Young CM, Sewell MA: Atlas of Marine Invertebrate Larvae. 2006, Waltham, MA, USA: Academic Press
Google Scholar
Nielsen C: Trochophora larvae: cell-lineages, ciliary bands, and body regions. 1. Annelida and mollusca. J Exp Zool (Mol Dev Evol). 2004, 302B: 35-68. 10.1002/jez.b.20001.
Google Scholar
Nielsen C: Trochophora larvae: cell-lineages, ciliary bands and body regions. 2. Other groups and general discussion. J Exp Zool B Mol Dev Evol. 2005, 304: 401-447.
PubMed
Google Scholar
Jekely G: Origin and early evolution of neural circuits for the control of ciliary locomotion. Proc Biol Sci. 2011, 278: 914-922. 10.1098/rspb.2010.2027.
PubMed Central
PubMed
Google Scholar
Chia FS, Koss R: Fine-structural studies of the nervous-system and the apical organ in the planula larva of the sea-anemone Anthopleura elegantissima. J Morph. 1979, 160: 275-298. 10.1002/jmor.1051600303.
Google Scholar
Rawlinson KA: Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits. Front Zool. 2010, 7: 12-10.1186/1742-9994-7-12.
PubMed Central
PubMed
Google Scholar
Hindinger S, Schwaha T, Wanninger A: Immunocytochemical studies reveal novel neural structures in nemertean pilidium larvae and provide evidence for incorporation of larval components into the juvenile nervous system. Front Zool. 2013, 10: 31-10.1186/1742-9994-10-31.
PubMed Central
PubMed
Google Scholar
Byrne M, Nakajima Y, Chee FC, Burke RD: Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria. Evol Dev. 2007, 9: 432-445. 10.1111/j.1525-142X.2007.00189.x.
PubMed
Google Scholar
Miyamoto N, Nakajima Y, Wada H, Saito Y: Development of the nervous system in the acorn worm Balanoglossus simodensis: insights into nervous system evolution. Evol Dev. 2010, 12: 416-424. 10.1111/j.1525-142X.2010.00428.x.
PubMed
Google Scholar
Nielsen C: Six major steps in animal evolution: are we derived sponge larvae?. Evol Dev. 2008, 10: 241-257. 10.1111/j.1525-142X.2008.00231.x.
PubMed
Google Scholar
Kempf SC, Page LR, Pires A: Development of serotonin-like immunoreactivity in the embryos and larvae of nudibranch mollusks with emphasis on the structure and possible function of the apical sensory organ. J Comp Neurol. 1997, 386: 507-528. 10.1002/(SICI)1096-9861(19970929)386:3<507::AID-CNE12>3.0.CO;2-7.
PubMed
Google Scholar
Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D: Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell. 2007, 129: 1389-1400. 10.1016/j.cell.2007.04.041.
PubMed
Google Scholar
Hadfield MG, Meleshkevitch EA, Boudko DY: The apical sensory organ of a gastropod veliger is a receptor for settlement cues. Biol Bull. 2000, 198: 67-76. 10.2307/1542804.
PubMed
Google Scholar
Rentzsch F, Fritzenwanker JH, Scholz CB, Technau U: FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development. 2008, 135: 1761-1769. 10.1242/dev.020784.
PubMed
Google Scholar
Conzelmann M, Williams EA, Tunaru S, Randel N, Shahidi R, Asadulina A, Berger J, Offermanns S, Jekely G: Conserved MIP receptor-ligand pair regulates Platynereis larval settlement. Proc Natl Acad Sci USA. 2013, 14: 8224-8229.
Google Scholar
Nielsen C: Animal Evolution. Interrelationships of the Living Phyla. 3rd edition. 2012, Oxford: Oxford University Press
Google Scholar
Jägersten G: Evolution of the Metazoan Life Cycle: A Comprehensive Theory. 1972, London, New York: Academic Press
Google Scholar
Raff RA: Origins of the other metazoan body plans: the evolution of larval forms. Philos Trans R Soc Lond B Biol Sci. 2008, 363: 1473-1479. 10.1098/rstb.2007.2237.
