Tidball JG: Mechanical signal transduction in skeletal muscle growth and adaptation. J Appl Physiol. 2005, 98: 1900-1908. 10.1152/japplphysiol.01178.2004.
Article
CAS
PubMed
Google Scholar
Andersson DC, Betzenhauser MJ, Reiken S, Meli AC, Umanskaya A, Xie W, Shiomi T, Zalk R, Lacampagne A, Marks AR: Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab. 2011, 14: 196-207. 10.1016/j.cmet.2011.05.014.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mourtzakis M, Bedbrook M: Muscle atrophy in cancer: a role for nutrition and exercise. Appl Physiol Nutr Metab. 2009, 34: 950-956. 10.1139/H09-075.
Article
PubMed
Google Scholar
Penna F, Bonetto A, Muscaritoli M, Costamagna D, Minero VG, Bonelli G, Rossi Fanelli F, Baccino FM, Costelli P: Muscle atrophy in experimental cancer cachexia: is the IGF-1 signaling pathway involved?. Int J Cancer. 2010, 127: 1706-1717. 10.1002/ijc.25146.
Article
CAS
PubMed
Google Scholar
Carvalho RF, Castan EP, Coelho CA, Lopes FS, Almeida FL, Michelin A, de Souza RW, Araujo JP, Cicogna AC, Dal Pai-Silva M: Heart failure increases atrogin-1 and MuRF1 gene expression in skeletal muscle with fiber type-specific atrophy. J Mol Histol. 2010, 41: 81-87. 10.1007/s10735-010-9262-x.
Article
CAS
PubMed
Google Scholar
Martinez PF, Okoshi K, Zornoff LA, Carvalho RF, Oliveira Junior SA, Lima AR, Campos DH, Damatto RL, Padovani CR, Nogueira CR, Dal Pai-Silva M, Okoshi MP: Chronic heart failure-induced skeletal muscle atrophy, necrosis, and changes in myogenic regulatory factors. Med Sci Monit. 2010, 16: BR374-383.
PubMed
Google Scholar
Hulmi JJ, Silvennoinen M, Lehti M, Kivela R, Kainulainen H: Altered REDD1, myostatin, and Akt/mTOR/FoxO/MAPK signaling in streptozotocin-induced diabetic muscle atrophy. Am J Physiol Endocrinol Metab. 2012, 302: E307-315. 10.1152/ajpendo.00398.2011.
Article
CAS
PubMed
Google Scholar
Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD: Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001, 3: 1014-1019. 10.1038/ncb1101-1014.
Article
CAS
PubMed
Google Scholar
Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL: Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA. 2001, 98: 14440-14445. 10.1073/pnas.251541198.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL: During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol. 2009, 185: 1083-1095. 10.1083/jcb.200901052.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001, 294: 1704-1708. 10.1126/science.1065874.
Article
CAS
PubMed
Google Scholar
Furuno K, Goodman MN, Goldberg AL: Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy. J Biol Chem. 1990, 265: 8550-8557.
CAS
PubMed
Google Scholar
Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL: FOXO transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004, 117: 399-412. 10.1016/S0092-8674(04)00400-3.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL: FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007, 6: 472-483. 10.1016/j.cmet.2007.11.004.
Article
CAS
PubMed
Google Scholar
Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M: FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007, 6: 458-471. 10.1016/j.cmet.2007.11.001.
Article
CAS
PubMed
Google Scholar
Moresi V, Williams AH, Meadows E, Flynn JM, Potthoff MJ, McAnally J, Shelton JM, Backs J, Klein WH, Richardson JA, Bassel-Duby R, Olson EN: Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell. 2010, 143: 35-45. 10.1016/j.cell.2010.09.004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reed SA, Senf SM, Cornwell EW, Kandarian SC, Judge AR: Inhibition of IkappaB kinase alpha (IKKalpha) or IKKbeta (IKKbeta) plus forkhead box O (FOXO) abolishes skeletal muscle atrophy. Biochem Biophys Res Commun. 2011, 405: 491-496. 10.1016/j.bbrc.2011.01.059.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cai D, Frantz JD, Tawa NE, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE: IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell. 2004, 119: 285-298. 10.1016/j.cell.2004.09.027.
Article
CAS
PubMed
Google Scholar
Calnan DR, Brunet A: The FoxO code. Oncogene. 2008, 27: 2276-2288. 10.1038/onc.2008.21.
