Benkovic SJ, Valentine AM, Salinas F: Replisome-mediated DNA replication. Annu Rev Biochem. 2001, 70: 181-208. 10.1146/annurev.biochem.70.1.181.
PubMed
CAS
Google Scholar
Pomerantz RT, O'Donnell M: Replisome mechanics: insights into a twin DNA polymerase machine. Trends Microbiol. 2007, 15: 156-164. 10.1016/j.tim.2007.02.007.
PubMed
CAS
Google Scholar
Vivona JB, Kelman Z: The diverse spectrum of sliding clamp interacting proteins. FEBS Lett. 2003, 546: 167-172. 10.1016/S0014-5793(03)00622-7.
PubMed
CAS
Google Scholar
Bloom LB: Loading clamps for DNA replication and repair. DNA Repair (Amst). 2009, 8: 570-578. 10.1016/j.dnarep.2008.12.014.
CAS
Google Scholar
DePamphilis M: DNA Replication and Human Disease. 2006, Woodbury, NY: Cold Spring Harbor Laboratory Press, 1
Google Scholar
Laurence T, Kwon Y, Johnson A, Hollars C, O'Donnell M, Camarero J, Barsky D: Motion of a DNA sliding clamp observed by single molecule fluorescence spectroscopy. J Biol Chem. 2008, 283: 22895-22906. 10.1074/jbc.M800174200.
PubMed
CAS
PubMed Central
Google Scholar
Stukenberg PT, Studwell-Vaughan PS, O'Donnell M: Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme. J Biol Chem. 1991, 266: 11328-11334.
PubMed
CAS
Google Scholar
Georgescu RE, Kim S-S, Yurieva O, Kuriyan J, Kong X-P, O'Donnell M: Structure of a sliding clamp on DNA. Cell. 2008, 132: 43-54. 10.1016/j.cell.2007.11.045.
PubMed
CAS
PubMed Central
Google Scholar
McNally R, Bowman GD, Goedken ER, O'Donnell M, Kuriyan J: Analysis of the role of PCNA-DNA contacts during clamp loading. BMC Struct Biol. 2010, 10: 3-10.1186/1472-6807-10-3.
PubMed
PubMed Central
Google Scholar
Kong XP, Onrust R, O'Donnell M, Kuriyan J: Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell. 1992, 69: 425-437. 10.1016/0092-8674(92)90445-I.
PubMed
CAS
Google Scholar
Jarvis TC, Paul LS, von Hippel PH: Structural and enzymatic studies of the T4 DNA replication system. I. Physical characterization of the polymerase accessory protein complex. J Biol Chem. 1989, 264: 12709-12716.
PubMed
CAS
Google Scholar
Shamoo Y, Steitz TA: Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell. 1999, 99: 155-166. 10.1016/S0092-8674(00)81647-5.
PubMed
CAS
Google Scholar
Moarefi I, Jeruzalmi D, Turner J, O'Donnell M, Kuriyan J: Crystal structure of the DNA polymerase processivity factor of T4 bacteriophage. J Mol Biol. 2000, 296: 1215-1223. 10.1006/jmbi.1999.3511.
PubMed
CAS
Google Scholar
Krishna TS, Kong XP, Gary S, Burgers PM, Kuriyan J: Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell. 1994, 79: 1233-1243. 10.1016/0092-8674(94)90014-0.
PubMed
CAS
Google Scholar
Matsumiya S, Ishino Y, Morikawa K: Crystal structure of an archaeal DNA sliding clamp: proliferating cell nuclear antigen from Pyrococcus furiosus. Protein Sci. 2001, 10: 17-23. 10.1110/ps.36401.
PubMed
CAS
PubMed Central
Google Scholar
Maki H, Kornberg A: The polymerase subunit of DNA polymerase III of Escherichia coli. II. Purification of the alpha subunit, devoid of nuclease activities. J Biol Chem. 1985, 260: 12987-12992.
PubMed
CAS
Google Scholar
O'Donnell ME, Kornberg A: Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template. J Biol Chem. 1985, 260: 12875-12883.
PubMed
Google Scholar
Mok M, Marians KJ: The Escherichia coli preprimosome and DNA B helicase can form replication forks that move at the same rate. J Biol Chem. 1987, 262: 16644-16654.
PubMed
CAS
Google Scholar
McInerney P, Johnson A, Katz F, O'Donnell M: Characterization of a triple DNA polymerase replisome. Mol Cell. 2007, 27: 527-538. 10.1016/j.molcel.2007.06.019.
