Machlis GE, McNutt MK: Disasters. Scenario-building for the Deepwater Horizon oil spill. Science. 2010, 329: 1018-1019.
PubMed
CAS
Google Scholar
Crone TJ, Tolstoy M: Magnitude of the 2010 Gulf of Mexico oil leak. Science. 2010, 330: 634-
PubMed
CAS
Google Scholar
Mascarelli A: Deepwater Horizon: after the oil. Nature. 2010, 467: 22-24.
PubMed
CAS
Google Scholar
Schrope M: Oil spill: deep wounds. Nature. 2011, 472: 152-154.
PubMed
CAS
Google Scholar
Williams RG, Bejder L, Calambokidis J, Kraus SD, Lusseau D, Read AJ, Robbins J: Underestimating the damage: interpreting cetacean carcass recoveries in the context of the Deepwater Horizon/BP incident. Conser Lett. 2011, 4: 228-233.
Google Scholar
Incardona JP, Collier TK, Scholz NL: Oil spills and fish health: exposing the heart of the matter. J Expo Sci Environ Epidemiol. 2011, 21: 3-4.
PubMed
CAS
Google Scholar
National Oceanic and Atmospheric Administration, Wildlife reports: Deepwater Horizon Archive. Accessed 12-18-11, [http://www.noaa.gov/deepwaterhorizon/wildlife/index.html]
Richards WJ, McGowan MF, Leming T, Lamkin JT, Kelley S: Larval fish assemblages at the loop current boundary in the Gulg-of-Mexico. Bull Mar Sci. 1993, 53: 475-537.
Google Scholar
Incardona JP, Carls MG, Day HL, Sloan CA, Bolton JL, Collier TK, Scholz NL: Cardiac arrhythmia is the primary response of embryonic Pacific herring (Clupea pallasi) exposed to crude oil during weathering. Environ Sci Technol. 2009, 43: 201-207.
PubMed
CAS
Google Scholar
Anderson BS, Arenella-Parkerson D, Phillips BM, Tjeerdema RS, Crane D: Preliminary investigation of the effects of dispersed Prudhoe Bay Crude Oil on developing topsmelt embryos, Atherinops affinis. Environ Pollut. 2009, 157: 1058-1061.
PubMed
CAS
Google Scholar
Pollino CA, Holdway DA: Toxicity testing of crude oil and related compounds using early life stages of the crimson-spotted rainbowfish (Melanotaenia fluviatilis). Ecotoxicol Environ Saf. 2002, 52: 180-189.
PubMed
CAS
Google Scholar
Lieschke GJ, Currie PD: Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007, 8: 353-367.
PubMed
CAS
Google Scholar
Dahm R, Geisler R: Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species. Mar Biotechnol (NY). 2006, 8: 329-345.
CAS
Google Scholar
Lee HY, Inselman AL, Kanungo J, Hansen DK: Alternative models in developmental toxicology. Syst Biol Reprod Med. 2012, 58: 10-22.
PubMed
CAS
Google Scholar
Sipes NS, Padilla S, Knudsen TB: Zebrafish: as an integrative model for twenty-first century toxicity testing. Birth Defects Res C Embryo Today. 2011, 93: 256-267.
PubMed
CAS
Google Scholar
McCollum CW, Ducharme NA, Bondesson M, Gustafsson JA: Developmental toxicity screening in zebrafish. Birth Defects Res C Embryo Today. 2011, 93: 67-114.
PubMed
CAS
Google Scholar
Yang L, Ho NY, Alshut R, Legradi J, Weiss C, Reischl M, Mikut R, Liebel U, Muller F, Strahle U: Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol. 2009, 28: 245-253.
PubMed
CAS
Google Scholar
Hill AJ, Teraoka H, Heideman W, Peterson RE: Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci. 2005, 86: 6-19.
PubMed
CAS
Google Scholar
Alsop D, Wood CM: Metal uptake and acute toxicity in zebrafish: common mechanisms across multiple metals. Aquat Toxicol. 2011, 105: 385-393.
PubMed
CAS
Google Scholar
Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S: Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology. 2011, 5: 43-54.