Article
CAS
PubMed
Google Scholar
van der Heide LP, Hoekman MF, Smidt MP: The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J. 2004, 380: 297-309. 10.1042/BJ20040167.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gordon SE, Lake JA, Westerkamp CM, Thomson DM: Does AMP-activated protein kinase negatively mediate aged fast-twitch skeletal muscle mass?. Exerc Sport Sci Rev. 2008, 36: 179-186. 10.1097/JES.0b013e3181877e13.
Article
PubMed Central
PubMed
Google Scholar
Nakashima K, Yakabe Y: AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. Biosci Biotechnol Biochem. 2007, 71: 1650-1656. 10.1271/bbb.70057.
Article
CAS
PubMed
Google Scholar
Fu W, Ma Q, Chen L, Li P, Zhang M, Ramamoorthy S, Nawaz Z, Shimojima T, Wang H, Yang Y, Shen Z, Zhang Y, Zhang X, Nicosia SV, Pledger JW, Chen J, Bai W: MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem. 2009, 284: 13987-14000. 10.1074/jbc.M901758200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Senf SM, Sandesara PB, Reed SA, Judge AR: p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. Am J Physiol Cell Physiol. 2011, 300: C1490-1501. 10.1152/ajpcell.00255.2010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bertaggia E, Coletto L, Sandri M: Posttranslational modifications control FoxO3 activity during denervation. Am J Physiol Cell Physiol. 2012, 302: C587-596. 10.1152/ajpcell.00142.2011.
Article
CAS
PubMed
Google Scholar
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME: Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999, 96: 857-868. 10.1016/S0092-8674(00)80595-4.
Article
CAS
PubMed
Google Scholar
Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ: The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004, 14: 395-403. 10.1016/S1097-2765(04)00211-4.
Article
CAS
PubMed
Google Scholar
Obsilova V, Vecer J, Herman P, Pabianova A, Sulc M, Teisinger J, Boura E, Obsil T: 14-3-3 Protein interacts with nuclear localization sequence of forkhead transcription factor FoxO4. Biochemistry. 2005, 44: 11608-11617. 10.1021/bi050618r.
Article
CAS
PubMed
Google Scholar
Xiao L, Chen D, Hu P, Wu J, Liu W, Zhao Y, Cao M, Fang Y, Bi W, Zheng Z, Ren J, Ji G, Wang Y, Yuan Z: The c-Abl-MST1 signaling pathway mediates oxidative stress-induced neuronal cell death. J Neurosci. 2011, 31: 9611-9619. 10.1523/JNEUROSCI.0035-11.2011.
Article
CAS
PubMed
Google Scholar
Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A: A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell. 2006, 125: 987-1001. 10.1016/j.cell.2006.03.046.
Article
CAS
PubMed
Google Scholar
Schinkmann K, Blenis J: Cloning and characterization of a human STE20-like protein kinase with unusual cofactor requirements. J Biol Chem. 1997, 272: 28695-28703. 10.1074/jbc.272.45.28695.
Article
CAS
PubMed
Google Scholar
Lin JL, Chen HC, Fang HI, Robinson D, Kung HJ, Shih HM: MST4, a new Ste20-related kinase that mediates cell growth and transformation via modulating ERK pathway. Oncogene. 2001, 20: 6559-6569. 10.1038/sj.onc.1204818.
Article
CAS
PubMed
Google Scholar
Bi W, Xiao L, Jia Y, Wu J, Xie Q, Ren J, Ji G, Yuan Z: c-Jun N-terminal kinase enhances MST1-mediated pro-apoptotic signaling through phosphorylation at serine 82. J Biol Chem. 2010, 285: 6259-6264. 10.1074/jbc.M109.038570.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yuan Z, Kim D, Shu S, Wu J, Guo J, Xiao L, Kaneko S, Coppola D, Cheng JQ: Phosphoinositide 3-kinase/Akt inhibits MST1-mediated pro-apoptotic signaling through phosphorylation of threonine 120. J Biol Chem. 2010, 285: 3815-3824. 10.1074/jbc.M109.059675.
Article
PubMed Central
CAS
PubMed
Google Scholar
Graves JD, Draves KE, Gotoh Y, Krebs EG, Clark EA: Both phosphorylation and caspase-mediated cleavage contribute to regulation of the Ste20-like protein kinase Mst1 during CD95/Fas-induced apoptosis. J Biol Chem. 2001, 276: 14909-14915. 10.1074/jbc.M010905200.
