Grottoli AG, Rodrigues LJ, Palardy JE. Heterotrophic plasticity and resilience in bleached corals. Nature. 2006;440(7088):1186–9.
Article
CAS
PubMed
Google Scholar
Berkelmans R, van Oppen MJH. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc B. 2006;273(1599):2305–12.
Article
PubMed
PubMed Central
Google Scholar
Muscatine L, Porter JW. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience. 1977;27(7):454–60.
Article
Google Scholar
Davy SK, Allemand D, Weis VM. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev. 2012;76(2):229–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stat M, Carter D, Hoegh-Guldberg O. The evolutionary history of Symbiodinium and scleractinian hosts –symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol. 2006;8(1):23–43.
Article
Google Scholar
Freudenthal HD. Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: taxonomy, life cycle, and morphology. J Protozool. 1962;9(1):45–52.
Article
Google Scholar
Trench RK, Blank RJ. Symbiodinium microadriaticum Freudenthal, Symbiodinium goreauii sp. nov., Symbiodinium kawagutii sp. nov. and Symbiodinium pilosum sp. nov.—gymnodinioid dinoflagellate symbionts of marine invertebrates. J Phycol. 1987;23(3):469–81.
Article
Google Scholar
Cui G, Liew YJ, Li Y, Kharbatia N, Zahran NI, Emwas AH, et al. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLoS Genet. 2019;15(6):e1008189.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ezzat L, Maguer JF, Grover R, Ferrier-Pages C. New insights into carbon acquisition and exchanges within the coral-dinoflagellate symbiosis under NH4+ and NO3- supply. Proc Biol Sci. 1812;2015(282):20150610.
Google Scholar
Falkowski PG, Dubinsky Z, Muscatine L, Mccloskey L. Population control in symbiotic corals. BioScience. 1993;43(9):606–11.
Article
Google Scholar
Matthews JL, Crowder CM, Oakley CA, Lutz A, Roessner U, Meyer E, et al. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proc Natl Acad Sci U S A. 2017;114(50):13194–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medrano E, Merselis DG, Bellantuono AJ, Rodriguez-Lanetty M. Proteomic basis of symbiosis: a heterologous partner fails to duplicate homologous colonization in a novel Cnidarian-Symbiodiniaceae mutualism. Front Microbiol. 2019;10:1153.
Article
PubMed
PubMed Central
Google Scholar
Miller DJ, Yellowlees D. Inorganic nitrogen uptake by symbiotic marine cnidarians: a critical review. Proc R Soc Lond B. 1989;237(1286):109–25.
Article
Google Scholar
Radecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 2015;23(8):490–7.
Article
PubMed
CAS
Google Scholar
Song PC, Wu TM, Hong MC, Chen MC. Elevated temperature inhibits recruitment of transferrin-positive vesicles and induces iron-deficiency genes expression in Aiptasia pulchella host-harbored Symbiodinium. Comp Biochem Physiol B Biochem Mol Biol. 2015;188:1–7.
Article
CAS
PubMed
Google Scholar
Wang J, Douglas AE. Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis? J Exp Biol. 1998;201(Pt 16):2445–53.
Article
PubMed
Google Scholar
Jiang PL, Pasaribu B, Chen CS. Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses. PLoS One. 2014;9(1):e87416.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pasaribu B, Li YS, Kuo PC, Lin IP, Tew KS, Tzen JTC, et al. The effect of temperature and nitrogen deprivation on cell morphology and physiology of Symbiodinium. Oceanologia. 2016;58(4):272–8.
Article
Google Scholar
Rodriguez IB, Ho TY. Trace metal requirements and interactions in Symbiodinium kawagutii. Front Microbiol. 2018;9:142.
Article
PubMed
PubMed Central
Google Scholar
Rodriguez IB, Lin SJ, Ho JX, Ho TY. Effects of trace metal concentrations on the growth of the coral endosymbiont Symbiodinium kawagutii. Front Microbiol. 2016;7:82.
Article
PubMed
PubMed Central
Google Scholar
Mojzes P, Gao L, Ismagulova T, Pilatova J, Moudrikova S, Gorelova O, et al. Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells. Proc Natl Acad Sci U S A. 2020;117(51):32722–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanckaert ACA, Reef R, Pandolfi JM, Lovelock CE. Variation in the elemental stoichiometry of the coral-zooxanthellae symbiosis. Coral Reefs. 2020;39(4):1071–9.
