Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, et al. High and rising economic costs of biological invasions worldwide. Nature. 2021;592:571–85.
Article
CAS
PubMed
Google Scholar
Kornberg H, Williamson MH. Quantitative aspects of the ecology of biological invasions. London: London Royal Society; 1987.
Google Scholar
Shigesada N, Kawasaki K. Biological invasions: theory and practice. Oxford: Oxford University Press; 1997.
Google Scholar
Lu M, Miller DR, Sun JH. Cross-attraction between an exotic and a native pine bark beetle: a novel invasion mechanism? PLoS One. 2007;2:e1302.
Article
PubMed
PubMed Central
CAS
Google Scholar
Elton CS. The ecology of invasion by animals and plants. Chicago: The University of Chicago Press; 1958.
Book
Google Scholar
Williamson MH, Fitter A. The characters of successful invaders. Biol Conserv. 1996;78:163–70.
Article
Google Scholar
Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol. 2002;17:164–70.
Article
Google Scholar
Lu M, Wingfield MJ, Gillette NE, Mori SR, Sun JH. Complex interactions among host pines and fungi vectored by an invasive bark beetle. New Phytol. 2010;187:859–66.
Article
PubMed
Google Scholar
Lu M, Hulcr J, Sun J. The role of symbiotic microbes in insect invasions. Annu Rev Ecol Evol Syst. 2016;47:487–505.
Article
Google Scholar
Liu SS, Barro PJD, Xu J, Luan JB, Zang LS, Ruan YM, et al. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science. 2007;318:1769–72.
Article
CAS
PubMed
Google Scholar
Huang W, Siemann E, Xiao L, Yang X, Ding J. Species-specific defence responses facilitate conspecifics and inhibit heterospecifics in above-belowground herbivore interactions. Nat Commun. 2014;5:4851.
Article
CAS
PubMed
Google Scholar
Ma ZC, Zhu L, Song TQ, Wang Y, Zhang Q, Xia YQ, et al. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science. 2017;355:710–4.
Article
CAS
PubMed
Google Scholar
McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biol. 2016;17:227.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu NN, Zhang SF, Li XW, Cao YH, Liu XJ, Wang QH, et al. Fall webworm genomes yield insights into rapid adaptation on invasive species. Nat Ecol Evol. 2019;3:105–15.
Article
PubMed
Google Scholar
Wan FH, Yin CL, Tang R, Chen MH, Wu Q, Huang C, et al. A chromosome-level genone assembly of Cydia pomonella provides insights into chemical ecology and insecticide resisitance. Nat Commun. 2019;10:4237.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hammond PM. In: Groombridge B, editor. Species inventory. In global biodiveristy, status of the Earth’s living resources. London: Chapman and Hall; 1992. p. 17–39.
Google Scholar
Sun J, Lu M, Gillette NE, Wingfield MJ. Red turpentine beetle: innocuous native becomes invasive tree killer in China. Annu Rev Entomol. 2013;58:293–311.
Article
CAS
PubMed
Google Scholar
Tribolium Genome Sequencing Consortium. The genome of the model beetle and pest Tribolium castaneum. Nature. 2008;452:949–55.
Article
CAS
Google Scholar
Keeling CI, Yuen MM, Liao NY, Docking TR, Chan SK, Taylor GA, et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol. 2013;14:R27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schoville SD, Chen YH, Richards S. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep. 2018;8:1931.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS, Wild R, et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science. 2007;318:1913–6.
Article
CAS
PubMed
Google Scholar
Safranyik L, Carroll AL, Régnière J, Langor DW, Riel WG, Shore TL, et al. Potential for range expansion of mountain pine beetle into the boreal forest of North America. Can Entomol. 2010;142:415–42.
Article
Google Scholar
Qiu J. China battles army of invaders. Nature. 2013;503:450–1.
Article
CAS
PubMed
Google Scholar
Wood SL. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Nat. Memoirs No. 6, Brigham Young University; 1982. p. 1359.
Google Scholar
Owen DR, Wood DL, Parmeter JR. Association between Dendroctonus valens and black stain root disease on ponderosa pine in the Sierra Nevada of California. Can Entomol. 2012;137:367–75.