PubMed
CAS
Google Scholar
Fay PJ, Johanson KO, McHenry CS, Bambara RA: Size classes of products synthesized processively by DNA polymerase III and DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem. 1981, 256: 976-983.
PubMed
CAS
Google Scholar
Yao N, Georgescu R, Finkelstein J, O'Donnell M: Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression. Proc Natl Acad Sci USA. 2009, 106: 13236-13241. 10.1073/pnas.0906157106.
PubMed
CAS
PubMed Central
Google Scholar
Onrust R, Finkelstein J, Naktinis V, Turner J, Fang L, O'Donnell M: Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. I. Organization of the clamp loader. J Biol Chem. 1995, 270: 13348-13357. 10.1074/jbc.270.22.13348.
PubMed
CAS
Google Scholar
O'Donnell M, Jeruzalmi D, Kuriyan J: Clamp loader structure predicts the architecture of DNA polymerase III holoenzyme and RFC. Curr Biol. 2001, 11: R935-946. 10.1016/S0960-9822(01)00559-0.
PubMed
Google Scholar
Studwell-Vaughan PS, O'Donnell M: Constitution of the twin polymerase of DNA polymerase III holoenzyme. J Biol Chem. 1991, 266: 19833-19841.
PubMed
CAS
Google Scholar
Kim S, Dallmann HG, McHenry CS, Marians KJ: Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell. 1996, 84: 643-650. 10.1016/S0092-8674(00)81039-9.
PubMed
CAS
Google Scholar
Sinha NK, Morris CF, Alberts BM: Efficient in vitro replication of double-stranded DNA templates by a purified T4 bacteriophage replication system. J Biol Chem. 1980, 255: 4290-4293.
PubMed
CAS
Google Scholar
Zhang Z, Shibahara K, Stillman B: PCNA connects DNA replication to epigenetic inheritance in yeast. Nature. 2000, 408: 221-225. 10.1038/35041601.
PubMed
CAS
Google Scholar
Miller A, Chen J, Takasuka TE, Jacobi JL, Kaufman PD, Irudayaraj JMK, Kirchmaier AL: Proliferating cell nuclear antigen (PCNA) is required for cell cycle-regulated silent chromatin on replicated and nonreplicated genes. J Biol Chem. 2010, 285: 35142-35154. 10.1074/jbc.M110.166918.
PubMed
CAS
PubMed Central
Google Scholar
Neuwald AF, Aravind L, Spouge JL, Koonin EV: AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999, 9: 27-43.
PubMed
CAS
Google Scholar
Abrahams JP, Leslie AG, Lutter R, Walker JE: Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994, 370: 621-628. 10.1038/370621a0.
PubMed
CAS
Google Scholar
Erzberger JP, Berger JM: Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct. 2006, 35: 93-114. 10.1146/annurev.biophys.35.040405.101933.
PubMed
CAS
Google Scholar
Jeruzalmi D, Yurieva O, Zhao Y, Young M, Stewart J, Hingorani M, O'Donnell M, Kuriyan J: Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell. 2001, 106: 417-428. 10.1016/S0092-8674(01)00462-7.
PubMed
CAS
Google Scholar
Ellison V, Stillman B: Opening of the clamp: an intimate view of an ATP-driven biological machine. Cell. 2001, 106: 655-660. 10.1016/S0092-8674(01)00498-6.
PubMed
CAS
Google Scholar
Berdis AJ, Benkovic SJ: Mechanism of bacteriophage T4 DNA holoenzyme assembly: the 44/62 protein acts as a molecular motor. Biochemistry. 1997, 36: 2733-2743. 10.1021/bi962139l.
PubMed
CAS
Google Scholar
Goedken ER, Levitus M, Johnson A, Bustamante C, O'Donnell M, Kuriyan J: Fluorescence measurements on the E.coli DNA polymerase clamp loader: implications for conformational changes during ATP and clamp binding. J Mol Biol. 2004, 336: 1047-1059. 10.1016/j.jmb.2003.12.074.
PubMed
CAS
Google Scholar
Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990, 348: 125-132. 10.1038/348125a0.
PubMed
CAS
Google Scholar
Turner J, Hingorani MM, Kelman Z, O'Donnell M: The internal workings of a DNA polymerase clamp-loading machine. EMBO J. 1999, 18: 771-783. 10.1093/emboj/18.3.771.