Article
Google Scholar
Godinot C, Ferrier-Pages C, Montagna P, Grover R. Tissue and skeletal changes in the scleractinian coral Stylophora pistillata Esper 1797 under phosphate enrichment. J Exp Mar Biol Ecol. 2011;409(1-2):200–7.
Article
Google Scholar
Krueger T, Horwitz N, Bodin J, Giovani ME, Escrig S, Fine M, et al. Intracellular competition for nitrogen controls dinoflagellate population density in corals. Proc Biol Sci. 2020;287(1922):20200049.
CAS
PubMed
PubMed Central
Google Scholar
Rosset S, Wiedenmann J, Reed AJ, D’Angelo C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar Pollut Bull. 2017;118(1-2):180–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fagoonee II, Wilson HB, Hassell MP, Turner JR. The dynamics of zooxanthellae populations: a long-term study in the field. Science. 1999;283(5403):843–5.
Article
CAS
PubMed
Google Scholar
D’Elia CF, Domotor SL, Webb KL. Nutrient uptake kinetics of freshly isolated zooxanthellae. Mar Biol. 1983;75(2-3):157–67.
Article
Google Scholar
Gunnersen J, Yellowlees D, Miller DJ. The ammonium/methylammonium uptake system of Symbiodinium-microadriaticum. Mar Biol. 1988;97(4):593–6.
Article
CAS
Google Scholar
Jackson AE, Yellowlees D. Phosphate uptake by zooxanthellae isolated from corals. Proc R Soc Lond B. 1990;242(1305):201–4.
Article
Google Scholar
Wilkerson FP, Muscatine L. Uptake and assimilation of dissolved inorganic nitrogen by a symbiotic sea anemone. Proc R Soc Lond B. 1984;221(1222):71–86.
Article
CAS
Google Scholar
Catmull J, Yellowlees D, Miller DJ. Nadp+-dependent glutamate dehydrogenase from Acropora formosa: purification and properties. Mar Biol. 1987;95(4):559–63.
Article
CAS
Google Scholar
D’Elia CF. The uptake and release of dissolved phosphorus by reef corals. Limnol Oceanogr. 1977;22(2):301–15.
Article
Google Scholar
Ferrier-Pages C, Schoelzke V, Jaubert J, Muscatine L, Hoegh-Guldberg O. Response of a scleractinian coral, Stylophora pistillata, to iron and nitrate enrichment. J Exp Mar Biol Ecol. 2001;259(2):249–61.
Article
CAS
PubMed
Google Scholar
Godinot C, Ferrier-Pages C, Grover R. Control of phosphate uptake by zooxanthellae and host cells in the scleractinian coral Stylophora pistillata. Limnol Oceanogr. 2009;54(5):1627–33.
Article
Google Scholar
Male KB, Storey KB. Kinetic characterization of NADP-specific glutamate dehydrogenase from the sea anemone, Anthopleura xanthogrammica: control of amino acid biosynthesis during osmotic stress. Comp Biochem Physiol. 1983;76(4):823–9.
Google Scholar
Rees TAV. The green hydra symbiosis and ammonium. I. The role of the host in ammonium assimilation and its possible regulatory significance. Proc R Soc Lond B. 1986;229(1256):299–314.
Article
CAS
Google Scholar
Decelle J. New perspectives on the functioning and evolution of photosymbiosis in plankton: mutualism or parasitism? Commun Integr Biol. 2013;6(4):e24560.
Article
PubMed
PubMed Central
CAS
Google Scholar
Knowlton N, Rohwer F. Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat. 2003;162(4 Suppl):S51–62.
Article
PubMed
Google Scholar
Li T, Lin X, Yu L, Lin S, Rodriguez IB, Ho TY. RNA-seq profiling of Fugacium kawagutii reveals strong responses in metabolic processes and symbiosis potential to deficiencies of iron and other trace metals. Sci Total Environ. 2020;705:135767.
Article
CAS
PubMed
Google Scholar
Lin S, Yu L, Zhang H. Transcriptomic responses to thermal stress and varied phosphorus conditions in Fugacium kawagutii. Microorganisms. 2019;7(4):96.
Article
CAS
PubMed Central
Google Scholar
Xiang T, Lehnert E, Jinkerson RE, Clowez S, Kim RG, DeNofrio JC, et al. Symbiont population control by host-symbiont metabolic interaction in Symbiodiniaceae-cnidarian associations. Nat Commun. 2020;11(1):108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radecker N, Pogoreutz C, Gegner HM, Cardenas A, Roth F, Bougoure J, et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc Natl Acad Sci U S A. 2021;118(5):e2022653118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koike K, Jimbo M, Sakai R, Kaeriyama M, Muramoto K, Ogata T, et al. Octocoral chemical signaling selects and controls dinoflagellate symbionts. Biol Bull. 2004;207(2):80–6.