PubMed Central
PubMed
Google Scholar
Peterson KJ, Cameron RA, Davidson EH: Set-aside cells in maximal indirect development: evolutionary and developmental significance. Bioessays. 1997, 19: 623-631. 10.1002/bies.950190713.
PubMed
Google Scholar
Wolpert L: From egg to adult to larva. Evol Dev. 1999, 1: 3-4. 10.1046/j.1525-142x.1999.00111.x.
PubMed
Google Scholar
Arendt D, Technau U, Wittbrodt J: Evolution of the bilaterian larval foregut. Nature. 2001, 409: 81-85. 10.1038/35051075.
PubMed
Google Scholar
Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, Snyman H, Hannon GJ, Bork P, Arendt D: Ancient animal microRNAs and the evolution of tissue identity. Nature. 2010, 463: 1084-1088. 10.1038/nature08744.
PubMed Central
PubMed
Google Scholar
Harada Y, Okai N, Taguchi S, Tagawa K, Humphreys T, Satoh N: Developmental expression of the hemichordate otx ortholog. Mech Dev. 2000, 91: 337-339. 10.1016/S0925-4773(99)00279-8.
PubMed
Google Scholar
Dunn EF, Moy VN, Angerer LM, Angerer RC, Morris RL, Peterson KJ: Molecular paleoecology: using gene regulatory analysis to address the origins of complex life cycles in the late Precambrian. Evol Dev. 2007, 9: 10-24. 10.1111/j.1525-142X.2006.00134.x.
PubMed
Google Scholar
Lowe CJ, Wu M, Salic A, Evans L, Lander E, Stange-Thomann N, Gruber CE, Gerhart J, Kirschner M: Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell. 2003, 113: 853-865. 10.1016/S0092-8674(03)00469-0.
PubMed
Google Scholar
Yankura KA, Martik ML, Jennings CK, Hinman VF: Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms. BMC Biol. 2010, 8: 143-10.1186/1741-7007-8-143.
PubMed Central
PubMed
Google Scholar
Wei Z, Yaguchi J, Yaguchi S, Angerer RC, Angerer LM: The sea urchin animal pole domain is a six3-dependent neurogenic patterning center. Development. 2009, 136: 1179-1189. 10.1242/dev.032300.
PubMed Central
PubMed
Google Scholar
Marlow H, Matus DQ, Martindale MQ: Ectopic activation of the canonical Wnt signaling pathway affects ectodermal patterning along the primary axis during larval development in the anthozoan Nematostella vectensis. Dev Biol. 2013, 380: 324-334. 10.1016/j.ydbio.2013.05.022.
PubMed
Google Scholar
Range RC, Angerer RC, Angerer LM: Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos. PLoS Biol. 2013, 11: e1001467-10.1371/journal.pbio.1001467.
PubMed Central
PubMed
Google Scholar
Sinigaglia C, Busengdal H, Leclere L, Technau U, Rentzsch F: The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol. 2013, 11: e1001488-10.1371/journal.pbio.1001488.
PubMed Central
PubMed
Google Scholar
Fischer AH, Henrich T, Arendt D: The normal development of Platynereis dumerilii (Nereididae, Annelida). Front Zool. 2010, 7: 31-10.1186/1742-9994-7-31.
PubMed Central
PubMed
Google Scholar
Yaguchi S, Yaguchi J, Wei Z, Jin Y, Angerer LM, Inaba K: Fez function is required to maintain the size of the animal plate in the sea urchin embryo. Development. 2011, 138: 4233-4243. 10.1242/dev.069856.
PubMed Central
PubMed
Google Scholar
Scholpp S, Lumsden A: Building a bridal chamber: development of the thalamus. Trends Neurosci. 2010, 33: 373-380. 10.1016/j.tins.2010.05.003.
PubMed Central
PubMed
Google Scholar
Steinmetz PR, Urbach R, Posnien N, Eriksson J, Kostyuchenko RP, Brena C, Guy K, Akam M, Bucher G, Arendt D: Six3 demarcates the anterior-most developing brain region in bilaterian animals. Evodevo. 2010, 1: 14-10.1186/2041-9139-1-14.