PubMed
CAS
PubMed Central
Google Scholar
Pietroni P, Young MC, Latham GJ, von Hippel PH: Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme. I. Conformational changes within the gp44/62-gp45-ATP complex during clamp loading. J Biol Chem. 1997, 272: 31666-31676. 10.1074/jbc.272.50.31666.
PubMed
CAS
Google Scholar
Ason B, Bertram JG, Hingorani MM, Beechem JM, O'Donnell M, Goodman MF, Bloom LB: A model for Escherichia coli DNA polymerase III holoenzyme assembly at primer/template ends. DNA triggers a change in binding specificity of the gamma complex clamp loader. J Biol Chem. 2000, 275: 3006-3015. 10.1074/jbc.275.4.3006.
PubMed
CAS
Google Scholar
Jarvis TC, Paul LS, Hockensmith JW, von Hippel PH: Structural and enzymatic studies of the T4 DNA replication system. II. ATPase properties of the polymerase accessory protein complex. J Biol Chem. 1989, 264: 12717-12729.
PubMed
CAS
Google Scholar
Gomes XV, Burgers PM: ATP utilization by yeast replication factor C. I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen. J Biol Chem. 2001, 276: 34768-34775. 10.1074/jbc.M011631200.
PubMed
CAS
Google Scholar
Goedken ER, Kazmirski SL, Bowman GD, O'Donnell M, Kuriyan J: Mapping the interaction of DNA with the Escherichia coli DNA polymerase clamp loader complex. Nat Struct Mol Biol. 2005, 12: 183-190. 10.1038/nsmb889.
PubMed
CAS
Google Scholar
Hingorani MM, Bloom LB, Goodman MF, O'Donnell M: Division of labor--sequential ATP hydrolysis drives assembly of a DNA polymerase sliding clamp around DNA. EMBO J. 1999, 18: 5131-5144. 10.1093/emboj/18.18.5131.
PubMed
CAS
PubMed Central
Google Scholar
Guenther B, Onrust R, Sali A, O'Donnell M, Kuriyan J: Crystal structure of the delta' subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell. 1997, 91: 335-345. 10.1016/S0092-8674(00)80417-1.
PubMed
CAS
Google Scholar
Johnson A, O'Donnell M: Ordered ATP hydrolysis in the gamma complex clamp loader AAA+ machine. J Biol Chem. 2003, 278: 14406-14413. 10.1074/jbc.M212708200.
PubMed
CAS
Google Scholar
Johnson A, Yao NY, Bowman GD, Kuriyan J, O'Donnell M: The replication factor C clamp loader requires arginine finger sensors to drive DNA binding and proliferating cell nuclear antigen loading. J Biol Chem. 2006, 281: 35531-35543. 10.1074/jbc.M606090200.
PubMed
CAS
Google Scholar
Ahmadian MR, Stege P, Scheffzek K, Wittinghofer A: Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nat Struct Biol. 1997, 4: 686-689. 10.1038/nsb0997-686.
PubMed
CAS
Google Scholar
Lia G, Michel B, Allemand J-F: Polymerase exchange during Okazaki fragment synthesis observed in living cells. Science. 2011, 335: 328-331.
PubMed
Google Scholar
Reyes-Lamothe R, Sherratt DJ, Leake MC: Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science. 2010, 328: 498-501. 10.1126/science.1185757.
PubMed
CAS
PubMed Central
Google Scholar
Gulbis JM, Kazmirski SL, Finkelstein J, Kelman Z, O'Donnell M, Kuriyan J: Crystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex. Eur J Biochem. 2004, 271: 439-449. 10.1046/j.1432-1033.2003.03944.x.
PubMed
CAS
Google Scholar
Marceau AH, Bahng S, Massoni SC, George NP, Sandler SJ, Marians KJ, Keck JL: Structure of the SSB-DNA polymerase III interface and its role in DNA replication. EMBO J. 2011, 30: 4236-4247. 10.1038/emboj.2011.305.
PubMed
CAS
PubMed Central
Google Scholar
Kelman Z, Yuzhakov A, Andjelkovic J, O'Donnell M: Devoted to the lagging strand-the subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. EMBO J. 1998, 17: 2436-2449. 10.1093/emboj/17.8.2436.
PubMed
CAS
PubMed Central
Google Scholar
Glover BP, McHenry CS: The chi psi subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSB-coated template. J Biol Chem. 1998, 273: 23476-23484. 10.1074/jbc.273.36.23476.
PubMed
CAS
Google Scholar
Anderson SG, Williams CR, O'Donnell M, Bloom LB: A function for the psi subunit in loading the Escherichia coli DNA polymerase sliding clamp. J Biol Chem. 2007, 282: 7035-7045.