Article
CAS
PubMed
Google Scholar
Liew YJ, Aranda M, Voolstra CR. Reefgenomics.org - a repository for marine genomics data. Database (Oxford). 2016;2016:baw152.
Article
Google Scholar
Wong JCY, Enriquez S, Baker DM. Towards a trait-based understanding of Symbiodiniaceae nutrient acquisition strategies. Coral Reefs. 2021;40(2):625–39.
Article
Google Scholar
Kopp C, Pernice M, Domart-Coulon I, Djediat C, Spangenberg JE, Alexander DT, et al. Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. mBio. 2013;4(3):e00052–13.
CAS
PubMed
PubMed Central
Google Scholar
Clode PL, Saunders M, Maker G, Ludwig M, Atkins CA. Uric acid deposits in symbiotic marine algae. Plant Cell Environ. 2009;32(2):170–7.
Article
CAS
PubMed
Google Scholar
Ho TY, Quigg A, Finkel ZV, Milligan AJ, Wyman K, Falkowski PG, et al. The elemental composition of some marine phytoplankton. J Phycol. 2003;39(6):1145–59.
Article
CAS
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 2018;24(8):1277–89.
Article
CAS
PubMed
Google Scholar
Grover R, Maguer JF, Reynaud-Vaganay S, Ferrier-Pages C. Uptake of ammonium by the scleractinian coral Stylophora pistillata: effect of feeding, light, and ammonium concentrations. Limnol Oceanogr. 2002;47(3):782–90.
Article
Google Scholar
Grover R, Maguer JF, Allemand D, Ferrier-Pages C. Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata. J Exp Biol. 2008;211(Pt 6):860–5.
Article
CAS
PubMed
Google Scholar
Fitt WK, Trench RK. The relation of diel patterns of cell-division to diel patterns of motility in the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal in culture. New Phytol. 1983;94(3):421–32.
Article
Google Scholar
Wang LH, Liu YH, Ju YM, Hsiao YY, Fang LS, Chen CS. Cell cycle propagation is driven by light-dark stimulation in a cultured symbiotic dinoflagellate isolated from corals. Coral Reefs. 2008;27(4):823–35.
Article
CAS
Google Scholar
Morris LA, Voolstra CR, Quigley KM, Bourne DG, Bay LK. Nutrient availability and metabolism affect the stability of coral-Symbiodiniaceae symbioses. Trends Microbiol. 2019;27(8):678–89.
Article
CAS
PubMed
Google Scholar
Smith GJ, Muscatine L. Cell cycle of symbiotic dinoflagellates: variation in G(1) phase-duration with anemone nutritional status and macronutrient supply in the Aiptasia pulchella-Symbiodinium pulchrorum symbiosis. Mar Biol. 1999;134(3):405–18.
Article
Google Scholar
Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. Front Plant Sci. 2015;6:899.
Article
PubMed
PubMed Central
Google Scholar
Alipanah L, Rohloff J, Winge P, Bones AM, Brembu T. Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum. J Exp Bot. 2015;66(20):6281–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saroussi S, Sanz-Luque E, Kim RG, Grossman AR. Nutrient scavenging and energy management: acclimation responses in nitrogen and sulfur deprived Chlamydomonas. Curr Opin Plant Biol. 2017;39:114–22.
Article
CAS
PubMed
Google Scholar
Sproles AE, Kirk NL, Kitchen SA, Oakley CA, Grossman AR, Weis VM, et al. Phylogenetic characterization of transporter proteins in the cnidarian-dinoflagellate symbiosis. Mol Phylogenet Evol. 2018;120:307–20.
Article
CAS
PubMed
Google Scholar
Tivey TR, Parkinson JE, Mandelare PE, Adpressa DA, Peng W, Dong X, et al. N-linked surface glycan biosynthesis, composition, inhibition, and function in cnidarian-dinoflagellate symbiosis. Microb Ecol. 2020;80(1):223–36.
Article
CAS
PubMed
Google Scholar
Raven JA, Richardson K. Dinophyte flagella - a cost-benefit-analysis. New Phytol. 1984;98(2):259–76.
Article
Google Scholar
Taylor TB, Mulley G, Dills AH, Alsohim AS, McGuffin LJ, Studholme DJ, et al. Evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system. Science. 2015;347(6225):1014–7.