PubMed Central
PubMed
Google Scholar
Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J: Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science. 2004, 306: 869-871. 10.1126/science.1099955.
PubMed
Google Scholar
Takacs CM, Amore G, Oliveri P, Poustka AJ, Wang D, Burke RD, Peterson KJ: Expression of an NK2 homeodomain gene in the apical ectoderm defines a new territory in the early sea urchin embryo. Dev Biol. 2004, 269: 152-164. 10.1016/j.ydbio.2004.01.023.
PubMed
Google Scholar
Poustka AJ, Kuhn A, Groth D, Weise V, Yaguchi S, Burke RD, Herwig R, Lehrach H, Panopoulou G: A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks. Genome Biol. 2007, 8: R85-10.1186/gb-2007-8-5-r85.
PubMed Central
PubMed
Google Scholar
Tu Q, Brown CT, Davidson EH, Oliveri P: Sea urchin forkhead gene family: phylogeny and embryonic expression. Dev Biol. 2006, 300: 49-62. 10.1016/j.ydbio.2006.09.031.
PubMed
Google Scholar
Duboc V, Rottinger E, Besnardeau L, Lepage T: Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Dev Cell. 2004, 6: 397-410. 10.1016/S1534-5807(04)00056-5.
PubMed
Google Scholar
Matus DQ, Pang K, Marlow H, Dunn CW, Thomsen GH, Martindale MQ: Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci U S A. 2006, 103: 11195-11200. 10.1073/pnas.0601257103.
PubMed Central
PubMed
Google Scholar
Rottinger E, Martindale MQ: Ventralization of an indirect developing hemichordate by NiCl(2) suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms). Dev Biol. 2011, 354: 173-190. 10.1016/j.ydbio.2011.03.030.
PubMed
Google Scholar
Illies MR, Peeler MT, Dechtiaruk A, Ettensohn CA: Cloning and developmental expression of a novel, secreted frizzled-related protein from the sea urchin, Strongylocentrotus purpuratus. Mech Dev. 2002, 113: 61-64. 10.1016/S0925-4773(01)00657-8.
PubMed
Google Scholar
Darras S, Gerhart J, Terasaki M, Kirschner M, Lowe CJ: β-catenin specifies the endomesoderm and defines the posterior organizer of the hemichordate Saccoglossus kowalevskii. Development. 2011, 138: 959-970. 10.1242/dev.059493.
PubMed Central
PubMed
Google Scholar
Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau U, von Haeseler A, Hobmayer B, Martindale MQ, Holstein TW: Unexpected complexity of the Wnt gene family in a sea anemone. Nature. 2005, 433: 156-160. 10.1038/nature03158.
PubMed
Google Scholar
Schubert M, Holland LZ, Holland ND: Characterization of two amphioxus Wnt genes (AmphiWnt4 and AmphiWnt7b) with early expression in the developing central nervous system. Dev Dyn. 2000, 217: 205-215. 10.1002/(SICI)1097-0177(200002)217:2<205::AID-DVDY7>3.0.CO;2-F.
PubMed
Google Scholar
Janssen R, Le Gouar M, Pechmann M, Poulin F, Bolognesi R, Schwager EE, Hopfen C, Colbourne JK, Budd GE, Brown SJ, Prpic NM, Kosiol C, Vervoort M, Damen WG, Balavoine G, McGregor AP: Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evol Biol. 2010, 10: 374-10.1186/1471-2148-10-374.
PubMed Central
PubMed
Google Scholar
Tomer R, Denes A, Tessmar-Raible K, Arendt D: Cellular resolution expression profiling reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell. 2010, 142: 800-809. 10.1016/j.cell.2010.07.043.
PubMed
Google Scholar
Yaguchi S, Yaguchi J, Angerer RC, Angerer LM: A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos. Dev Cell. 2008, 14: 97-107. 10.1016/j.devcel.2007.10.012.
