Gordon DM. The organization of work in social insect colonies. Nature. 1996;380:121–4.
Article
CAS
Google Scholar
Hölldobler B, Wilson EO. The ants, vol. xii. Cambridge: Belknap Press of Harvard University Press; 1990. p. 732. 24 p. of plates p
Book
Google Scholar
Powell S, Franks NR. Ecology and the evolution of worker morphological diversity: a comparative analysis with Eciton army ants. Funct Ecol. 2006;20(6):1105–14.
Article
Google Scholar
Franks NR, Sendova-Franks AB, Anderson C. Division of labour within teams of New World and Old World army ants. Anim Behav. 2001;62(4):635–42.
Article
Google Scholar
O’Donnell S, Bulova S, Barrett M, von Beeren C. Brain investment under colony-level selection: soldier specialization in Eciton army ants (Formicidae: Dorylinae). BMC Zool. 2018;3(1):3.
Article
Google Scholar
Alvarado S, Rajakumar R, Abouheif E, Szyf M. Epigenetic variation in the Egfr gene generates quantitative variation in a complex trait in ants. Nat Commun. 2015;6(1):1–9.
Article
Google Scholar
Zube C, Rössler W. Caste- and sex-specific adaptations within the olfactory pathway in the brain of the ant Camponotus floridanus. Arthropod Struct Dev. 2008;37(6):469–79.
Article
Google Scholar
Zube C, Kleineidam CJ, Kirschner S, Neef J, Rossler W. Organization of the olfactory pathway and odor processing in the antennal lobe of the ant Camponotus floridanus. J Comp Neurol. 2008;506(3):425–41.
Article
CAS
Google Scholar
Simola DF, Graham RJ, Brady CM, Enzmann BL, Desplan C, Ray A, et al. Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus. Science. 2016;351(6268):aac6633.
Article
Google Scholar
Simola DF, Ye C, Mutti NS, Dolezal K, Bonasio R, Liebig J, et al. A chromatin link to caste identity in the carpenter ant Camponotus floridanus. Genome Res. 2013;23(3):486–96.
Article
CAS
Google Scholar
Zhou X, Slone JD, Rokas A, Berger SL, Liebig J, Ray A, et al. Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genet. 2012;8(8):e1002930.
Article
CAS
Google Scholar
Pask G, Ray A. Insect olfactory receptors: an interface between chemistry and biology. In: Zufall F, Munger SD, editors. Chemosensory transduction: the detection of odors, tastes, and other chemostimuli. 1st ed. Cambridge: Academic; 2016. p. 101–22.
Chapter
Google Scholar
Galizia CG, Sachse S. Odor coding in insects. In: Menini A, editor. The neurobiology of olfaction. Boca Raton: Front Neurosci; 2010.
Google Scholar
Kirschner S, Kleineidam CJ, Zube C, Rybak J, Grünewald B, Rössler W. Dual olfactory pathway in the honeybee, Apis mellifera. J Comp Neurol. 2006;499(6):933–52.
Article
Google Scholar
Slone JD, Pask GM, Ferguson ST, Millar JG, Berger SL, Reinberg D, et al. Functional characterization of odorant receptors in the ponerine ant, Harpegnathos saltator. Proc Natl Acad Sci U S A. 2017;114(32):8586–91.
Article
CAS
Google Scholar
Pask GM, Slone JD, Millar JG, Das P, Moreira JA, Zhou X, et al. Specialized odorant receptors in social insects that detect cuticular hydrocarbon cues and candidate pheromones. Nat Commun. 2017;8(1):297.
Article
Google Scholar
Yan H, Opachaloemphan C, Mancini G, Yang H, Gallitto M, Mlejnek J, et al. An engineered orco mutation produces aberrant social behavior and defective neural development in ants. Cell. 2017;170(4):736–47.e9.
Article
CAS
Google Scholar
Trible W, Olivos-Cisneros L, McKenzie SK, Saragosti J, Chang NC, Matthews BJ, et al. orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell. 2017;170(4):727–35.e10.