PubMed
CAS
Google Scholar
Simonetta KR, Kazmirski SL, Goedken ER, Cantor AJ, Kelch BA, McNally R, Seyedin SN, Makino DL, O'Donnell M, Kuriyan J: The mechanism of ATP-dependent primer-template recognition by a clamp loader complex. Cell. 2009, 137: 659-671. 10.1016/j.cell.2009.03.044.
PubMed
CAS
PubMed Central
Google Scholar
Waga S, Stillman B: Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature. 1994, 369: 207-212. 10.1038/369207a0.
PubMed
CAS
Google Scholar
Cullmann G, Fien K, Kobayashi R, Stillman B: Characterization of the five replication factor C genes of Saccharomyces cerevisiae. Mol Cell Biol. 1995, 15: 4661-4671.
PubMed
CAS
PubMed Central
Google Scholar
Tsurimoto T, Stillman B: Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. J Biol Chem. 1991, 266: 1950-1960.
PubMed
CAS
Google Scholar
Bowman GD, O'Donnell M, Kuriyan J: Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature. 2004, 429: 724-730. 10.1038/nature02585.
PubMed
CAS
Google Scholar
Kelch BA, Makino DL, O'Donnell M, Kuriyan J: How a DNA polymerase clamp loader opens a sliding clamp. Science. 2011, 334: 1675-1680. 10.1126/science.1211884.
PubMed
CAS
PubMed Central
Google Scholar
Cann IK, Ishino Y: Archaeal DNA replication: identifying the pieces to solve a puzzle. Genetics. 1999, 152: 1249-1267.
PubMed
CAS
PubMed Central
Google Scholar
Miyata T, Suzuki H, Oyama T, Mayanagi K, Ishino Y, Morikawa K: Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis. Proc Natl Acad Sci USA. 2005, 102: 13795-13800. 10.1073/pnas.0506447102.
PubMed
CAS
PubMed Central
Google Scholar
Seybert A, Wigley DB: Distinct roles for ATP binding and hydrolysis at individual subunits of an archaeal clamp loader. EMBO J. 2004, 23: 1360-1371. 10.1038/sj.emboj.7600130.
PubMed
CAS
PubMed Central
Google Scholar
Kazmirski SL, Zhao Y, Bowman GD, O'Donnell M, Kuriyan J: Out-of-plane motions in open sliding clamps: molecular dynamics simulations of eukaryotic and archaeal proliferating cell nuclear antigen. Proc Natl Acad Sci USA. 2005, 102: 13801-13806. 10.1073/pnas.0506430102.
PubMed
CAS
PubMed Central
Google Scholar
Tainer JA, McCammon JA, Ivanov I: Recognition of the ring-opened state of proliferating cell nuclear antigen by replication factor C promotes eukaryotic clamp-loading. J Am Chem Soc. 2010, 132: 7372-7378. 10.1021/ja100365x.
PubMed
CAS
PubMed Central
Google Scholar
Adelman JL, Chodera JD, Kuo I-FW, Miller TF, Barsky D: The mechanical properties of PCNA: implications for the loading and function of a DNA sliding clamp. Biophys J. 2010, 98: 3062-3069. 10.1016/j.bpj.2010.03.056.
PubMed
CAS
PubMed Central
Google Scholar
Georgescu RE, Yurieva O, Kim S-S, Kuriyan J, Kong X-P, O'Donnell M: Structure of a small-molecule inhibitor of a DNA polymerase sliding clamp. Proc Natl Acad Sci USA. 2008, 105: 11116-11121. 10.1073/pnas.0804754105.
PubMed
CAS
PubMed Central
Google Scholar
Gulbis JM, Kelman Z, Hurwitz J, O'Donnell M, Kuriyan J: Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell. 1996, 87: 297-306. 10.1016/S0092-8674(00)81347-1.
PubMed
CAS
Google Scholar
Burnouf DY, Olieric V, Wagner J, Fujii S, Reinbolt J, Fuchs RPP, Dumas P: Structural and biochemical analysis of sliding clamp/ligand interactions suggest a competition between replicative and translesion DNA polymerases. J Mol Biol. 2004, 335: 1187-1197. 10.1016/j.jmb.2003.11.049.
PubMed
CAS
Google Scholar
Berdis AJ, Soumillion P, Benkovic SJ: The carboxyl terminus of the bacteriophage T4 DNA polymerase is required for holoenzyme complex formation. Proc Natl Acad Sci USA. 1996, 93: 12822-12827. 10.1073/pnas.93.23.12822.