PubMed
CAS
Google Scholar
Lanham KA, Prasch AL, Weina KM, Peterson RE, Heideman W: A dominant negative zebrafish ahr2 partially protects developing zebrafish from dioxin toxicity. PLoS ONE. 2011, 6: e28020-
PubMed
CAS
PubMed Central
Google Scholar
Teraoka H, Ogawa A, Kubota A, Stegeman JJ, Peterson RE, Hiraga T: Malformation of certain brain blood vessels caused by TCDD activation of Ahr2/Arnt1 signaling in developing zebrafish. Aquat Toxicol. 2010, 99: 241-247.
PubMed
CAS
PubMed Central
Google Scholar
Prasch AL, Tanguay RL, Mehta V, Heideman W, Peterson RE: Identification of zebrafish ARNT1 homologs: 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in the developing zebrafish requires ARNT1. Mol Pharmacol. 2006, 69: 776-787.
PubMed
CAS
Google Scholar
Carney SA, Peterson RE, Heideman W: 2,3,7,8-Tetrachlorodibenzo-p-dioxin activation of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator pathway causes developmental toxicity through a CYP1A-independent mechanism in zebrafish. Mol Pharmacol. 2004, 66: 512-521.
PubMed
CAS
Google Scholar
Andreu-Sanchez O, Paraiba LC, Jonsson CM, Carrasco JM: Acute toxicity and bioconcentration of fungicide tebuconazole in zebrafish (Danio rerio). Environ Toxicol. 2012, 27: 109-116.
PubMed
CAS
Google Scholar
Tierney KB, Sekela MA, Cobbler CE, Xhabija B, Gledhill M, Ananvoranich S, Zielinski BS: Evidence for behavioral preference toward environmental concentrations of urban-use herbicides in a model adult fish. Environ Toxicol Chem. 2011, 30: 2046-2054.
PubMed
CAS
Google Scholar
Jin Y, Chen R, Sun L, Qian H, Liu W, Fu Z: Induction of estrogen-responsive gene transcription in the embryo, larval, juvenile and adult life stages of zebrafish as biomarkers of short-term exposure to endocrine disrupting chemicals. Comp Biochem Physiol C Toxicol Pharmacol. 2009, 150: 414-420.
PubMed
Google Scholar
Sun L, Wen L, Shao X, Qian H, Jin Y, Liu W, Fu Z: Screening of chemicals with anti-estrogenic activity using in vitro and in vivo vitellogenin induction responses in zebrafish (Danio rerio). Chemosphere. 2010, 78: 793-799.
PubMed
CAS
Google Scholar
Cowden J, Padnos B, Hunter D, Macphail R, Jensen K, Padilla S: Developmental exposure to valproate and ethanol alters locomotor activity and retino-tectal projection area in zebrafish embryos. Reprod Toxicol. 2012, 33: 165-173.
PubMed
CAS
Google Scholar
Tanguay RL, Reimers MJ: Analysis of ethanol developmental toxicity in zebrafish. Methods Mol Biol. 2008, 447: 63-74.
PubMed
CAS
Google Scholar
Reimers MJ, Flockton AR, Tanguay RL: Ethanol- and acetaldehyde-mediated developmental toxicity in zebrafish. Neurotoxicol Teratol. 2004, 26: 769-781.
PubMed
CAS
Google Scholar
Lewis TJ: Toxicity and cytopathogenic properties toward human melanoma cells of activated cancer therapeutics in zebra fish. Integr Cancer Ther. 2010, 9: 84-92.
PubMed
Google Scholar
Mizgirev IV, Revskoy S: A new zebrafish model for experimental leukemia therapy. Cancer Biol Ther. 2010, 9: 895-902.
PubMed
CAS
Google Scholar
Khan T, Benaich N, Malone CF, Bernardos RL, Russell AR, Barresi MJ, Downes GB, Hutson LD: Chemotherapy drugs cause axon outgrowth and behavioral defects in larval zebrafish. J Peripheral Nervous Syst. 2012, 17: 76-89.
CAS
Google Scholar
Lessman CA: The developing zebrafish (Danio rerio): a vertebrate model for high-throughput screening of chemical libraries. Birth Defects Res C Embryo Today. 2011, 93: 268-280.
PubMed
CAS
Google Scholar
Incardona JP, Collier TK, Scholz NL: Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol. 2004, 196: 191-205.
PubMed
CAS
Google Scholar
Incardona JP, Carls MG, Teraoka H, Sloan CA, Collier TK, Scholz NL: Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development. Environ Health Perspect. 2005, 113: 1755-1762.