Article
Google Scholar
Aukema BH, Zhu J, Møller J, Rasmussen JG, Raffa KF. Predisposition to bark beetle attack by root herbivores and associated pathogens: Roles in forest decline, gap formation, and persistence of endemic bark beetle populations. Forest Ecol Manag. 2010;259:374–82.
Article
Google Scholar
Yan Z, Sun J, Don O, Zhang Z. The red turpentine beetle, Dendroctonus valens LeConte (Scolytidae): an exotic invasive pest of pine in China. Biodivers Conserv. 2005;14:1735–60.
Article
Google Scholar
Niu SH, Li J, Bo WH, Yang WF, Zuccolo A, Giacomello S, et al. The Chinese pine geome and methylome unveil key features of conifer evolution. Cell. 2022;185:1–14.
Article
CAS
Google Scholar
Celedon JM, Bohlmann J. Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. New Phytol. 2019;224:1444–63.
Article
CAS
PubMed
Google Scholar
Cognato AI, Sun JH, Anducho-Reyes MA, Owen DR. Genetic variation and origin of red turpentine beetle (Dendroctonus valens LeConte) introduced to the People’s Republic of China. Agr Forest Entomol. 2005;7:87–94.
Article
Google Scholar
Cai YW, Cheng XW, Xu RM, Duan DH, Kirkendall LR. Genetic diversity and biogeography of red turpentine beetle Dendroctonus valens in its native and invasive regions. Insect Sci. 2008;15:291–301.
Article
CAS
Google Scholar
Fettig CJ, McMillin JD, Anhold JA, Hamud SM, Borys RR, Dabney CP, et al. The effects of mechanical fuel reduction treatments on the activity of bark beetles (Coleoptera: Scolytidae) infesting ponderosa pine. Forest Ecol Manag. 2006;230:55–68.
Article
Google Scholar
Liu Z, Zhang L, Shi Z, Wang B, Tao WQ, Sun JH. Colonization patterns of the red turpentine beetle, Dendroctonus valens (Coleoptera: Curculionidae), in the Luliang Mountains, China. Insect Sci. 2008;15:349–54.
Article
Google Scholar
Liu ZD, Wang B, Xu BB, Sun JH. Monoterpene variation mediated attack preference evolution of the bark beetle Dendroctonus valens. PLoS One. 2011;6:e22005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu ZD, Xu BB, Miao ZW, Sun JH. The pheromone frontalin and its dual function in the invasive bark beetle Dendroctonus valens. Chem Senses. 2013;38:485–95.
Article
CAS
PubMed
Google Scholar
Liu ZD, Xin YC, Xu BB, Raffa KF, Sun JH. Sound-triggered production of antiaggregation pheromone limits overcrowding of Dendroctonus valens attacking pine trees. Chem Senses. 2017;42:59–67.
CAS
PubMed
Google Scholar
Keeling CI, Campbell EO, Batista PD, Shegelski VA, Trevoy SAL, Huber DPW, et al. Chromosome-level genome assembly reveals genomic architecture of northern range expansion in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Mol Ecol Resour. 2022;22(3):1149–67.
Article
CAS
PubMed
Google Scholar
Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet. 2013;45:1431–8.
Article
CAS
PubMed
Google Scholar
Fallon TR, Lower SE, Chang C, Bessho-Uehara M, Martin GJ, Bewick AJ, et al. Firefly genomes illuminate parallel origins of bioluminescence in beetles. eLife. 2018;7:e36495.
Article
PubMed
PubMed Central
Google Scholar
Zhang L, Li S, Luo J, Du P, Wu L, Li Y, et al. Chromosome-level genome assembly of the predator Propylea japonica to understand its tolerance to insecticides and high temperatures. Mol Ecol Resour. 2020;20:292–307.
Article
CAS
PubMed
Google Scholar
Chen M, Mei Y, Chen X, Chen X, Xiao D, He K, et al. A chromosome-level assembly of the harlequin ladybird Harmonia axyridis as a genomic resource to study beetle and invasion biology. Mol Ecol Resour. 2021;21:1318–32.