PubMed
Google Scholar
Leost M, Schultz C, Link A, Wu YZ, Biernat J, Mandelkow EM, Bibb JA, Snyder GL, Greengard P, Zaharevitz DW, Gussio R, Senderowicz AM, Sausville EA, Kunick C, Meijer L: Paullones are potent inhibitors of glycogen synthase kinase-3beta and cyclin-dependent kinase 5/p25. Eur J Biochem. 2000, 267: 5983-5994. 10.1046/j.1432-1327.2000.01673.x.
PubMed
Google Scholar
Schneider SQ, Bowerman B: beta-Catenin asymmetries after all animal/vegetal- oriented cell divisions in Platynereis dumerilii embryos mediate binary cell-fate specification. Dev Cell. 2007, 13: 73-86. 10.1016/j.devcel.2007.05.002.
PubMed
Google Scholar
Arendt D, Tessmar K, de Campos-Baptista MI, Dorresteijn A, Wittbrodt J: Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development. 2002, 129: 1143-1154.
PubMed
Google Scholar
Byrne M, Sewell MA, Selvakumaraswamy P, Prowse TA: The larval apical organ in the holothuroid Chiridota gigas (Apodida): inferences on evolution of the Ambulacrarian larval nervous system. Biol Bull. 2006, 211: 95-100. 10.2307/4134584.
PubMed
Google Scholar
Lacalli TC, Kelly SJ: Anterior neural centres in echinoderm bipinnaria and auricularia larvae: cell types and organization. Acta Zoologica (Stockholm). 2002, 83: 99-110. 10.1046/j.1463-6395.2002.00103.x.
Google Scholar
Lacalli TC: Structure and development of the apical organ in trochophores of Spirobranchus polycerus, Phyllodoce maculata, and Phyllodoce mucosa (Polychaeta). Proc R Soc Lond B. 1981, 212: 381-402. 10.1098/rspb.1981.0045.
Google Scholar
Conzelmann M, Offenburger SL, Asadulina A, Keller T, Munch TA, Jekely G: Neuropeptides regulate swimming depth of Platynereis larvae. Proc Natl Acad Sci USA. 2011, 108: E1174-E1183. 10.1073/pnas.1109085108.
PubMed Central
PubMed
Google Scholar
Koyanagi M, Terakita A, Kubokawa K, Shichida Y: Amphioxus homologs of Go-coupled rhodopsin and peropsin having 11-cis- and all-trans-retinals as their chromophores. FEBS Lett. 2002, 531: 525-528. 10.1016/S0014-5793(02)03616-5.
PubMed
Google Scholar
Flames N, Hobert O: Transcriptional control of the terminal fate of monoaminergic neurons. Annu Rev Neurosci. 2011, 34: 153-184. 10.1146/annurev-neuro-061010-113824.
PubMed
Google Scholar
Kim J, Chung YD, Park DY, Choi S, Shin DW, Soh H, Lee HW, Son W, Yim J, Park CS, Kernan MJ, Kim C: A TRPV family ion channel required for hearing in Drosophila. Nature. 2003, 424: 81-84. 10.1038/nature01733.
PubMed
Google Scholar
Candiani S, Moronti L, De Pietri Tonelli D, Garbarino G, Pestarino M: A study of neural-related microRNAs in the developing amphioxus. Evodevo. 2011, 2: 15-10.1186/2041-9139-2-15.
PubMed Central
PubMed
Google Scholar
Pierce ML, Weston MD, Fritzsch B, Gabel HW, Ruvkun G, Soukup GA: MicroRNA-183 family conservation and ciliated neurosensory organ expression. Evol Dev. 2008, 10: 106-113. 10.1111/j.1525-142X.2007.00217.x.
PubMed Central
PubMed
Google Scholar
Amos LA: The tektin family of microtubule-stabilizing proteins. Genome Biol. 2008, 9: 229-
PubMed Central
PubMed
Google Scholar
Yu X, Ng CP, Habacher H, Roy S: Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet. 2008, 40: 1445-1453. 10.1038/ng.263.