PubMed
CAS
PubMed Central
Google Scholar
Carls MG, Holland L, Larsen M, Collier TK, Scholz NL, Incardona JP: Fish embryos are damaged by dissolved PAHs, not oil particles. Aquat Toxicol. 2008, 88: 121-127.
PubMed
CAS
Google Scholar
Pauka LM, Maceno M, Rossi SC, Silva de Assis HC: Embryotoxicity and biotransformation responses in zebrafish exposed to water-soluble fraction of crude oil. Bull Environ Contam Toxicol. 2011, 86: 389-393.
PubMed
CAS
Google Scholar
Singer MM, Aurand D, Bragin GE, Clark JR, Coelho GM, Sowby ML, Tjeerdema RS: Standardization of the Preparation and Quantitation of Water-accommodated Fractions of Petroleum for Toxicity Testing. Mar Pollut Bull. 2000, 40: 1007-1016.
CAS
Google Scholar
Camilli R, Reddy CM, Yoerger DR, Van Mooy BA, Jakuba MV, Kinsey JC, McIntyre CP, Sylva SP, Maloney JV: Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science. 2010, 330: 201-204.
PubMed
CAS
Google Scholar
Reddy CM, Arey JS, Seewald JS, Sylva SP, Lemkau KL, Nelson RK, Carmichael CA, McIntyre CP, Fenwick J, Ventura GT, Van Mooy BA, Camilli R: Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc Natl Acad Sci USA. 2012,
Google Scholar
Ryerson TB, Camilli R, Kessler JD, Kujawinski EB, Reddy CM, Valentine DL, Atlas E, Blake DR, de Gouw J, Meinardi S, Parrish DD, Peischl J, Seewald JS, Warneke C: Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution. Proc Natl Acad Sci USA. 2012,
Google Scholar
Whitehead A, Dubansky B, Bodinier C, Garcia TI, Miles S, Pilley C, Raghunathan V, Roach JL, Walker N, Walter RB, Rice CD, Galvez F: Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proc Natl Acad Sci USA. 2011,
Google Scholar
Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD: Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma. 1997, 106: 348-360.
PubMed
CAS
Google Scholar
Vaux DL, Korsmeyer SJ: Cell death in development. Cell. 1999, 96: 245-254.
PubMed
CAS
Google Scholar
Hatlen K, Sloan CA, Burrows DG, Collier TK, Scholz NL, Incardona JP: Natural sunlight and residual fuel oils are an acutely lethal combination for fish embryos. Aquat Toxicol. 2010, 99: 56-64.
PubMed
CAS
Google Scholar
Hicken CE, Linbo TL, Baldwin DH, Willis ML, Myers MS, Holland L, Larsen M, Stekoll MS, Rice SD, Collier TK, Scholz NL, Incardona JP: Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. Proc Natl Acad Sci USA. 2011, 108: 7086-7090.
PubMed
CAS
PubMed Central
Google Scholar
Isogai S, Horiguchi M, Weinstein BM: The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol. 2001, 230: 278-301.
PubMed
CAS
Google Scholar
Javidan Y, Schilling TF: Development of cartilage and bone. Methods Cell Biol. 2004, 76: 415-436.
PubMed
Google Scholar
Vincent SD, Buckingham ME: How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol. 2010, 90: 1-41.
PubMed
Google Scholar
Kuo BR, Erickson CA: Regional differences in neural crest morphogenesis. Cell Adh Migr. 2010, 4: 567-585.
PubMed
PubMed Central
Google Scholar
Kirby ML, Hutson MR: Factors controlling cardiac neural crest cell migration. Cell Adh Migr. 2010, 4: 609-621.
PubMed
PubMed Central
Google Scholar
Scholl AM, Kirby ML: Signals controlling neural crest contributions to the heart. Wiley Interdiscip Rev Syst Biol Med. 2009, 1: 220-227.
PubMed
CAS
PubMed Central
Google Scholar
Hutson MR, Kirby ML: Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations. Semin Cell Dev Biol. 2007, 18: 101-110.
PubMed
CAS
PubMed Central
Google Scholar
Knight RD, Schilling TF: Cranial neural crest and development of the head skeleton. Adv Exp Med Biol. 2006, 589: 120-133.
PubMed
CAS
Google Scholar
Luo R, An M, Arduini BL, Henion PD: Specific pan-neural crest expression of zebrafish Crestin throughout embryonic development. Dev Dyn. 2001, 220: 169-174.