Article
CAS
PubMed
Google Scholar
Roberts KR. The flagellar apparatus and cytoskeleton of dinoflagellates - organization and use in systematics. Syst Assoc Spec. 1991;45:285–302.
Google Scholar
Okamoto N, Keeling PJ. A comparative overview of the flagellar apparatus of dinoflagellate, perkinsids and colpodellids. Microorganisms. 2014;2(1):73–91.
Article
PubMed
PubMed Central
Google Scholar
Venglarik CJ, Gao Z, Lu X. Evolutionary conservation of Drosophila polycystin-2 as a calcium-activated cation channel. J Am Soc Nephrol. 2004;15(5):1168–77.
Article
CAS
PubMed
Google Scholar
Liang G, Yang J, Wang Z, Li Q, Tang Y, Chen XZ. Polycystin-2 down-regulates cell proliferation via promoting PERK-dependent phosphorylation of eIF2alpha. Hum Mol Genet. 2008;17(20):3254–62.
Article
CAS
PubMed
Google Scholar
Huang K, Diener DR, Mitchell A, Pazour GJ, Witman GB, Rosenbaum JL. Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella. J Cell Biol. 2007;179(3):501–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pazour GJ, Agrin N, Leszyk J, Witman GB. Proteomic analysis of a eukaryotic cilium. J Cell Biol. 2005;170(1):103–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wykoff DD, Davies JP, Melis A, Grossman AR. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol. 1998;117(1):129–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aihara Y, Maruyama S, Baird AH, Iguchi A, Takahashi S, Minagawa J. Green fluorescence from cnidarian hosts attracts symbiotic algae. Proc Natl Acad Sci U S A. 2019;116(6):2118–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sorek M, Diaz-Almeyda EM, Medina M, Levy O. Circadian clocks in symbiotic corals: the duet between Symbiodinium algae and their coral host. Mar Genomics. 2014;14:47–57.
Article
PubMed
Google Scholar
Sorek M, Schnytzer Y, Ben-Asher HW, Caspi VC, Chen CS, Miller DJ, et al. Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium. Microbiome. 2018;6(1):83.
Article
PubMed
PubMed Central
Google Scholar
Maruyama S, Weis VM. Limitations of using cultured algae to study cnidarian-algal symbioses and suggestions for future studies. J Phycol. 2021;57(1):30–8.
Article
PubMed
Google Scholar
Guillard RRL. Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH, editors. Culture of Marine Invertebrate Animals: Proceedings — 1st Conference on Culture of Marine Invertebrate Animals Greenport. Boston: Springer US; 1975. p. 29–60.
Chapter
Google Scholar
Krediet CJ, DeNofrio JC, Caruso C, Burriesci MS, Cella K, Pringle JR. Rapid, precise, and accurate counts of Symbiodinium cells using the Guava flow cytometer, and a comparison to other methods. PLoS One. 2015;10(8):e0135725.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen JE, Cui G, Wang X, Liew YJ, Aranda M. Recent expansion of heat-activated retrotransposons in the coral symbiont Symbiodinium microadriaticum. ISME J. 2018;12(2):639–43.
Article
CAS
PubMed
Google Scholar
Liew YJ, Zoccola D, Li Y, Tambutte E, Venn AA, Michell CT, et al. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci Adv. 2018;4(6):eaar8028.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hume BCC, Smith EG, Ziegler M, Warrington HJM, Burt JA, LaJeunesse TC, et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Resour. 2019;19(4):1063–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7.
Article
CAS
PubMed
Google Scholar
Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep. 2016;6:39734.
Article
CAS
PubMed
PubMed Central
Google Scholar
TrimGalore. https://github.com/FelixKrueger/TrimGalore. Accessed 20 Apr 2022.
Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017;14(7):687–90.
Article
CAS
PubMed
Google Scholar
Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.
Article
PubMed
PubMed Central
Google Scholar
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9.
Article
CAS
PubMed
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.
Article
CAS
PubMed
Google Scholar
Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, et al. TrackMate: an open and extensible platform for single-particle tracking. Methods. 2017;115:80–90.
Article
CAS
PubMed
Google Scholar
Transcriptomic response of Symbiodinium microadriaticum to long-term nutrient stresses. NCBI; 2022, https://www.ncbi.nlm.nih.gov/bioproject/PRJNA613780. Accessed 20 Apr 2022.
Epigenetic changes in the coral Stylophora pistillata in response to ocean acidification. NCBI; 2017, https://www.ncbi.nlm.nih.gov/bioproject/PRJNA386774. Accessed 20 Apr 2022.