PubMed
Google Scholar
Santagata S, Resh C, Hejnol A, Martindale MQ, Passamaneck YJ: Development of the larval anterior neurogenic domains of Terebratalia transversa (Brachiopoda) provides insights into the diversification of larval apical organs and the spiralian nervous system. Evodevo. 2012, 3: 3-10.1186/2041-9139-3-3.
PubMed Central
PubMed
Google Scholar
Chevalier S, Martin A, Leclere L, Amiel A, Houliston E: Polarised expression of FoxB and FoxQ2 genes during development of the hydrozoan Clytia hemisphaerica. Dev Genes Evol. 2006, 216: 709-720. 10.1007/s00427-006-0103-6.
PubMed
Google Scholar
Ogasawara M: Overlapping expression of amphioxus homologs of the thyroid transcription factor-1 gene and thyroid peroxidase gene in the endostyle: insight into evolution of the thyroid gland. Dev Genes Evol. 2000, 210: 231-242. 10.1007/s004270050309.
PubMed
Google Scholar
Yu JK, Mazet F, Chen YT, Huang SW, Jung KC, Shimeld SM: The Fox genes of Branchiostoma floridae. Dev Genes Evol. 2008, 218: 629-638. 10.1007/s00427-008-0229-9.
PubMed
Google Scholar
Onai T, Lin HC, Schubert M, Koop D, Osborne PW, Alvarez S, Alvarez R, Holland ND, Holland LZ: Retinoic acid and Wnt/beta-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus. Dev Biol. 2009, 332: 223-233. 10.1016/j.ydbio.2009.05.571.
PubMed
Google Scholar
Williams NA, Holland PWH: Old head on young shoulders. Nature. 1996, 383: 490-10.1038/383490a0.
Google Scholar
Zhang Y, Mao B: Embryonic expression and evolutionary analysis of the amphioxus Dickkopf and Kremen family genes. J Genet Genomics. 2010, 37: 637-645. 10.1016/S1673-8527(09)60082-5.
PubMed
Google Scholar
Kozmik Z, Holland ND, Kreslova J, Oliveri D, Schubert M, Jonasova K, Holland LZ, Pestarino M, Benes V, Candiani S: Pax-Six-Eya-Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev Biol. 2007, 306: 143-159. 10.1016/j.ydbio.2007.03.009.
PubMed
Google Scholar
Holland ND, Holland LZ: Serotonin-containing cells in the nervous system and other tissues during ontogeny of a lancelet, Branchiostoma floridae. Acta Zool (Stockh). 1993, 74: 195-204. 10.1111/j.1463-6395.1993.tb01234.x.
Google Scholar
Lacalli TC: Frontal eye circuitry, rostral sensory pathways and brain organization in amphioxus larvae: evidence from 3D reconstructions. Philos T Roy Soc London B Biol Sci. 1996, 351: 243-263. 10.1098/rstb.1996.0022.
Google Scholar
Lacalli TC, Kelly SJ: The infundibular balance organ in amphioxus larvae and related aspects of cerebral vesicle organization. Acta Zoologica (Stockholm). 2000, 81: 43-47.
Google Scholar
Nezlin LP, Yushin VV: Structure of the nervous system in the tornaria larva of Balanoglossus proterogonius (Hemichordata: Enteropneusta) and its phylogenetic implications. Zoomorphology. 2004, 123: 1-13. 10.1007/s00435-003-0086-z.
Google Scholar
Takacs CM, Moy VN, Peterson KJ: Testing putative hemichordate homologues of the chordate dorsal nervous system and endostyle: expression of NK2.1 (TTF-1) in the acorn worm Ptychodera flava (Hemichordata, Ptychoderidae). Evol Dev. 2002, 4: 405-417. 10.1046/j.1525-142X.2002.02029.x.
PubMed
Google Scholar
Tagawa K, Satoh N, Humphreys T: Molecular studies of hemichordate development: a key to understanding the evolution of bilateral animals and chordates. Evol Dev. 2001, 3: 443-454. 10.1046/j.1525-142X.2001.01050.x.