PubMed
CAS
PubMed Central
Google Scholar
Latham GJ, Bacheller DJ, Pietroni P, von Hippel PH: Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme. III. The Gp43 DNA polymerase binds to the same face of the sliding clamp as the clamp loader. J Biol Chem. 1997, 272: 31685-31692. 10.1074/jbc.272.50.31685.
PubMed
CAS
Google Scholar
Naktinis V, Turner J, O'Donnell M: A molecular switch in a replication machine defined by an internal competition for protein rings. Cell. 1996, 84: 137-145. 10.1016/S0092-8674(00)81000-4.
PubMed
CAS
Google Scholar
Leu FP, O'Donnell M: Interplay of clamp loader subunits in opening the beta sliding clamp of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem. 2001, 276: 47185-47194. 10.1074/jbc.M106780200.
PubMed
CAS
Google Scholar
Young MC, Reddy MK, von Hippel PH: Structure and function of the bacteriophage T4 DNA polymerase holoenzyme. Biochemistry. 1992, 31: 8675-8690. 10.1021/bi00152a001.
PubMed
CAS
Google Scholar
Rush J, Lin TC, Quinones M, Spicer EK, Douglas I, Williams KR, Konigsberg WH: The 44P subunit of the T4 DNA polymerase accessory protein complex catalyzes ATP hydrolysis. J Biol Chem. 1989, 264: 10943-10953.
PubMed
CAS
Google Scholar
Dohrmann PR, McHenry CS: A bipartite polymerase-processivity factor interaction: only the internal beta binding site of the alpha subunit is required for processive replication by the DNA polymerase III holoenzyme. J Mol Biol. 2005, 350: 228-239. 10.1016/j.jmb.2005.04.065.
PubMed
CAS
Google Scholar
López de Saro FJ, Georgescu RE, O'Donnell M: A peptide switch regulates DNA polymerase processivity. Proc Natl Acad Sci USA. 2003, 100: 14689-14694. 10.1073/pnas.2435454100.
PubMed
PubMed Central
Google Scholar
Indiani C, McInerney P, Georgescu R, Goodman MF, O'Donnell M: A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. Mol Cell. 2005, 19: 805-815. 10.1016/j.molcel.2005.08.011.
PubMed
CAS
Google Scholar
Yang J, Zhuang Z, Roccasecca RM, Trakselis MA, Benkovic SJ: The dynamic processivity of the T4 DNA polymerase during replication. Proc Natl Acad Sci USA. 2004, 101: 8289-8294. 10.1073/pnas.0402625101.
PubMed
CAS
PubMed Central
Google Scholar
Beattie TR, Bell SD: Coordination of multiple enzyme activities by a single PCNA in archaeal Okazaki fragment maturation. EMBO J. 2012, 31: 1556-1567. 10.1038/emboj.2012.12.
PubMed
CAS
PubMed Central
Google Scholar
Trakselis MA, Alley SC, Abel-Santos E, Benkovic SJ: Creating a dynamic picture of the sliding clamp during T4 DNA polymerase holoenzyme assembly by using fluorescence resonance energy transfer. Proc Natl Acad Sci USA. 2001, 98: 8368-8375. 10.1073/pnas.111006698.
PubMed
CAS
PubMed Central
Google Scholar
Millar D, Trakselis MA, Benkovic SJ: On the solution structure of the T4 sliding clamp (gp45). Biochemistry. 2004, 43: 12723-12727. 10.1021/bi048349c.
PubMed
CAS
Google Scholar
Alley SC, Shier VK, Abel-Santos E, Sexton DJ, Soumillion P, Benkovic SJ: Sliding clamp of the bacteriophage T4 polymerase has open and closed subunit interfaces in solution. Biochemistry. 1999, 38: 7696-7709. 10.1021/bi9827971.
PubMed
CAS
Google Scholar
Alley SC, Abel-Santos E, Benkovic SJ: Tracking sliding clamp opening and closing during bacteriophage T4 DNA polymerase holoenzyme assembly. Biochemistry. 2000, 39: 3076-3090. 10.1021/bi992377r.
PubMed
CAS
Google Scholar
Yao N, Turner J, Kelman Z, Stukenberg PT, Dean F, Shechter D, Pan ZQ, Hurwitz J, O'Donnell M: Clamp loading, unloading and intrinsic stability of the PCNA, beta and gp45 sliding clamps of human, E. coli and T4 replicases. Genes Cells. 1996, 1: 101-113. 10.1046/j.1365-2443.1996.07007.x.
