Turner JA, Andradi-Brown DA, Gori A, Bongaerts P, Burdett HL, Ferrier-Pagès C, Voolstra CR, Weinstein DK, Bridge TC, Costantini F. Key questions for research and conservation of mesophotic coral ecosystems and temperate mesophotic ecosystems. In: Mesophotic coral ecosystems. Springer; 2019: 989–1003
Spalding HL, Amado-Filho GM, Bahia RG, Ballantine DL, Fredericq S, Leichter JJ, Nelson WA, Slattery M, Tsuda RT: Macroalgae. In: Mesophotic Coral Ecosystems. Springer; 2019: 507–536
Voerman SE, Marsh BC, Bahia RG, Pereira-Filho GH, Yee TW, Becker ACF, Amado-Filho GM, Ruseckas A, Turnbull GA, Samuel IDW et al. Ecosystem engineer morphological traits and taxon identity shape biodiversity across the euphotic-mesophotic transition. Proceedings of the Royal Society B: Biological Sciences 2022, in press
Lesser MP, Slattery M, Leichter JJ. Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol. 2009;375(1–2):1–8.
Article
Google Scholar
de Cerqueira VP, Pierozzi-Jr I, Lino JB, Amado-Filho GM, de Senna AR, Santos CSG, de Moura RL, Passos FD, Giglio VJ, Pereira-Filho GH. Drivers of biodiversity associated with rhodolith beds from euphotic and mesophotic zones: Insights for management and conservation. Perspect Ecol Conserv. 2020;18(1):37–43.
Google Scholar
Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PY, Guth AZ, Francini-Filho RB, Pereira-Filho GH, Abrantes DP, Brasileiro PS. Rhodolith beds are major CaCO 3 bio-factories in the tropical South West Atlantic. PLoS ONE. 2012;7(4):e35171.
Article
CAS
Google Scholar
Giering SL, Sanders R, Lampitt RS, Anderson TR, Tamburini C, Boutrif M, Zubkov MV, Marsay CM, Henson SA, Saw K. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature. 2014;507(7493):480–3.
Article
CAS
Google Scholar
Sansone FJ, Spalding HL, Smith CM. Sediment biogeochemistry of mesophotic meadows of calcifying macroalgae. Aquat Geochem. 2017;23(3):141–64.
Article
CAS
Google Scholar
Jerlov NG. Marine optics, vol. 14: Elsevier; 1976
Son S, Wang M. Diffuse attenuation coefficient of the photosynthetically available radiation Kd (PAR) for global open ocean and coastal waters. Remote Sens Environ. 2015;159:250–8.
Article
Google Scholar
Kirk JT: Light and photosynthesis in aquatic ecosystems: Cambridge university press; 1994
Ryther JH. Photosynthesis in the Ocean as a Function of Light Intensity 1. Limnol Oceanogr. 1956;1(1):61–70.
Article
Google Scholar
Gattuso J-P, Gentili B, Duarte CM, Kleypas J, Middelburg JJ, Antoine D. Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences. 2006;3(4):489–513.
Article
Google Scholar
Collier CJ, Lavery PS, Ralph PJ, Masini RJ. Shade-induced response and recovery of the seagrass Posidonia sinuosa. J Exp Mar Biol Ecol. 2009;370(1–2):89–103.
Article
Google Scholar
Burdett HL, Keddie V, MacArthur N, McDowall L, McLeish J, Spielvogel E, Hatton AD, Kamenos NA. Dynamic photoinhibition exhibited by red coralline algae in the red sea. BMC Plant Biol. 2014;14(1):1–10.
Article
Google Scholar
Rohde S, Hiebenthal C, Wahl M, Karez R, Bischof K. Decreased depth distribution of Fucus vesiculosus (Phaeophyceae) in the Western Baltic: effects of light deficiency and epibionts on growth and photosynthesis. Eur J Phycol. 2008;43(2):143–50.
Article
Google Scholar
Runcie JW, Gurgel CF, Mcdermid KJ. In situ photosynthetic rates of tropical marine macroalgae at their lower depth limit. Eur J Phycol. 2008;43(4):377–88.