PubMed
Google Scholar
Nakajima Y, Humphreys T, Kaneko H, Tagawa K: Development and neural organization of the tornaria larva of the Hawaiian hemichordate, Ptychodera flava. Zoolog Sci. 2004, 21: 69-78. 10.2108/0289-0003(2004)21[69:DANOOT]2.0.CO;2.
PubMed
Google Scholar
Beer A-J, Moss C, Thorndyke M: Development of serotonin-like and SALMFamide-like immunoreactivity in the nervous system of the sea urchin Psammechinus miliaris. Biol Bull. 2001, 200: 268-280. 10.2307/1543509.
PubMed
Google Scholar
Di Bernardo M, Castagnetti S, Bellomonte D, Oliveri P, Melfi R, Palla F, Spinelli G: Spatially restricted expression of PlOtp, a Paracentrotus lividus orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and skeletal morphogenesis in late-cleavage sea urchin embryos. Development. 1999, 126: 2171-2179.
PubMed
Google Scholar
Burke RD, Angerer LM, Elphick MR, Humphrey GW, Yaguchi S, Kiyama T, Liang S, Mu X, Agca C, Klein WH, Brandhorst BP, Rowe M, Wilson K, Churcher AM, Taylor JS, Chen N, Murray G, Wang D, Mellott D, Olinski R, Hallböök F, Thorndyke MC: A genomic view of the sea urchin nervous system. Dev Biol. 2006, 300: 434-460. 10.1016/j.ydbio.2006.08.007.
PubMed Central
PubMed
Google Scholar
Howard-Ashby M, Materna SC, Brown CT, Chen L, Cameron RA, Davidson EH: Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development. Dev Biol. 2006, 300: 74-89. 10.1016/j.ydbio.2006.08.039.
PubMed
Google Scholar
Mitsunaga-Nakatsubo K, Akasaka K, Sakamoto N, Takata K, Matsumura Y, Kitajima T, Kusunoki S, Shimada H: Differential expression of sea urchin Otx isoform (hpOtxE and HpOtxL) mRNAs during early development. Int J Dev Biol. 1998, 42: 645-651.
PubMed
Google Scholar
Croce J, Duloquin L, Lhomond G, McClay DR, Gache C: Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development. Development. 2006, 133: 547-557. 10.1242/dev.02218.
PubMed
Google Scholar
Nederbragt AJ, te Welscher P, van den Driesche S, van Loon AE, Dictus WJ: Novel and conserved roles for orthodenticle/otx and orthopedia/otp orthologs in the gastropod mollusc Patella vulgata. Dev Genes Evol. 2002, 212: 330-337. 10.1007/s00427-002-0246-z.
PubMed
Google Scholar
Marlow HQ, Srivastava M, Matus DQ, Rokhsar D, Martindale MQ: Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev Neurobiol. 2009, 69: 235-254. 10.1002/dneu.20698.
PubMed
Google Scholar
Marlow H: Cell type diversity and developmental mechanisms in larval and adult anthozoan cnidarians. PhD thesis. 2011, University of Hawaii
Google Scholar
Mazza ME, Pang K, Reitzel AM, Martindale MQ, Finnerty JR: A conserved cluster of three PRD-class homeobox genes (homeobrain, rx and orthopedia) in the Cnidaria and Protostomia. Evodevo. 2010, 1: 3-10.1186/2041-9139-1-3.
PubMed Central
PubMed
Google Scholar
Mazza ME, Pang K, Martindale MQ, Finnerty JR: Genomic organization, gene structure, and developmental expression of three clustered otx genes in the sea anemone Nematostella vectensis. J Exp Zool B Mol Dev Evol. 2007, 308: 494-506.
PubMed
Google Scholar
Lee PN, Pang K, Matus DQ, Martindale MQ: A WNT of things to come: evolution of Wnt signaling and polarity in cnidarians. Semin Cell Dev Biol. 2006, 17: 157-167. 10.1016/j.semcdb.2006.05.002.
PubMed
Google Scholar
Kumburegama S, Wijesena N, Xu R, Wikramanayake AH: Strabismus-mediated primary archenteron invagination is uncoupled from Wnt/beta-catenin-dependent endoderm cell fate specification in Nematostella vectensis (Anthozoa, Cnidaria): implications for the evolution of gastrulation. Evodevo. 2011, 2: 2-10.1186/2041-9139-2-2.