Article
CAS
PubMed
Google Scholar
Graves JD, Gotoh Y, Draves KE, Ambrose D, Han DK, Wright M, Chernoff J, Clark EA, Krebs EG: Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO J. 1998, 17: 2224-2234. 10.1093/emboj/17.8.2224.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao B, Li L, Guan KL: Hippo signaling at a glance. J Cell Sci. 2010, 123: 4001-4006. 10.1242/jcs.069070.
Article
PubMed Central
CAS
PubMed
Google Scholar
Watt KI, Judson R, Medlow P, Reid K, Kurth TB, Burniston JG, Ratkevicius A, De Bari C, Wackerhage H: Yap is a novel regulator of C2C12 myogenesis. Biochem Biophys Res Commun. 2010, 393: 619-624. 10.1016/j.bbrc.2010.02.034.
Article
CAS
PubMed
Google Scholar
You B, Yan G, Zhang Z, Yan L, Li J, Ge Q, Jin JP, Sun J: Phosphorylation of cardiac troponin I by mammalian sterile 20-like kinase 1. Biochem J. 2009, 418: 93-101. 10.1042/BJ20081340.
Article
PubMed Central
CAS
PubMed
Google Scholar
Odashima M, Usui S, Takagi H, Hong C, Liu J, Yokota M, Sadoshima J: Inhibition of endogenous Mst1 prevents apoptosis and cardiac dysfunction without affecting cardiac hypertrophy after myocardial infarction. Circ Res. 2007, 100: 1344-1352. 10.1161/01.RES.0000265846.23485.7a.
Article
CAS
PubMed
Google Scholar
Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA: Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci USA. 2002, 99: 11025-11030. 10.1073/pnas.162172899.
Article
PubMed Central
CAS
PubMed
Google Scholar
Agbulut O, Noirez P, Beaumont F, Butler-Browne G: Myosin heavy chain isoforms in postnatal muscle development of mice. Biol Cell. 2003, 95: 399-406. 10.1016/S0248-4900(03)00087-X.
Article
CAS
PubMed
Google Scholar
Schiaffino S, Reggiani C: Fiber types in mammalian skeletal muscles. Physiol Rev. 2011, 91: 1447-1531. 10.1152/physrev.00031.2010.
Article
CAS
PubMed
Google Scholar
Dong Y, Du X, Ye J, Han M, Xu T, Zhuang Y, Tao W: A cell-intrinsic role for Mst1 in regulating thymocyte egress. J Immunol. 2009, 183: 3865-3872. 10.4049/jimmunol.0900678.
Article
CAS
PubMed
Google Scholar
Sandri M: Autophagy in skeletal muscle. FEBS Lett. 2010, 584: 1411-1416. 10.1016/j.febslet.2010.01.056.
Article
CAS
PubMed
Google Scholar
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000, 19: 5720-5728. 10.1093/emboj/19.21.5720.
Article
PubMed Central
CAS
PubMed
Google Scholar
He H, Dang Y, Dai F, Guo Z, Wu J, She X, Pei Y, Chen Y, Ling W, Wu C, Zhao S, Liu JO, Yu L: Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem. 2003, 278: 29278-29287. 10.1074/jbc.M303800200.
Article
CAS
PubMed
Google Scholar
Mizushima N, Yoshimori T: How to interpret LC3 immunoblotting. Autophagy. 2007, 3: 542-545.
Article
CAS
PubMed
Google Scholar
Sandri M: Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda). 2008, 23: 160-170. 10.1152/physiol.00041.2007.
Article
CAS
Google Scholar
Reed SA, Sandesara PB, Senf SM, Judge AR: Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J. 2012, 26: 987-1000. 10.1096/fj.11-189977.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xie Q, Hao Y, Tao L, Peng S, Rao C, Chen H, You H, Dong MQ, Yuan Z: Lysine methylation of FOXO3 regulates oxidative stress-induced neuronal cell death. EMBO Rep. 2012, 13: 371-377. 10.1038/embor.2012.25.
Article
PubMed Central
CAS
PubMed
Google Scholar
Feng HZ, Wei B, Jin JP: Deletion of a genomic segment containing the cardiac troponin I gene knocks down expression of the slow troponin T gene and impairs fatigue tolerance of diaphragm muscle. J Biol Chem. 2009, 284: 31798-31806. 10.1074/jbc.M109.020826.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xie Q, Chen J, Yuan Z: Post-translational regulation of FOXO. Acta Biochim Biophys Sin (Shanghai). 2012, 44: 897-901. 10.1093/abbs/gms067.
Article
CAS
Google Scholar