Article
CAS
Google Scholar
Friedlander AM, Caselle JE, Ballesteros E, Brown EK, Turchik A, Sala E. The real bounty: marine biodiversity in the Pitcairn Islands. PLoS ONE. 2014;9(6):e100142.
Article
Google Scholar
Riosmena-Rodríguez R: Natural History of Rhodolith/Maërl Beds. Their role in near-shore biodiversity and management. In: Rhodolith/Maërl beds: A global perspective. Springer; 2017: 3–26
Akimoto S, Yokono M. How Light-Harvesting and Energy-Transfer Processes Are Modified Under Different Light Conditions: STUDIES by Time-Resolved Fluorescence Spectroscopy. In: Photosynthesis: Structures, Mechanisms, and Applications. Springer; 2017: 169–184
Zhang J, Ma J, Liu D, Qin S, Sun S, Zhao J, Sui S-F. Structure of phycobilisome from the red alga Griffithsia pacifica. Nature. 2017;551(7678):57–63.
Article
Google Scholar
Glazer A, Hixson CS. Subunit structure and chromophore composition of rhodophytan phycoerythrins. Porphyridium cruentum B-phycoerythrin and b-phycoerythrin. J Biol Chem. 1977;252(1):32–42.
Article
CAS
Google Scholar
Mogstad AA, Johnsen G. Spectral characteristics of coralline algae: a multi-instrumental approach, with emphasis on underwater hyperspectral imaging. Appl Opt. 2017;56(36):9957–75.
Article
CAS
Google Scholar
Kamenos NA, Burdett HL, Darrenougue N. Coralline algae as recorders of past climatic and environmental conditions. In: Rhodolith/Maërl Beds: A Global Perspective. Springer; 2017: 27–53
Chandler CJ, Wilts BD, Brodie J, Vignolini S. Structural color in marine algae. Adv Opt Mater. 2017;5(5):1600646.
Article
Google Scholar
Pritchard DW, Hurd CL, Beardall J, Hepburn CD. Survival in low light: photosynthesis and growth of a red alga in relation to measured in situ irradiance. J Phycol. 2013;49(5):867–79.
Article
CAS
Google Scholar
Ma J, You X, Sun S, Wang X, Qin S, Sui S-F. Structural basis of energy transfer in Porphyridium purpureum phycobilisome. Nature. 2020;579(7797):146–51.
Article
CAS
Google Scholar
Calzadilla PI, Muzzopappa F, Sétif P, Kirilovsky D. Different roles for ApcD and ApcF in Synechococcus elongatus and Synechocystis sp. PCC 6803 phycobilisomes. Biochimica et Biophysica Acta (BBA)-Bioenerg. 2019;1860(6):488–98.
Article
CAS
Google Scholar
Liu H, Zhang H, Niedzwiedzki DM, Prado M, He G, Gross ML, Blankenship RE. Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science. 2013;342(6162):1104–7.
Article
CAS
Google Scholar
Sepúlveda-Ugarte J, Brunet JE, Matamala AR, Martínez-Oyanedel J, Bunster M. Spectroscopic parameters of phycoerythrobilin and phycourobilin on phycoerythrin from Gracilaria chilensis. J Photochem Photobiol A. 2011;219(2–3):211–6.
Article
Google Scholar
Vásquez-Elizondo RM, Enríquez S. Light absorption in coralline algae (Rhodophyta): a morphological and functional approach to understanding species distribution in a coral reef lagoon. Front Mar Sci. 2017;4:297.
Article
Google Scholar
Niedzwiedzki DM, Bar-Zvi S, Blankenship RE, Adir N. Mapping the excitation energy migration pathways in phycobilisomes from the cyanobacterium Acaryochloris marina. Biochimica et Biophysica Acta (BBA)-Bioenerg. 2019;1860(4):286–96.
Article
CAS
Google Scholar
Van Stokkum IH, Gwizdala M, Tian L, Snellenburg JJ, Van Grondelle R, Van Amerongen H, Berera R. A functional compartmental model of the Synechocystis PCC 6803 phycobilisome. Photosynth Res. 2018;135(1):87–102.
Article
Google Scholar
Chukhutsina V, Bersanini L, Aro E-M, Van Amerongen H. Cyanobacterial light-harvesting phycobilisomes uncouple from photosystem I during dark-to-light transitions. Sci Rep. 2015;5(1):1–10.