PubMed Central
PubMed
Google Scholar
Posnien N, Koniszewski N, Hein HJ, Bucher G: Candidate gene screen in the red flour beetle Tribolium reveals six3 as ancient regulator of anterior median head and central complex development. PLoS Genet. 2011, 7: e1002416-10.1371/journal.pgen.1002416.
PubMed Central
PubMed
Google Scholar
Loosli F, Köster RW, Carl M, Krone A, Wittbrodt J: Six3, a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye. Mech Dev. 1998, 74: 159-164. 10.1016/S0925-4773(98)00055-0.
PubMed
Google Scholar
Samadi L, Steiner G: Expression of Hox genes during the larval development of the snail, Gibbula varia (L.)-further evidence of non-colinearity in molluscs. Dev Genes Evol. 2010, 220: 161-172. 10.1007/s00427-010-0338-0.
PubMed
Google Scholar
Saudemont A, Dray N, Hudry B, Le Gouar M, Vervoort M, Balavoine G: Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis. Dev Biol. 2008, 317: 430-443. 10.1016/j.ydbio.2008.02.013.
PubMed
Google Scholar
Steinmetz PR, Kostyuchenko RP, Fischer A, Arendt D: The segmental pattern of otx, gbx, and Hox genes in the annelid Platynereis dumerilii. Evol Dev. 2011, 13: 72-79. 10.1111/j.1525-142X.2010.00457.x.
PubMed
Google Scholar
Ryan JF, Mazza ME, Pang K, Matus DQ, Baxevanis AD, Martindale MQ, Finnerty JR: Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS One. 2007, 2: e153-10.1371/journal.pone.0000153.
PubMed Central
PubMed
Google Scholar
Mendivil Ramos O, Barker D, Ferrier DE: Ghost loci imply Hox and ParaHox existence in the last common ancestor of animals. Curr Biol. 2012, 22: 1951-1956. 10.1016/j.cub.2012.08.023.
PubMed
Google Scholar
Nielsen C, Hay-Schmidt A: Development of the enteropneust Ptychodera flava: ciliary bands and nervous system. J Morphol. 2007, 268: 551-570. 10.1002/jmor.10533.
PubMed
Google Scholar
Tranter P, Nicholson D, Kinchington DA: A description of spawning and post-gastrula development of the cool temperate coral, Caryophyllia smithi. J Mar Biol Assoc U K. 1982, 62: 845-854. 10.1017/S0025315400070387.
Google Scholar
Schwarz J, Weis V, Potts D: Feeding behavior and acquisition of zooxanthellae by planula larvae of the sea anemone Anthopleura elegantissima. Mar Biol. 2002, 140: 471-478. 10.1007/s00227-001-0736-y.
Google Scholar
Voronezhskaya EE, Tyurin SA, Nezlin LP: Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). J Comp Neurol. 2002, 444: 25-38. 10.1002/cne.10130.
PubMed
Google Scholar
Croll RP: Development of embryonic and larval cells containing serotonin, catecholamines, and FMRFamide-related peptides in the gastropod mollusc Phestilla sibogae. Biol Bull. 2006, 211: 232-247. 10.2307/4134546.
PubMed
Google Scholar
Grimmelikhuijzen CJ, Graff D, McFarlane ID: Neurones and neuropeptides in coelenterates. Arch Histol Cytol. 1989, 52: 265-278. 10.1679/aohc.52.Suppl_265.
PubMed
Google Scholar
Nakanishi N, Renfer E, Technau U, Rentzsch F: Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development. 2012, 139: 347-357. 10.1242/dev.071902.
PubMed
Google Scholar
Nakanishi N, Yuan D, Jacobs DK, Hartenstein V: Early development, pattern, and reorganization of the planula nervous system in Aurelia (Cnidaria, Scyphozoa). Dev Genes Evol. 2008, 218: 511-524. 10.1007/s00427-008-0239-7.