PubMed
CAS
Google Scholar
Akimenko MA, Ekker M, Wegner J, Lin W, Westerfield M: Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head. J Neurosci. 1994, 14: 3475-3486.
PubMed
CAS
Google Scholar
Ellies DL, Langille RM, Martin CC, Akimenko MA, Ekker M: Specific craniofacial cartilage dysmorphogenesis coincides with a loss of dlx gene expression in retinoic acid-treated zebrafish embryos. Mech Dev. 1997, 61: 23-36.
PubMed
CAS
Google Scholar
Burgess HA, Granato M: Sensorimotor gating in larval zebrafish. J Neurosci. 2007, 27: 4984-4994.
PubMed
CAS
Google Scholar
Clarke JD, Roberts A: Interneurones in the Xenopus embryo spinal cord: sensory excitation and activity during swimming. J Physiol. 1984, 354: 345-362.
PubMed
CAS
PubMed Central
Google Scholar
Clarke JD, Hayes BP, Hunt SP, Roberts A: Sensory physiology, anatomy and immunohistochemistry of Rohon-Beard neurones in embryos of Xenopus laevis. J Physiol. 1984, 348: 511-525.
PubMed
CAS
PubMed Central
Google Scholar
Sagasti A, Guido MR, Raible DW, Schier AF: Repulsive interactions shape the morphologies and functional arrangement of zebrafish peripheral sensory arbors. Curr Biol. 2005, 15: 804-814.
PubMed
CAS
Google Scholar
Chitnis AB, Kuwada JY: Axonogenesis in the brain of zebrafish embryos. J Neurosci. 1990, 10: 1892-1905.
PubMed
CAS
Google Scholar
Segawa H, Miyashita T, Hirate Y, Higashijima S, Chino N, Uyemura K, Kikuchi Y, Okamoto H: Functional repression of Islet-2 by disruption of complex with Ldb impairs peripheral axonal outgrowth in embryonic zebrafish. Neuron. 2001, 30: 423-436.
PubMed
CAS
Google Scholar
Bernhardt RR, Patel CK, Wilson SW, Kuwada JY: Axonal trajectories and distribution of GABAergic spinal neurons in wildtype and mutant zebrafish lacking floor plate cells. J Comp Neurol. 1992, 326: 263-272.
PubMed
CAS
Google Scholar
Kimmel CB, Sessions SK, Kimmel RJ: Morphogenesis and synaptogenesis of the zebrafish Mauthner neuron. J Comp Neurol. 1981, 198: 101-120.
PubMed
CAS
Google Scholar
Eaton RC, Farley RD: Development of the Mauthner neurons in embryos and larvae of zebrafish, Brachydanio rerio. Copeia. 1973, 1973: 673-682.
Google Scholar
Prugh JI, Kimmel CB, Metcalfe WK: Noninvasive recording of the Mauthner neurone action potential in larval zebrafish. J Exp Biol. 1982, 101: 83-92.
PubMed
CAS
Google Scholar
Kriegstein A, Alvarez-Buylla A: The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 2009, 32: 149-184.
PubMed
CAS
PubMed Central
Google Scholar
Park HC, Shin J, Roberts RK, Appel B: An olig2 reporter gene marks oligodendrocyte precursors in the postembryonic spinal cord of zebrafish. Dev Dyn. 2007, 236: 3402-3407.
PubMed
CAS
Google Scholar
Alexandre P, Reugels AM, Barker D, Blanc E, Clarke JD: Neurons derive from the more apical daughter in asymmetric divisions in the zebrafish neural tube. Nat Neurosci. 2010, 13: 673-679.
PubMed
CAS
Google Scholar
Leung L, Klopper AV, Grill SW, Harris WA, Norden C: Apical migration of nuclei during G2 is a prerequisite for all nuclear motion in zebrafish neuroepithelia. Development. 2011, 138: 5003-5013.
PubMed
CAS
PubMed Central
Google Scholar
Zeller J, Granato M: The zebrafish diwanka gene controls an early step of motor growth cone migration. Development. 1999, 126: 3461-3472.
PubMed
CAS
Google Scholar
Crow MT, Stockdale FE: Myosin expression and specialization among the earliest muscle fibers of the developing avian limb. Dev Biol. 1986, 113: 238-254.
PubMed
CAS
Google Scholar
Devoto SH, Melancon E, Eisen JS, Westerfield M: Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development. 1996, 122: 3371-3380.
