallissian M. Etude ultrastructurale du developpement embryonnaire chez Grontia compressa F. (Porifera, Calcarea). Arch d’Anatomie Microsc. 1983;72:59–75.
CAS
Google Scholar
Gerdts G, Wichels A, Wurst S, Schutt C. Bacterial diversity in the breadcrumb sponge Halichondria panicea (Pallas). In: Papers contributed to the VI International Sponge Conference, vol. 66-67; 2002. p. 78.
Google Scholar
Ereskovsky A, Gonobobleva E. New data on embryonic development of Halisarca dujardini Johnston, 1842 (Demospongiae, Halisarcida). Zoosystema. 2000;22:355–68.
Google Scholar
Ereskovsky A, Boury-Esnault N. Cleavage pattern in Oscarella species (Porifera, Demospongiae, Homoscleromorpha): transmission of maternal cells and symbiotic bacteria. J Nat Hist. 2002;36:1761–75.
Article
Google Scholar
Boury-Esnault N, Ereskovsky A, Bezac C, Tokina D. Larval development in the Homoscleromorpha (Porifera, Demospongiae). Invertebr Biol. 2003;122:187–202.
Article
Google Scholar
Ereskovsky A, Tokina D. Morphology and fine structure of the swimming larvae of Ircinia oros (Porifera, Demospongiae, Dictyoceratida). Invertebr Reprod Dev. 2004;45:137–50.
Article
Google Scholar
Steger D, Ettinger-Epstein P, Whalan S, Hentschel U, de Nys R, Wagner M, et al. Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges. Environ Microbiol. 2008;10:1087–94.
Article
CAS
PubMed
Google Scholar
Vishnyakov A, Ereskovsky A. Bacterial symbionts as an additional cytological marker for identification of sponges without a skeleton. Mar Biol. 2009;156:1625–32.
Article
Google Scholar
Gallissian M, Vacelet J. Ultrastructure of the oocyte and embryo of the calcified sponge, Petrobiona massiliana (Porifera, Calcarea). Zoomorphology. 1992;112:133–41.
Article
Google Scholar
Rodrigues de Oliveira B, Lopes I, Canellas A, Muricy G, Dobson A, Laport M. Mot that close to mommy: horizontal transmission majorly influences the microbiota associated with the marine sponge Plakina cyanorosea. Microorganisms. 2020:1–24.
Ruiz C, Villegas-Plazas M, Thomas O, Junca H, Perez T. Specialized microbiome of the cave-dwelling sponge Plakina kanaky (Porifera, Homoscleromorpha). FEMS Microbiol Ecol. 2020;96:fiaa043.
Article
CAS
PubMed
Google Scholar
Kaye H. Reproduction in West Indian commercial sponges: oogensis, larval develoment and behavior. In: Rutzler K, editor. New Perspectives in Sponge Biology. Washington DC: Smithsonian Institution Press; 1990. p. 161–9.
Lee O, Chui P, Wong Y, Pawlik J, Qian P. Evidence for vertical transmission of bacterial symbionts from adult to embryo in the Caribbean sponge Svenzea zeai. Appl Environ Microbiol. 2009;75:6147–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rutzler K, van Soest RW, Alvarez B. Svenzea zeai, a Caribbean reef sponge with a giant larva, and Scopalina ruetzleri: a comparative fine-structural approach to classification (Demospongiae, Halichondrida, Dictyonellidae). Invertebr Biol. 2003;122:203–22.
Article
Google Scholar
Wang J-T, Hirose E, Hsu C-M, Chen Y-Y, Meng P-J, Chen C. A coral-killing sponge, Terpios hoshinota, releases larvae harboring cyanobacterial symbionts: an implication of dispersal. Zool Stud. 2012;51:314–20.
Google Scholar
Sciscioli M, Lepore E, Mastrodonato M, Scalera Liaci L, Gaino E. Ultrastructural study of the mature oocyte of Tethya aurantium (Porifera: Demospongiae). Cahiers Biol Mar. 2002;43:1–7.
Google Scholar
Gaino E, Burlando B, Buffa P, Sará M. Ultrastructural study of the mature egg of Tethya citrina Sará & Melone (Porifera, Demospongiae). Gamete Res. 1987;16:259–65.
Article
CAS
PubMed
Google Scholar
Waterworth S, Jiwaji M, Kalinski J-C, Parker-Nance S, Dorrington R. A place to call home: an analysis of the bacterial communities in two Tethya rubra Samaai and Gibbons 2005 populations in Algoa Bay, South Africa. Mar Drugs. 2017;15:95.
Article
PubMed Central
CAS
Google Scholar
Gaino E, Sara M. An ultrastructural comparative study of the eggs of two species of Tethya (Porifera, Demospongiae). Invertebr Reprod Dev. 1994;26:99–106.
Article
Google Scholar
Collin R, Mobley A, Lopez L, Leys S, Diaz M, Thacker R. Phototactic responses of larvae from the marine sponges Neopetrosia proxima and Xestospongia bocatorensis (Haplosclerida: Petrosiidae). Invertebr Biol. 2010;129:121–8.
Article
Google Scholar
Busch K, Wurz E, Rapp H, Bayer K, Franke A, Hentschel U. In: Information NCfB, editor. Chloroflexi dominate the deep-sea golf ball sponges Craniella zetlandica and Craniella infrequens throughout different life stages; 2020.
Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann G, Cerrano C, et al. In: GitHub, editor. The sponge microbiome project; 2017.
Chapter
Google Scholar
Schöttner S, Hoffmann F, Cárdenas P, Rapp H, Boetius A, Ramette A. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS One. 2013;8:e55505.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rützler K, Muzik K. Terpios hoshinota, a new cyanobacteriosponge threatening Pacific reefs. Scientia Marina. 1993;57:395–403.
Google Scholar