Article
CAS
Google Scholar
Ferguson ST, Park KY, Ruff AA, Bakis I, Zwiebel LJ. Odor coding of nestmate recognition in the eusocial ant Camponotus floridanus. J Exp Biol. 2020;223(2):jeb215400.
Article
Google Scholar
Nara K, Saraiva LR, Ye X, Buck LB. A large-scale analysis of odor coding in the olfactory epithelium. J Neurosci. 2011;31(25):9179–91.
Article
CAS
Google Scholar
Oka Y, Omura M, Kataoka H, Touhara K. Olfactory receptor antagonism between odorants. EMBO J. 2004;23(1):120–6.
Article
CAS
Google Scholar
Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science. 2003;299(5615):2054–8.
Article
CAS
Google Scholar
Pitts RJ, Derryberry SL, Zhang Z, Zwiebel LJ. Variant ionotropic receptors in the malaria vector mosquito Anopheles gambiae tuned to amines and carboxylic acids. Sci Rep. 2017;7(1):40297.
Article
CAS
Google Scholar
Stensmyr MC, Dweck HKM, Farhan A, Ibba I, Strutz A, Mukunda L, et al. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell. 2012;151(6):1345–57.
Article
CAS
Google Scholar
Melo N, Wolff GH, Costa-da-Silva AL, Arribas R, Triana MF, Gugger M, et al. Geosmin attracts Aedes aegypti mosquitoes to oviposition sites. Curr Biol. 2020;30(1):127–34.e5.
Article
CAS
Google Scholar
Townsend GF. Benzaldehyde: a new repellent for driving bees. Bee World. 1963;44(4):146–9.
Article
Google Scholar
Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93(3):491–507.
Article
Google Scholar
Kendall MG. A new measure of rank correlation. Biometrika. 1938;30(1-2):81–93.
Article
Google Scholar
Haak U, Hölldobler B, Bestman J, Kern F. Species-specificity in trail pheromones and dufour’s gland contents of Camponotus atriceps and C. floridanus (Hymenoptera: Formicidae). Chemoecology. 1996;7(2):8.
Article
Google Scholar
Beckers R, Deneubourg JL, Goss S. Trail laying behaviour during food recruitment in the ant Lasius niger (L.). Insectes Soc. 1992;39(1):59–72.
Article
Google Scholar
Sharma KR, Enzmann BL, Schmidt Y, Moore D, Jones GR, Parker J, et al. Cuticular hydrocarbon pheromones for social behavior and their coding in the ant antenna. Cell Rep. 2015;12(8):1261–71.
Article
CAS
Google Scholar
Brandstaetter A, Rössler W, Kleineidam C. Friends and foes from an ant brain’s point of view – neuronal correlates of colony odors in a social insect. PLoS One. 2011;6(6):e21383–92.
Article
CAS
Google Scholar
Crall JD, Gravish N, Mountcastle AM, Kocher SD, Oppenheimer RL, Pierce NE, et al. Spatial fidelity of workers predicts collective response to disturbance in a social insect. Nat Commun. 2018;9(1):1201.
Article
Google Scholar
Gordon DM, Dektar KN, Pinter-Wollman N. Harvester ant colony variation in foraging activity and response to humidity. PLoS One. 2013;8(5):e63363.
Article
CAS
Google Scholar
Cole BJ, Smith AA, Huber ZJ, Wiernasz DC. The structure of foraging activity in colonies of the harvester ant, Pogonomyrmex occidentalis. Behav Ecol. 2010;21(2):337–42.
Article
Google Scholar
Bernadou A, Busch J, Heinze J. Diversity in identity: behavioral flexibility, dominance, and age polyethism in a clonal ant. Behav Ecol Sociobiol. 2015;69(8):1365–75.
Article
Google Scholar
Kohlmeier P, Feldmeyer B, Foitzik S. Vitellogenin-like A–associated shifts in social cue responsiveness regulate behavioral task specialization in an ant. PLoS Biol. 2018;16(6):e2005747.
Article
Google Scholar
Seeley TD. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol. 1982;11(4):287–93.
Article
Google Scholar
Kolmes SA, Sommeijer MJ. Distribution of labour among workers of Melipona favosa F.: age-polyethism and worker oviposition. Insectes Soc. 1984;31:171–84.