Article
Google Scholar
Pullerits T, Sundström V. Photosynthetic light-harvesting pigment− protein complexes: toward understanding how and why. Acc Chem Res. 1996;29(8):381–9.
Article
CAS
Google Scholar
Malerba ME, Palacios MM, Palacios Delgado YM, Beardall J, Marshall DJ. Cell size, photosynthesis and the package effect: an artificial selection approach. New Phytol. 2018;219(1):449–61.
Article
CAS
Google Scholar
Talarico L, Maranzana G. Light and adaptive responses in red macroalgae: an overview. J Photochem Photobiol B. 2000;56(1):1–11.
Article
CAS
Google Scholar
Zhang X, Zhao F, Qin S, Yan B. Cloning, expression and characterization of phycoerythrin gene from Ceramium boydenn. DNA Seq. 2006;17(2):129–35.
Article
CAS
Google Scholar
Dammeyer T, Frankenberg-Dinkel N. Insights into phycoerythrobilin biosynthesis point toward metabolic channeling. J Biol Chem. 2006;281(37):27081–9.
Article
CAS
Google Scholar
Figueroa FL, Martínez B, Israel A, Neori A. Malta E-j, Ang Jr P, Inken S, Marquardt R, Rachamim T, Arazi U: Acclimation of Red Sea macroalgae to solar radiation: photosynthesis and thallus absorptance. Aquat Biol. 2009;7(1–2):159–72.
Article
Google Scholar
Sharon Y, Silva J, Santos R, Runcie JW, Chernihovsky M, Beer S. Photosynthetic responses of Halophila stipulacea to a light gradient II Acclimations following transplantation. Aquat Biol. 2009;7(1–2):153–7.
Article
Google Scholar
Johansson G, Snoeijs P. Macroalgal photosynthetic responses to light in relation to thallus morphology and depth zonation. Mar Ecol Prog Ser. 2002;244:63–72.
Article
Google Scholar
Gómez I, Huovinen P. Morpho-functional patterns and zonation of South Chilean seaweeds: the importance of photosynthetic and bio-optical traits. Mar Ecol Prog Ser. 2011;422:77–91.
Article
Google Scholar
Borlongan IA, Nishihara GN, Shimada S, Terada R. Photosynthetic performance of the red alga Solieria pacifica (Solieriaceae) from two different depths in the sublittoral waters of Kagoshima Japan. J Appl Phycol. 2017;29(6):3077–88.
Article
CAS
Google Scholar
Wiencke C, Rahmel J, Karsten U, Weykam G, Kirst G. Photosynthesis of marine macroalgae from Antarctica: light and temperature requirements. Botanica Acta. 1993;106(1):78–87.
Article
Google Scholar
Lee K-K, Lim P-E, Poong S-W, Wong C-Y, Phang S-M, Beardall J. Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress. J Oceanol Limnol. 2018;36(4):1266–79.
Article
Google Scholar
Serôdio J, Vieira S, Cruz S, Coelho H. Rapid light-response curves of chlorophyll fluorescence in microalgae: relationship to steady-state light curves and non-photochemical quenching in benthic diatom-dominated assemblages. Photosynth Res. 2006;90(1):29–43.
Article
Google Scholar
Petersen J, Rredhi A, Szyttenholm J, Oldemeyer S, Kottke T, Mittag M. The world of algae reveals a broad variety of cryptochrome properties and functions. Front Plant Sci. 2021;12:766509.
Li F-W, Melkonian M, Rothfels CJ, Villarreal JC, Stevenson DW, Graham SW. Wong GK-S, Pryer KM, Mathews S: Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nat Commun. 2015;6(1):1–12.
Google Scholar
Li F-W, Rothfels CJ, Melkonian M, Villarreal JC, Stevenson DW, Graham SW. Wong GK-S, Mathews S, Pryer KM: The origin and evolution of phototropins. Front Plant Sci. 2015;6:637.
Article
Google Scholar
Carrigee LA, Frick JP, Karty JA, Garczarek L, Partensky F, Schluchter WM. MpeV is a lyase isomerase that ligates a doubly linked phycourobilin on the β-subunit of phycoerythrin I and II in marine Synechococcus. J Biol Chem. 2021;296:100031.