PubMed
CAS
Google Scholar
Hingorani MM, O'Donnell M: ATP binding to the Escherichia coli clamp loader powers opening of the ring-shaped clamp of DNA polymerase III holoenzyme. J Biol Chem. 1998, 273: 24550-24563. 10.1074/jbc.273.38.24550.
PubMed
CAS
Google Scholar
Paschall CO, Thompson JA, Marzahn MR, Chiraniya A, Hayner JN, O'Donnell M, Robbins AH, McKenna R, Bloom LB: The Escherichia coli clamp loader can actively pry open the β-sliding clamp. J Biol Chem. 2011, 286: 42704-42714. 10.1074/jbc.M111.268169.
PubMed
CAS
PubMed Central
Google Scholar
Naiki T, Kondo T, Nakada D, Matsumoto K, Sugimoto K: Chl12 (Ctf18) forms a novel replication factor C-related complex and functions redundantly with Rad24 in the DNA replication checkpoint pathway. Mol Cell Biol. 2001, 21: 5838-5845. 10.1128/MCB.21.17.5838-5845.2001.
PubMed
CAS
PubMed Central
Google Scholar
Mayer ML, Gygi SP, Aebersold R, Hieter P: Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol Cell. 2001, 7: 959-970. 10.1016/S1097-2765(01)00254-4.
PubMed
CAS
Google Scholar
Bylund GO, Burgers PMJ: Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol Cell Biol. 2005, 25: 5445-5455. 10.1128/MCB.25.13.5445-5455.2005.
PubMed
CAS
PubMed Central
Google Scholar
OYu F, Salazar M, Reid BR: Structure of a DNA:RNA hybrid duplex. Why RNase H does not cleave pure RNA. J Mol Biol. 1993, 233: 509-523. 10.1006/jmbi.1993.1528.
Google Scholar
Zhuang Z, Yoder BL, Burgers PMJ, Benkovic SJ: The structure of a ring-opened proliferating cell nuclear antigen-replication factor C complex revealed by fluorescence energy transfer. Proc Natl Acad Sci USA. 2006, 103: 2546-2551. 10.1073/pnas.0511263103.
PubMed
CAS
PubMed Central
Google Scholar
Ason B, Handayani R, Williams CR, Bertram JG, Hingorani MM, O'Donnell M, Goodman MF, Bloom LB: Mechanism of loading the Escherichia coli DNA polymerase III beta sliding clamp on DNA. Bona fide primer/templates preferentially trigger the gamma complex to hydrolyze ATP and load the clamp. J Biol Chem. 2003, 278: 10033-10040. 10.1074/jbc.M211741200.
PubMed
CAS
Google Scholar
Berdis AJ, Benkovic SJ: Role of adenosine 5'-triphosphate hydrolysis in the assembly of the bacteriophage T4 DNA replication holoenzyme complex. Biochemistry. 1996, 35: 9253-9265. 10.1021/bi952569w.
PubMed
CAS
Google Scholar
Gomes XV, Schmidt SL, Burgers PM: ATP utilization by yeast replication factor C. II. Multiple stepwise ATP binding events are required to load proliferating cell nuclear antigen onto primed DNA. J Biol Chem. 2001, 276: 34776-34783. 10.1074/jbc.M011743200.
PubMed
CAS
Google Scholar
Neuwald AF: Bayesian shadows of molecular mechanisms cast in the light of evolution. Trends Biochem Sci. 2006, 31: 374-382. 10.1016/j.tibs.2006.05.002.
PubMed
CAS
Google Scholar
Zhang X, Wigley DB: The 'glutamate switch' provides a link between ATPase activity and ligand binding in AAA+ proteins. Nat Struct Mol Biol. 2008, 15: 1223-1227. 10.1038/nsmb.1501.
PubMed
CAS
PubMed Central
Google Scholar
Pietroni P, von Hippel PH: Multiple ATP binding is required to stabilize the "activated" (clamp open) clamp loader of the T4 DNA replication complex. J Biol Chem. 2008, 283: 28338-28353. 10.1074/jbc.M804371200.
PubMed
CAS
PubMed Central
Google Scholar
Yao NY, Johnson A, Bowman GD, Kuriyan J, O'Donnell M: Mechanism of proliferating cell nuclear antigen clamp opening by replication factor C. J Biol Chem. 2006, 281: 17528-17539. 10.1074/jbc.M601273200.