Article
Google Scholar
Wilson EO. Behavioral discretization and the number of castes in an ant species. Behav Ecol Sociobiol. 1976;1(2):141–54.
Article
Google Scholar
Gordon DM. Dynamics of task switching in harvester ants. Anim Behav. 1989;38:194–204.
Article
Google Scholar
Najar-Rodriguez AJ, Galizia CG, Stierle J, Dorn S. Behavioral and neurophysiological responses of an insect to changing ratios of constituents in host plant-derived volatile mixtures. J Exp Biol. 2010;213(19):3388–97.
Article
CAS
Google Scholar
Silbering AF, Okada R, Ito K, Galizia CG. Olfactory information processing in the Drosophila antennal lobe: anything goes? J Neurosci. 2008;28(49):13075–87.
Article
CAS
Google Scholar
Wilson EO. The relation between caste ratios and division of labor in the ant genus Pheidole (Hymenoptera: Formicidae). Behav Ecol Sociobiol. 1984;16:86–98.
Article
Google Scholar
Cao L-H, Yang D, Wu W, Zeng X, Jing B-Y, Li M-T, et al. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila. Nat Commun. 2017;8(1):1357.
Article
Google Scholar
Beshers S, Robinson GE, Mittenthal JE. Response thresholds and division of labor in insect colonies. In: Detrain C, Deneubourg JL, Pasteels JM, editors. Information processing in social insects; 1999. p. 115–39.
Chapter
Google Scholar
Ulrich Y, Kawakatsu M, Tokita CK, Saragosti J, Chandra V, Tarnita CE, et al. Response thresholds alone cannot explain empirical patterns of division of labor in social insects. PLoS Biol. 2021;19(6):e3001269.
Article
CAS
Google Scholar
Pankiw T, Page RE Jr. Response thresholds to sucrose predict foraging division of labor in honeybees. Behav Ecol Sociobiol. 2000;47(4):265–7.
Article
Google Scholar
Detrain C, Pasteels JM. Caste differences in behavioral thresholds as a basis for polyethism during food recruitment in the ant, Pheidole pallidula (Nyl.) (Hymenoptera: Myrmicinae). J Insect Behav. 1991;4(2):157–76.
Article
Google Scholar
Larsen J, Fouks B, Bos N, d’Ettorre P, Nehring V. Variation in nestmate recognition ability among polymorphic leaf-cutting ant workers. J Insect Physiol. 2014;70:59–66.
Article
CAS
Google Scholar
López-Riquelme GO, Malo EA, Cruz-López L, Fanjul-Moles ML. Antennal olfactory sensitivity in response to task-related odours of three castes of the ant Atta mexicana (hymenoptera: formicidae). Physiol Entomol. 2006;31(4):353–60.
Article
Google Scholar
Bubak AN, Yaeger JD, Renner KJ, Swallow JG, Greene MJ. Neuromodulation of nestmate recognition decisions by pavement ants. PLoS One. 2016;11(11):e0166417.
Article
Google Scholar
Kamhi JF, Nunn K, Robson SKA, Traniello JFA. Polymorphism and division of labour in a socially complex ant: neuromodulation of aggression in the Australian weaver ant, Oecophylla smaragdina. Proc Biol Sci. 2015;282(1811):20150704.
Google Scholar
Ockenfels SYNTECH GmbH. Electroantennography: a practical introduction. 2015.
Rosebrock A. PyImageSearch. 2018. Available from: https://pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/. Cited 2022.
Google Scholar
Puoliväli T, Palva S, Palva JM. Influence of multiple hypothesis testing on reproducibility in neuroimaging research: a simulation study and Python-based software. J Neurosci Methods. 2020;337:108654.
Article
Google Scholar
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261–72.
Article
CAS
Google Scholar
Gramfort A, Luessi M, Larson E, Engemann D, Strohmeier D, Brodbeck C, et al. MEG and EEG data analysis with MNE-Python. Front Neurosci. 2013;7:267.
Article
Google Scholar
Stangroom J. Z score calculator for 2 population proportions: social science statistics. 2018. Available from: https://www.socscistatistics.com/tests/ztest/.