PubMed
Google Scholar
Martin VJ: Characterization of a RFamide-positive subset of ganglionic cells in the hydrozoan planular nerve net. Cell Tissue Res. 1992, 269: 431-438. 10.1007/BF00353898.
PubMed
Google Scholar
Leitz T, Lay M: Metamorphosin A is a neuropeptide. Roux's Arch Dev Biol. 1995, 204: 276-279. 10.1007/BF00208495.
Google Scholar
Jekely G: Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc Natl Acad Sci U S A. 2013, 110: 8702-8707. 10.1073/pnas.1221833110.
PubMed Central
PubMed
Google Scholar
Jacobs DK, Nakanishi N, Yuan D, Camara A, Nichols SA, Hartenstein V: Evolution of sensory structures in basal metazoa. Integr Comp Biol. 2007, 47: 712-723. 10.1093/icb/icm094.
PubMed
Google Scholar
Voronezhskaya EE, Tsitrin EB, Nezlin LP: Neuronal development in larval polychaete Phyllodoce maculata (Phyllodocidae). J Comp Neurol. 2003, 455: 299-309. 10.1002/cne.10488.
PubMed
Google Scholar
Temereva E, Wanninger A: Development of the nervous system in Phoronopsis harmeri (Lophotrochozoa, Phoronida) reveals both deuterostome- and trochozoan-like features. BMC Evol Biol. 2012, 12: 121-10.1186/1471-2148-12-121.
PubMed Central
PubMed
Google Scholar
Takahashi T, Hatta M: The importance of GLWamide neuropeptides in cnidarian development and physiology. J Amino Acids. 2011, 2011: 424501-
PubMed Central
PubMed
Google Scholar
Iwao K, Fujisawa T, Hatta M: A cnidarian neuropeptide of the GLWamide family induces metamorphosis of reef-building corals in the genus Acropora. Coral Reefs. 2002, 21: 127-129.
Google Scholar
Schmich J, Trepel S, Leitz T: The role of GLWamides in metamorphosis of Hydractinia echinata. Dev Genes Evol. 1998, 208: 267-273. 10.1007/s004270050181.
PubMed
Google Scholar
Hay-Schmidt A: The evolution of the serotonergic nervous system. Proc R Soc Lond B. 2000, 267: 1071-1079. 10.1098/rspb.2000.1111.
Google Scholar
McCauley DW: Serotonin plays an early role in the metamorphosis of the hydrozoan Phialidium gregarium. Dev Biol. 1997, 190: 229-240. 10.1006/dbio.1997.8698.
PubMed
Google Scholar
Passamaneck YJ, Furchheim N, Hejnol A, Martindale MQ, Luter C: Ciliary photoreceptors in the cerebral eyes of a protostome larva. EvoDevo. 2011, 2: 6-10.1186/2041-9139-2-6.
PubMed Central
PubMed
Google Scholar
Denes AS, Jekely G, Steinmetz PR, Raible F, Snyman H, Prud'homme B, Ferrier DE, Balavoine G, Arendt D: Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell. 2007, 129: 277-288. 10.1016/j.cell.2007.02.040.
PubMed
Google Scholar
Martindale MQ, Pang K, Finnerty JR: Investigating the origins of triploblasty: 'mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development. 2004, 131: 2463-2474. 10.1242/dev.01119.
PubMed
Google Scholar
Jekely G, Arendt D: Cellular resolution expression profiling using confocal detection of NBT/BCIP precipitate by reflection microscopy. Biotechniques. 2007, 42: 751-755. 10.2144/000112462.
PubMed
Google Scholar
TreeFam - database of animal gene trees. http://www.treefam.org,
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32: 1792-1797. 10.1093/nar/gkh340.
PubMed Central
PubMed
Google Scholar
Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000, 17: 540-552. 10.1093/oxfordjournals.molbev.a026334.
PubMed
Google Scholar
Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005, 21: 2104-2105. 10.1093/bioinformatics/bti263.
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28: 2731-2739. 10.1093/molbev/msr121.
PubMed Central
PubMed
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010, 59: 307-321. 10.1093/sysbio/syq010.
PubMed
Google Scholar