Article
CAS
PubMed
Google Scholar
Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018;36:338–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matthews BJ, Dudchenko O, Kingan SB, Koren S, Antoshechkin I, Crawford JE, et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature. 2018;563:501–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi JY, Lye ZN, Groen SC, Dai X, Rughani P, Zaaijer S, et al. Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice. Genome Biol. 2020;21:21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herndon N, Shelton J, Gerischer L, Ioannidis P, Ninova M, Donitz J, et al. Enhanced genome assembly and a new official gene set for Tribolium castaneum. BMC Genomics. 2020;21:47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu YM, Li J, Chen XS. Draft genomes of two blister beetles Hycleus cichorii and Hycleus phaleratus. GigaScience. 2018;7:giy006.
Article
PubMed Central
Google Scholar
Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, et al. The locust genome provides insight into swarm formation and long-distance flight. Nat Comm. 2014;5:2957.
Article
CAS
Google Scholar
Feschotte C, Jiang N, Wessler SR. Plant transposable elements: where genetics meets genomics. Nat Rev Genet. 2002;35:329–41.
Article
CAS
Google Scholar
Hua-Van A, Le Rouzic A, Boutin TS, et al. The struggle for life of the genome’s selfish architects. Biol Direct. 2011;6:19.
Article
PubMed
PubMed Central
Google Scholar
Werren JH. Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc Natl Acad Sci U S A. 2011;108:10863–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Dam MH, Anzano Cabras A, Henderson JB, Rominger AJ, Estrada CP, Omer AD, et al. The Easter Egg Weevil (Pachyrhynchus) genome reveals syntenic patterns in Coleoptera across 200 million years of evolution. PLoS Genet. 2021;17(8):e1009745.
Article
PubMed
PubMed Central
CAS
Google Scholar
Weng YM, Francoeur CB, Currie CR, Kavanaugh DH, Schoville SD. A high-quality carabid genome assembly provides insights into beetle genome evolution and cold adaptation. Mol Ecol Resour. 2021;21(6):2145–65.
Article
CAS
PubMed
Google Scholar
Freeling M, Scanlon MJ, Fowler JE. Fractionation and subfunctionalization following genome duplications: mechanisms that drive gene content and their consequences. Curr Opin Genet Dev. 2015;35:110–8.
Article
CAS
PubMed
Google Scholar
Lewis EB. Pseudoallelism and gene evolution. Cold Spring Harb Sym. 1951;16:159–74.
Article
CAS
Google Scholar
Ohno S. Evolution by Gene Duplication. Berlin: Springer; 1970.
Book
Google Scholar
Sacktor B, Childress C. Metabolism of proline in insect flight muscle and its significance in stimulating the oxidation of pyruvate. Arch Biochem Biophys. 1967;120:583–8.
Article
CAS
Google Scholar
Seybold S, Bohlmann J, Raffa KF. Biosynthesis of coniferophagous bark beetle pheromones and conifer isoprenoids: evolutionary respective and synthesis. Can Entomol. 2000;132:697–753.
Article
Google Scholar
Simard C, Lebel A, Allain EP, Touaibia M, Hebert-Chatelain E, Pichaud N. Metabolic characterization and consequences of mitochondrial pyruvate carrier deficiency in Drosophila melanogaster. Metabolites. 2020;10:63.
CAS
Google Scholar
Forrest GL, Gonzalez B. Carboyl reductase. Chem Biol Interact. 2000;129:210–40.
Article
Google Scholar
Hoffmann F, Maser E. Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the short-chain dehydrogenase/reductase superfamily. Drug Matab Rev. 2007;39:87–144.
Article
CAS
Google Scholar
Janson R, De Serves C, Romero R. Emission of isoprene and carbonyl compounds from a boreal forest and wetland in Sweden. Agr Forest Meteor. 1999;98-99:671–81.
Article
Google Scholar
Villanueva-Fierro I, Popp CJ, Martin RS. Biogenic emissions and ambient concentrations of hydrocarbons, carbonyl compounds and organic acids from ponderosa pine and cottonwood trees at rural and forested sites in Central New Mexico. Atmos Environ. 2004;38:249–60.