PubMed
CAS
Google Scholar
Sakato M, O'Donnell M, Hingorani MM: A central swivel point in the RFC clamp loader controls PCNA opening and loading on DNA. J Mol Biol. 2011, 416: 163-175.
PubMed
PubMed Central
Google Scholar
Wieczorek A, Downey CD, Dallmann HG, McHenry CS: Only one ATP-binding DnaX subunit is required for initiation complex formation by the Escherichia coli DNA polymerase III holoenzyme. J Biol Chem. 2010, 285: 29049-29053. 10.1074/jbc.C110.165076.
PubMed
CAS
PubMed Central
Google Scholar
Schmidt SL, Gomes XV, Burgers PM: ATP utilization by yeast replication factor C. III. The ATP-binding domains of Rfc2, Rfc3, and Rfc4 are essential for DNA recognition and clamp loading. J Biol Chem. 2001, 276: 34784-34791. 10.1074/jbc.M011633200.
PubMed
CAS
Google Scholar
Sexton DJ, Kaboord BF, Berdis AJ, Carver TE, Benkovic SJ: Dissecting the order of bacteriophage T4 DNA polymerase holoenzyme assembly. Biochemistry. 1998, 37: 7749-7756. 10.1021/bi980088h.
PubMed
CAS
Google Scholar
Trakselis MA, Berdis AJ, Benkovic SJ: Examination of the role of the clamp-loader and ATP hydrolysis in the formation of the bacteriophage T4 polymerase holoenzyme. J Mol Biol. 2003, 326: 435-451. 10.1016/S0022-2836(02)01330-X.
PubMed
CAS
Google Scholar
Pietroni P, Young MC, Latham GJ, von Hippel PH: Dissection of the ATP-driven reaction cycle of the bacteriophage T4 DNA replication processivity clamp loading system. J Mol Biol. 2001, 309: 869-891. 10.1006/jmbi.2001.4687.
PubMed
CAS
Google Scholar
Bernstein H, Bernstein C: Bacteriophage T4 genetic homologies with bacteria and eucaryotes. J Bacteriol. 1989, 171: 2265-2270.
PubMed
CAS
PubMed Central
Google Scholar
Zhou ZH, Dougherty M, Jakana J, He J, Rixon FJ, Chiu W: Seeing the herpesvirus capsid at 8.5 A. Science. 2000, 288: 877-880. 10.1126/science.288.5467.877.
PubMed
CAS
Google Scholar
Fokine A, Leiman PG, Shneider MM, Ahvazi B, Boeshans KM, Steven AC, Black LW, Mesyanzhinov VV, Rossmann MG: Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. Proc Natl Acad Sci USA. 2005, 102: 7163-7168. 10.1073/pnas.0502164102.
PubMed
CAS
PubMed Central
Google Scholar
Bamford DH, Grimes JM, Stuart DI: What does structure tell us about virus evolution?. Curr Opin Struct Biol. 2005, 15: 655-663. 10.1016/j.sbi.2005.10.012.
PubMed
CAS
Google Scholar
Smits C, Chechik M, Kovalevskiy OV, Shevtsov MB, Foster AW, Alonso JC, Antson AA: Structural basis for the nuclease activity of a bacteriophage large terminase. EMBO Rep. 2009, 10: 592-598. 10.1038/embor.2009.53.
PubMed
CAS
PubMed Central
Google Scholar
Nadal M, Mas PJ, Mas PJ, Blanco AG, Arnan C, Solà M, Hart DJ, Coll M: Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain. Proc Natl Acad Sci USA. 2010, 107: 16078-16083. 10.1073/pnas.1007144107.
PubMed
CAS
PubMed Central
Google Scholar
Iyer LM, Balaji S, Koonin EV, Aravind L: Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res. 2006, 117: 156-184. 10.1016/j.virusres.2006.01.009.
PubMed
CAS
Google Scholar
Filée J: Lateral gene transfer, lineage-specific gene expansion and the evolution of Nucleo Cytoplasmic Large DNA viruses. J Invertebr Pathol. 2009, 101: 169-171. 10.1016/j.jip.2009.03.010.
PubMed
Google Scholar
Jeruzalmi D, O'Donnell M, Kuriyan J: Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell. 2001, 106: 429-441. 10.1016/S0092-8674(01)00463-9.
PubMed
CAS
Google Scholar
Rothwell PJ, Waksman G: Structure and mechanism of DNA polymerases. Adv Protein Chem. 2005, 71: 401-440.