PubMed
CAS
Google Scholar
Mallo M, Vinagre T, Carapuco M: The road to the vertebral formula. The Int J Dev Biol. 2009, 53: 1469-1481.
PubMed
CAS
Google Scholar
Shifley ET, Cole SE: The vertebrate segmentation clock and its role in skeletal birth defects. Birth Defects Res C Embryo Today. 2007, 81: 121-133.
PubMed
CAS
Google Scholar
Mara A, Holley SA: Oscillators and the emergence of tissue organization during zebrafish somitogenesis. Trends Cell Biol. 2007, 17: 593-599.
PubMed
CAS
Google Scholar
Berger J, Berger S, Hall TE, Lieschke GJ, Currie PD: Dystrophin-deficient zebrafish feature aspects of the Duchenne muscular dystrophy pathology. Neuromuscul Disord. 2010, 20: 826-832.
PubMed
Google Scholar
Jacoby AS, Busch-Nentwich E, Bryson-Richardson RJ, Hall TE, Berger J, Berger S, Sonntag C, Sachs C, Geisler R, Stemple DL, Currie PD: The zebrafish dystrophic mutant softy maintains muscle fibre viability despite basement membrane rupture and muscle detachment. Development. 2009, 136: 3367-3376.
PubMed
CAS
PubMed Central
Google Scholar
Hall TE, Bryson-Richardson RJ, Berger S, Jacoby AS, Cole NJ, Hollway GE, Berger J, Currie PD: The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin alpha2-deficient congenital muscular dystrophy. Proc Natl Acad Sci USA. 2007, 104: 7092-7097.
PubMed
CAS
PubMed Central
Google Scholar
Bassett D, Currie PD: Identification of a zebrafish model of muscular dystrophy. Clin Exp Pharmacol Physiol. 2004, 31: 537-540.
PubMed
CAS
Google Scholar
Bassett DI, Currie PD: The zebrafish as a model for muscular dystrophy and congenital myopathy. Hum MolGenet. 2003, 12: R265-270.
CAS
Google Scholar
Bassett DI, Bryson-Richardson RJ, Daggett DF, Gautier P, Keenan DG, Currie PD: Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development. 2003, 130: 5851-5860.
PubMed
CAS
Google Scholar
Walker B: Deepwater horizon oil spill. J Environ Health. 2010, 73: 49-
PubMed
Google Scholar
Kerr R, Kintisch E, Stokstad E: Gulf oil spill. Will Deepwater Horizon set a new standard for catastrophe?. Science. 2010, 328: 674-675.
PubMed
CAS
Google Scholar
Raines B: Deepwater trouble on the horizon: oil discovered floating near source of Mexico spill. alcom. 2011, [http://blog.al.com/live/2011/08/deepwater_trouble_on_the_horiz.html]
Google Scholar
Raines B: Scientists: Oil fouling Gulf matches Deepwater Horizon well. alcom. 2011, [http://blog.al.com/live/2011/08/scientists_oil_fouling_gulf_co.html]
Google Scholar
Block BA, Teo SL, Walli A, Boustany A, Stokesbury MJ, Farwell CJ, Weng KC, Dewar H, Williams TD: Electronic tagging and population structure of Atlantic bluefin tuna. Nature. 2005, 434: 1121-1127.
PubMed
CAS
Google Scholar
Nelson RS, Manooch CS: Growth and mortality of red snappers in the west-central Atlantic Ocean and northern Gulf of Mexico. Trans Am Fish Soc. 1982, 111: 465-475.
Google Scholar
SEDAR SD, Assessment, and Review: Gulf of Mexico Gag Grouper. SEDAR 10: Stock Assessment Report 2. 2006, Charleston, SC: NOAA, National Oceanic and Atmospheric Administration
Google Scholar
Campagna C, Short FT, Polidoro BA, Mcmanus R, Collette BB, Pilcher NJ, Sadovy De Mitcheson Y, Stuart SN, Carpenter KE: Gulf of Mexico oil blowout increases risks to globally threatened species. BioScience. 2011, 61: 393-397.
Google Scholar
Ramachandran SD, Sweezey MJ, Hodson PV, Boudreau M, Courtenay SC, Lee K, King T, Dixon JA: Influence of salinity and fish species on PAH uptake from dispersed crude oil. Mar Pollut Bull. 2006, 52: 1182-1189.