Article
CAS
Google Scholar
Keeling CI, Chiu CC, Aw T, Li M, Henderson H, Tittiger C, et al. Frontalin pheromone biosynthesis in the mountain pine beetle, Dendroctonus ponderosae, and the role of isoprenyl diphosphate synthases. Proc Natl Acad Sci U S A. 2013;110:18838–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lespinet O, Wolf YI, Koonin EV, Aravind L. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 2002;12:1048–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiel BP, Hall NE, Cooke IR, Robinson NA, Stone DAJ, Strugnell JM. The effect of commercial, natural and grape seed extract supplemented diets on gene expression signatures and survival of greenlip abalone (Haliotis laevigata) during heat stress. Aquaculture. 2017;479:798–807.
Article
CAS
Google Scholar
Wang M, Xu G, Tang Y, Su S, Wang Y, Zhu Z. Investigation of the molecular mechanisms of antioxidant damage and immune response downregulation in liver of Coilia nasus under starvation stress. Front Endocrinol. 2021;12:622315.
Article
Google Scholar
Place SP, Zippay ML, Hofmann GE. Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes. Am J Physiol-Reg I. 2004;287:R429–36.
CAS
Google Scholar
Todgham AE, Shulte PM, Iwama GK. Cross-tolerance in the tidepool sculpin: the role of heat shock proteins. Physiol Biochem Zool. 2005;78:133–44.
Article
CAS
PubMed
Google Scholar
Auesukaree C, Damnernsawas A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, et al. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet. 2009;50:301–10.
Article
CAS
PubMed
Google Scholar
Zhang SJ, Wang GD, Ma P, Zhang LL, Yin TT, Liu YH, et al. Genomic regions under selection in the feralization of the dingoes. Nat Commun. 2020;11:671.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rispe C, Legeai F, Nabity PD, Fernandez R, Arora AK, Baa-Puyoulet P, et al. The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest. BMC Biol. 2020;18:90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams AS, Adams SM, Currie CR, Gillette NE, Raffa KF. Geographic variation in bacterial communities associated with the red turpentine beetle (Coleoptera: Curculionidae). Environ Entomol. 2010;39:406–14.
Article
PubMed
Google Scholar
Bentz BJ, Bracewell RR, Mock KE, Pfrender ME. Genetic architecture and phenotypic plasticity of thermally-regulated traits in an eruptive species, Dendroctonus ponderosae. Evol Ecol. 2011;2011(25):1269–88.
Article
Google Scholar
Maroja LS, Bogdmanowicz SM, Wallin KF, Raffa KF, Harrison RG. Phylogeography of spruce beetles (Dendroctonus rufipennis Kurby)(Cuiculionidae: Scolytinae) in North America. Mol Ecol. 2007;16:2560–73.
Article
CAS
PubMed
Google Scholar
Zúñiga G, Cisneros R, Hayes JL, Macias-Samano J. Karyology, geographic distribution, and origin of the genus Dendroctonus Erichson (Coleoptera: Scolytidae). Ann Entomol Soc Am. 2002;95:67–275.
Article
Google Scholar
Wood SL. Aspectos taxonómicos de los Scolytidae. In: Proceedings, 2nd National Symposium Forest Parasitology Cuernavaca Morelos, Mexico, 17-20 February 1982. Publicacio’n especial No. 46. México City: Secrataría de Recursos Hidraúlicos; 1985. p. 170–4.
Google Scholar
Styles BT. Genus Pinus. In: Ramammorthy TP, Bye R, Lot A, Fa J, editors. Biological diversity of Mexico: origin and distribution. New York: Oxford University Press; 1993. p. 397–420.
Google Scholar
Farjon A, Styles BT. Pinus (Pinaceae) Flora Neotropica. Monograph 75. Organization for Flora Neotropica. New York: The New York Botanical Garden; 1997.
Google Scholar
Barton NH, Charlesworth B. Genetic revolutions, founder effects, and speciation. Annu Rev Ecol Syst. 1984;15:133–64.