PubMed
CAS
Google Scholar
Bailey S, Wing RA, Steitz TA: The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases. Cell. 2006, 126: 893-904. 10.1016/j.cell.2006.07.027.
PubMed
CAS
Google Scholar
Lamers MH, Georgescu RE, Lee S-G, O'Donnell M, Kuriyan J: Crystal structure of the catalytic alpha subunit of E. coli replicative DNA polymerase III. Cell. 2006, 126: 881-892. 10.1016/j.cell.2006.07.028.
PubMed
CAS
Google Scholar
Mueser TC, Hinerman JM, Devos JM, Boyer RA, Williams KJ: Structural analysis of bacteriophage T4 DNA replication: a review in the Virology Journal series on bacteriophage T4 and its relatives. Virol J. 2010, 7: 359-10.1186/1743-422X-7-359.
PubMed
CAS
PubMed Central
Google Scholar
Bouché JP, Zechel K, Kornberg A: dnaG gene product, a rifampicin-resistant RNA polymerase, initiates the conversion of a single-stranded coliphage DNA to its duplex replicative form. J Biol Chem. 1975, 250: 5995-6001.
PubMed
Google Scholar
Wickner S: DNA or RNA priming of bacteriophage G4 DNA synthesis by Escherichia coli dnaG protein. Proc Natl Acad Sci USA. 1977, 74: 2815-2819. 10.1073/pnas.74.7.2815.
PubMed
CAS
PubMed Central
Google Scholar
Rowen L, Kornberg A: Primase, the dnaG protein of Escherichia coli. An enzyme which starts DNA chains. J Biol Chem. 1978, 253: 758-764.
PubMed
CAS
Google Scholar
Ilyina TV, Gorbalenya AE, Koonin EV: Organization and evolution of bacterial and bacteriophage primase-helicase systems. J Mol Evol. 1992, 34: 351-357. 10.1007/BF00160243.
PubMed
CAS
Google Scholar
Podobnik M, McInerney P, O'Donnell M, Kuriyan J: A TOPRIM domain in the crystal structure of the catalytic core of Escherichia coli primase confirms a structural link to DNA topoisomerases. J Mol Biol. 2000, 300: 353-362. 10.1006/jmbi.2000.3844.
PubMed
CAS
Google Scholar
Keck JL, Roche DD, Lynch AS, Berger JM: Structure of the RNA polymerase domain of E. coli primase. Science. 2000, 287: 2482-2486. 10.1126/science.287.5462.2482.
PubMed
CAS
Google Scholar
Kornberg A, Baker TA: DNA Replication. 1992, University Science Books
Google Scholar
Conaway RC, Lehman IR: A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos. Proc Natl Acad Sci USA. 1982, 79: 2523-2527. 10.1073/pnas.79.8.2523.
PubMed
CAS
PubMed Central
Google Scholar
Kelman Z, Lee JK, Hurwitz J: The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity. Proc Natl Acad Sci USA. 1999, 96: 14783-14788. 10.1073/pnas.96.26.14783.
PubMed
CAS
PubMed Central
Google Scholar
Moyer SE, Lewis PW, Botchan MR: Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci USA. 2006, 103: 10236-10241. 10.1073/pnas.0602400103.
PubMed
CAS
PubMed Central
Google Scholar
Bochman ML, Schwacha A: The Mcm2-7 complex has in vitro helicase activity. Mol Cell. 2008, 31: 287-293. 10.1016/j.molcel.2008.05.020.
PubMed
CAS
Google Scholar
Ilves I, Petojevic T, Pesavento JJ, Botchan MR: Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010, 37: 247-258. 10.1016/j.molcel.2009.12.030.
PubMed
CAS
Google Scholar
Mosig G, Macdonald P: A new membrane-associated DNA replication protein, the gene 69 product of bacteriophage T4, shares a patch of homology with the Escherichia coli dnaA protein. J Mol Biol. 1986, 189: 243-248. 10.1016/0022-2836(86)90395-5.
PubMed
CAS
Google Scholar
Kazmirski SL, Podobnik M, Weitze TF, O'Donnell M, Kuriyan J: Structural analysis of the inactive state of the Escherichia coli DNA polymerase clamp-loader complex. Proc Natl Acad Sci USA. 2004, 101: 16750-16755. 10.1073/pnas.0407904101.
PubMed
CAS
PubMed Central
Google Scholar
PHYLIP: [http://evolution.genetics.washington.edu/phylip.html]