PubMed
CAS
Google Scholar
Haftka JJ, Govers HA, Parsons JR: Influence of temperature and origin of dissolved organic matter on the partitioning behavior of polycyclic aromatic hydrocarbons. Environ Sci Pollut Res Int. 2010, 17: 1070-1079.
PubMed
CAS
Google Scholar
Bohne-Kjersem A, Skadsheim A, Goksoyr A, Grosvik BE: Candidate biomarker discovery in plasma of juvenile cod (Gadus morhua) exposed to crude North Sea oil, alkyl phenols and polycyclic aromatic hydrocarbons (PAHs). Mar Environ Res. 2009, 68: 268-277.
PubMed
CAS
Google Scholar
Pfeiffer CJ, Sharova LV, Gray L: Functional and ultrastructural cell pathology induced by fuel oil in cultured dolphin renal cells. Ecotoxicol Environ Saf. 2000, 47: 210-217.
PubMed
CAS
Google Scholar
Weber LP, Janz DM: Effect of beta-naphthoflavone and dimethylbenz[a]anthracene on apoptosis and HSP70 expression in juvenile channel catfish (Ictalurus punctatus) ovary. Aquat Toxicol. 2001, 54: 39-50.
PubMed
CAS
Google Scholar
Kimmel CB, Miller CT, Keynes RJ: Neural crest patterning and the evolution of the jaw. J Anat. 2001, 199: 105-120.
PubMed
CAS
Google Scholar
Basch ML, Bronner-Fraser M: Neural crest inducing signals. AdvExp Med Biol. 2006, 589: 24-31.
CAS
Google Scholar
Raible DW, Ragland JW: Reiterated Wnt and BMP signals in neural crest development. Semin Cell Dev Biol. 2005, 16: 673-682.
PubMed
CAS
Google Scholar
Ellertsdottir E, Lenard A, Blum Y, Krudewig A, Herwig L, Affolter M, Belting HG: Vascular morphogenesis in the zebrafish embryo. Dev Biol. 2010, 341: 56-65.
PubMed
CAS
Google Scholar
Makanya AN, Hlushchuk R, Djonov VG: Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis. 2009, 12: 113-123.
PubMed
CAS
Google Scholar
Taylor AC, Seltz LM, Yates PA, Peirce SM: Chronic whole-body hypoxia induces intussusceptive angiogenesis and microvascular remodeling in the mouse retina. Microvasc Res. 2010, 79: 93-101.
PubMed
CAS
PubMed Central
Google Scholar
Fetcho JR, McLean DL: Some principles of organization of spinal neurons underlying locomotion in zebrafish and their implications. Ann N Y Acad Sci. 2010, 1198: 94-104.
PubMed
PubMed Central
Google Scholar
Brustein E, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Drapeau P: Steps during the development of the zebrafish locomotor network. J Physiol, Paris. 2003, 97: 77-86.
Google Scholar
Culbertson JB, Valiela I, Peacock EE, Reddy CM, Carter A, VanderKruik R: Long-term biological effects of petroleum residues on fiddler crabs in salt marshes. Mar Pollut Bull. 2007, 54: 955-962.
PubMed
CAS
Google Scholar
Issa FA, O'Brien G, Kettunen P, Sagasti A, Glanzman DL, Papazian DM: Neural circuit activity in freely behaving zebrafish (Danio rerio). J Exp Biol. 2011, 214: 1028-1038.
PubMed
PubMed Central
Google Scholar
Svoboda KR, Linares AE, Ribera AB: Activity regulates programmed cell death of zebrafish Rohon-Beard neurons. Development. 2001, 128: 3511-3520.
PubMed
CAS
Google Scholar
Ribera AB, Nusslein-Volhard C: Zebrafish touch-insensitive mutants reveal an essential role for the developmental regulation of sodium current. J Neurosci. 1998, 18: 9181-9191.
PubMed
CAS
Google Scholar
Paulus JD, Willer GB, Willer JR, Gregg RG, Halloran MC: Muscle contractions guide rohon-beard peripheral sensory axons. J Neurosci. 2009, 29: 13190-13201.
PubMed
CAS
PubMed Central
Google Scholar
Beattie CE, Granato M, Kuwada JY: Cellular, genetic and molecular mechanisms of axonal guidance in the zebrafish. Results Probl Cell Differ. 2002, 40: 252-269.