Sanfilippo JE, Garczarek L, Partensky F, Kehoe DM. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. Ann Rev Microbial; 2019;73(1):407–33.
Zhao K-H, Scheer H. Type I and type II reversible photochemistry of phycoerythrocyanin α-subunit from Mastigocladus laminosus both involve Z, E isomerization of phycoviolobilin chromophore and are controlled by sulfhydryls in apoprotein. Biochimica et Biophysica Acta (BBA)-Bioenerg. 1995;1228(2–3):244–53.
Article
Google Scholar
Zhao K-H, Haessner R, Cmiel E, Scheer H. Type I reversible photochemistry of phycoerythrocyanin involves Z/E-isomerization of α-84 phycoviolobilin chromophore. Biochimica et Biophysica Acta (BBA)-Bioenerg. 1995;1228(2–3):235–43.
Article
Google Scholar
de Paula JC, Robblee JH, Pasternack RF. Aggregation of chlorophyll a probed by resonance light scattering spectroscopy. Biophys J. 1995;68(1):335–41.
Article
Google Scholar
Leukart P, Lüning K. Minimum spectral light requirements and maximum light levels for long-term germling growth of several red algae from different water depths and a green alga. Eur J Phycol. 1994;29(2):103–12.
Article
Google Scholar
Kamenos NA. North Atlantic summers have warmed more than winters since 1353, and the response of marine zooplankton. Proc Natl Acad Sci. 2010;107(52):22442–7.
Article
CAS
Google Scholar
Connan S. Spectrophotometric assays of major compounds extracted from algae. In: Natural Products From Marine Algae. Springer; 2015: 75–101
Brandlmeier T, Scheer H, Rüdiger W. Chromophore content and molar absorptivity of phytochrome in the Pr form. Zeitschrift für Naturforschung C. 1981;36(5–6):431–9.
Article
Google Scholar
Shibata K. Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef. Plant Cell Physiol. 1969;10(2):325–35.
CAS
Google Scholar
Enríquez S, Méndez ER. Prieto RI: Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr. 2005;50(4):1025–32.
Article
Google Scholar
Burdett HL, Hennige SJ. Francis FT-Y, Kamenos NA: The photosynthetic characteristics of red coralline algae, determined using pulse amplitude modulation (PAM) fluorometry. Bot Mar. 2012;55(5):499–509.
Article
CAS
Google Scholar
Ralph PJ, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot. 2005;82(3):222–37.
Article
CAS
Google Scholar
Jassby AD, Platt T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr. 1976;21(4):540–7.
Article
CAS
Google Scholar
Silsbe GM, Malkin SY. Phytotools: Phytoplankton Production Tools, An R package available on CRAN: https://cran.r-project.org/web/packages/phytotools/index.html. 2015
Goldstein JI, Newbury DE, Echlin P, Joy DC, Romig A, Lyman CE, Fiori C, Lifshin E: Electron optics. In: Scanning Electron Microscopy and X-Ray Microanalysis. Springer; 1992: 21–68
Figueroa FL, Conde-Alvarez R, Gómez I. Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynth Res. 2003;75(3):259–75.
Article
CAS
Google Scholar
Burdett HL, Hatton AD, Kamenos NA. Effects of reduced salinity on the photosynthetic characteristics and intracellular DMSP concentrations of the red coralline alga Lithothamnion glaciale. Marine Biol. 2015;162(5):1077–85.
Article
CAS
Google Scholar
Schubert N, García-Mendoza E, Enríquez S. Is the photo-acclimatory response of Rhodophyta conditioned by the species carotenoid profile? Limnol Oceanogr. 2011;56(6):2347–61.
Article
CAS
Google Scholar
R_Core_Team: R: A language and environment for statistical computing. http://www.R-project.org/. 2013
Fox J, Weisberg S. An R Companion to Applied Regression. 3rd ed. Thousand Oaks, CA: Sage; 2019.
Google Scholar
Lenth R, Singmann H, Love J, Buerkner P, Herve M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1 (2018). In.; 2021
Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Scheipl F: Package ‘lme4’: Linear Mixed-Effects Models using 'Eigen' and S4. https://github.com/lme4/lme4/. 2012