Article
Google Scholar
Roderick GK. Tracing the origin of pests and natural enemies: genetic and statistical approaches. In: Lester EE, Sforza R, Mateille T, editors. Genetics, Evolution and Biological Control. Cambridge: CABI; 2004. p. 97–112.
Chapter
Google Scholar
Comeault AA, Wang J, Tittes S, Isbell K, Ingley S, Hurlbert AH, et al. Genetic diversity and thermal performance in invasive and native populations of African fig flies. Mol Biol Evol. 2020;37:1893–906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prentis PJ, Wilson JR, Dormontt EE, Richardson DM, Lowe AJ. Adaptive evolution in invasive species. Trends Plant Sci. 2008;13:288–94.
Article
CAS
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ranallo-Benavidez TR, Jaron KS, Schatz MC. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat Commun. 2020;11:1432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Putnam NH, O’Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26(3):342–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods. 2016;13:1050–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roach MJ, Schmidt SA, Borneman AR. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics. 2018;19:460.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adey A, Kitzman JO, Burton JN, Daza R, Kumar A, Christiansen L, et al. In vitro, long-range sequence information for de novo genome assembly via transposase contiguity. Genome Res. 2014;24:2041–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
English AC, Richards S, Han Y, Wang M, Vee V, Qu J, et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS One. 2012;7:e47768.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wingett S, Ewels P, Furlan-Magaril M, Nagano T, Schoenfelder S, Fraser P, et al. HiCUP: pipeline for mapping and processing Hi-C data. F1000 Res. 2015;4:1310.
Article
CAS
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang X, Zhang S, Zhao Q, Ming R, Tang H. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat Plants. 2019;5:833–45.
Article
CAS
PubMed
Google Scholar
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
Article
CAS
PubMed
Google Scholar
Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics. 2005;21(Suppl 1):i351–8.
Article
CAS
PubMed
Google Scholar
Edgar RC, Myers EW. PILER: identification and classification of genomic repeats. Bioinformatics. 2005;21(Suppl 1):i152–8.
Article
CAS
PubMed
Google Scholar
Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35:W265–8.
Article
PubMed
PubMed Central
Google Scholar
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29:2933–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res. 2004;14:988–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.
Article
CAS
PubMed
Google Scholar
Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith JRK, Hannick LI, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31:5654–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005;33:W465–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanke M, Schoffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics. 2006;7:62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Parra G, Blanco E, Guigo R. GeneID in Drosophila. Genome Res. 2000;10:511–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramakrishna R, Srinivasan R. Gene identification in bacterial and organellar genomes using GeneScan. Comput Chem. 1999;23:165–74.
Article
CAS
PubMed
Google Scholar
Majoros WH, Pertea M, Salzberg SL. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics. 2004;20:2878–9.
Article
CAS
PubMed
Google Scholar
Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5:59.
Article
PubMed
PubMed Central
Google Scholar
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008;9:R7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Stoeckert CJ Jr, Roos DS. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–5.
Article
CAS
PubMed
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
Article
CAS
PubMed
Google Scholar
Li H, Coghlan A, Ruan J, Coin LJ, Heriche JK, Osmotherly L, et al. TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res. 2006;34:D572–80.
Article
CAS
PubMed
Google Scholar
De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 2006;22:1269–71.
Article
PubMed
CAS
Google Scholar
Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34:W609–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH. Synteny and collinearity in plant genomes. Science. 2008;320:486–8.
Article
CAS
PubMed
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62.
Article
CAS
PubMed
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39:W316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Genome sequencing and assembly. NCBI. (2021). https://www.ncbi.nlm.nih.gov/bioproject/PRJNA765904 (Last accessed August 5, 2022).
The genome assembly data. GenBank (2022) https://www.ncbi.nlm.nih.gov/assembly/GCA_024550625.1/#/def (Last accessed August 5, 2022).
Liu Z-D. The genome assembly and annotation data of the red turpentine beetle Dendroctonus valens. Figshare; 2022. https://doi.org/10.6084/m9.figshare.19999844.
Book
Google Scholar