PubMed
CAS
Google Scholar
Holley SA: The genetics and embryology of zebrafish metamerism. Dev Dyn. 2007, 236: 1422-1449.
PubMed
CAS
Google Scholar
Cinquin O: Understanding the somitogenesis clock: what's missing?. Mechan Dev. 2007, 124: 501-517.
CAS
Google Scholar
Baker RE, Schnell S, Maini PK: A clock and wavefront mechanism for somite formation. Dev Biol. 2006, 293: 116-126.
PubMed
CAS
Google Scholar
Stickney HL, Barresi MJ, Devoto SH: Somite development in zebrafish. Dev Dyn. 2000, 219: 287-303.
PubMed
CAS
Google Scholar
Snow CJ, Henry CA: Dynamic formation of microenvironments at the myotendinous junction correlates with muscle fiber morphogenesis in zebrafish. Gene Expr Patterns. 2009, 9: 37-42.
PubMed
CAS
PubMed Central
Google Scholar
Henry CA, McNulty IM, Durst WA, Munchel SE, Amacher SL: Interactions between muscle fibers and segment boundaries in zebrafish. Dev Biol. 2005, 287: 346-360.
PubMed
CAS
Google Scholar
Daggett DF, Domingo CR, Currie PD, Amacher SL: Control of morphogenetic cell movements in the early zebrafish myotome. Dev Biol. 2007, 309: 169-179.
PubMed
CAS
PubMed Central
Google Scholar
Cortes F, Daggett D, Bryson-Richardson RJ, Neyt C, Maule J, Gautier P, Hollway GE, Keenan D, Currie PD: Cadherin-mediated differential cell adhesion controls slow muscle cell migration in the developing zebrafish myotome. Dev Cell. 2003, 5: 865-876.
PubMed
CAS
Google Scholar
Barresi MJ, Stickney HL, Devoto SH: The zebrafish slow-muscle-omitted gene product is required for Hedgehog signal transduction and the development of slow muscle identity. Development. 2000, 127: 2189-2199.
PubMed
CAS
Google Scholar
Du SJ, Devoto SH, Westerfield M, Moon RT: Positive and negative regulation of muscle cell identity by members of the hedgehog and TGF-beta gene families. J Cell Biol. 1997, 139: 145-156.
PubMed
CAS
PubMed Central
Google Scholar
Zebrafish, A Practical Approach. Edited by: Nüsslein-Volhard C, Dahm R. 2002, Oxford, UK: Oxford University Press
Lyche JL, Gutleb AC, Bergman A, Eriksen GS, Murk AJ, Ropstad E, Saunders M, Skaare JU: Reproductive and developmental toxicity of phthalates. J Toxicol Environ Health B Crit Rev. 2009, 12: 225-249.
PubMed
CAS
Google Scholar
Westerfield M: The Zebrafish Book, A guide for the laboratory use of zebrafish (Danio rerio). 2007, Eugene: University of Oregon Press, 5
Google Scholar
Downes GB, Granato M: Supraspinal input is dispensable to generate glycine-mediated locomotive behaviors in the zebrafish embryo. J Neurobiol. 2006, 66: 437-451.
PubMed
CAS
Google Scholar
Detrich HW, Kieran MW, Chan FY, Barone LM, Yee K, Rundstadler JA, Pratt S, Ransom D, Zon LI: Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci USA. 1995, 92: 10713-10717.
PubMed
CAS
PubMed Central
Google Scholar
Weinstein BM, Stemple DL, Driever W, Fishman MC: Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat Med. 1995, 1: 1143-1147.
PubMed
CAS
Google Scholar
Weinstein B: Microangiography Method. [http://zfish.nichd.nih.gov/zfatlas/IntroPage/angiography.html]
Barresi MJ, Hutson LD, Chien CB, Karlstrom RO: Hedgehog regulated Slit expression determines commissure and glial cell position in the zebrafish forebrain. Development. 2005, 132: 3643-3656.
PubMed
CAS
Google Scholar
Jowett T: Tissue In Situ Hybridization: Methods in Animal Development. 1997, New York: John Wiley & Sons, Inc
Google Scholar
Grider MH, Chen Q, Shine HD: Semi-automated quantification of axonal densities in labeled CNS tissue. J Neurosci Methods. 2006, 155: 172-179.
PubMed
CAS
Google Scholar